自动控制原理总结之判断系统稳定性方法
- 格式:doc
- 大小:301.50 KB
- 文档页数:8
自动控制原理面试知识自动控制原理是现代控制工程的基础和核心,掌握自动控制原理的知识对于从事控制工程的人员来说至关重要。
在面试中,对自动控制原理的了解和掌握程度往往是面试官考察的重点之一。
本文将为大家总结一些常见的自动控制原理面试知识,希望能够帮助大家在面试中更好地展现自己的能力。
1. 什么是自动控制原理?自动控制原理是一门研究如何设计和分析控制系统的学科。
它主要研究控制系统的建模、系统响应、稳定性和性能等问题。
自动控制原理的目标是设计出稳定、快速、精确的控制系统,使系统能够按照预定的要求进行自动调节和控制。
2. 自动控制系统的基本组成自动控制系统一般由四个基本组成部分构成:输入、输出、反馈和控制器。
输入是指控制系统接收到的外部输入信号,可以是传感器测得的物理量;输出是指控制系统根据输入信号经过处理后产生的输出信号,用于控制被控对象;反馈是指将输出信号与期望输出信号进行比较,并将比较结果反馈给控制器;控制器是指根据反馈信号和期望输出信号计算出控制信号,对被控对象进行控制。
3. 自动控制系统的分类自动控制系统可以根据系统的性质和结构进行分类。
按照系统的性质分类,可以分为连续系统和离散系统;按照系统的结构分类,可以分为单输入单输出系统和多输入多输出系统;按照系统的控制方式分类,可以分为开环控制系统和闭环控制系统。
4. 控制系统的建模控制系统的建模是自动控制原理的重要内容之一。
建模的目的是将控制系统抽象成数学模型,便于进行分析和设计。
常用的建模方法包括传递函数法、状态空间法和频域法等。
传递函数法是一种将系统的输入输出关系表示为有理函数的建模方法。
传递函数是指系统输出与系统输入之间的比值关系,通常用符号G(s)表示。
传递函数法适用于线性定常系统的建模。
状态空间法是一种将系统的动态行为表示为状态变量和状态方程的建模方法。
状态是指系统在某一时刻的状态,状态方程是指描述状态随时间变化的方程。
状态空间法适用于线性时变系统和非线性系统的建模。
本科实验报告课程名称:自动控制原理实验项目:控制系统的稳定性和稳态误差实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 对控制系统的稳定性进行分析; 2.学会利用MATLAB 计算系统的稳态误差。
二、实验内容和原理:1.利用MATLAB 描述系统数学模型如果系统的的数学模型可用如下的传递函数表示nn n m m m a s a s b s b s b s U s Y s G ++++++==-- 11110)()()( 则在MATLAB 下,传递函数可以方便的由其分子和分母多项式系数所构成的两个向量惟一确定出来。
即num=[b 0,b 1 ,…, b m ]; den=[1,a 1,a 2 ,…,a n ]例2-1 若系统的传递函数为5234)(23+++=s s s s G 试利用MA TLAB 表示。
当传递函数的分子或分母由若干个多项式乘积表示时,它可由MA TLAB 提供的多项式乘法运算函数conv( )来处理,以获得分子和分母多项式向量,此函数的调用格式为 p=conv(p1,p2)其中,p1和p2分别为由两个多项式系数构成的向量,而p 为p1和p2多项式的乘积多项式系数向量。
conv( )函数的调用是允许多级嵌套的。
例2-2 若系统的传递函数为)523)(1()66(4)(232++++++=s s s s s s s s G试利用MA TLAB 求出其用分子和分母多项式表示的传递函数。
2.利用MATLAB 分析系统的稳定性在分析控制系统时,首先遇到的问题就是系统的稳定性。
判断一个线性系统稳定性的一种最有效的方法是直接求出系统所有的极点,然后根据极点的分布情况来确定系统的稳定性。
对线性系统来说,如果一个连续系统的所有极点都位于左半s 平面,则该系统是稳定的。
MATLAB 中根据特征多项式求特征根的函数为roots( ),其调用格式为r=roots(p) 其中,p 为特征多项式的系数向量;r 为特征多项式的根。
实验二 控制系统稳定性分析和时域响应分析一、实验目的与要求1、熟悉系统稳定性的Matlab 直接判定方法和图形化判定方法;2、掌握如何使用Matlab 进行控制系统的动态性能指标分析;3、掌握如何使用Matlab 进行控制系统的稳态性能指标分析。
二、实验类型设计三、实验原理及说明1. 稳定性分析 1)系统稳定的概念经典控制分析中,关于线性定常系统稳定性的概念是:若控制系统在初始条件和扰动共同作用下,其瞬态响应随时间的推移而逐渐衰减并趋于原点(原平衡工作点),则称该系统是稳定的,反之,如果控制系统受到扰动作用后,其瞬态响应随时间的推移而发散,输出呈持续震荡过程,或者输出无限偏离平衡状态,则称该系统是不稳定的。
2)系统特征多项式以线性连续系统为例,设其闭环传递函数为nn n n mm m m a s a s a s a b s b s b s b s D s M s ++++++++==----11101110......)()()(φ 式中,n n n n a s a s a s a s D ++++=--1110...)(称为系统特征多项式;0...)(1110=++++=--n n n n a s a s a s a s D 为系统特征方程。
3)系统稳定的判定对于线性连续系统,其稳定的充分必要条件是:描述该系统的微分方程的特征方程具有负实部,即全部根在左半复平面内,或者说系统的闭环传递函数的极点均位于左半s 平面内。
对于线性离散系统,其稳定的充分必要条件是:如果闭环系统的特征方程根或者闭环传递函数的极点为n λλλ,...,21,则当所有特征根的模都小于1时,即),...2,1(1n i i =<λ,该线性离散系统是稳定的,如果模的值大于1时,则该线性离散系统是不稳定的。
4)常用判定语句2.动态性能指标分析系统的单位阶跃响应不仅完整反映了系统的动态特性,而且反映了系统在单位阶跃信号输入下的稳定状态。
Course 自动控制原理东南大学自动控制系Southeast University Dept. of Automatic Control Chap 4 控制系统的稳定性分析稳定性分析的意义稳定性是控制系统能够正常工作的首要条件。
稳定压倒一切。
只有稳定的情况下,性能分析和改进才有意义。
负反馈只是使系统稳定的一种手段,并不一定能够保证闭环系统的稳定。
例子:秋千东南大学自动控制系Southeast University Dept. of Automatic Control Chap 4 控制系统的稳定性分析4.1 稳定性stability的概念和定义d f b c a b c 平衡点单/多平衡点系统干扰,偏差稳定的物理意义东南大学自动控制系Southeast University Dept. of Automatic Control 稳定范围/区域a 4.1 稳定性的概念和定义若控制系统在任何足够小的初始偏差作用下,随着时间的推移,偏差会逐渐衰减并趋于零,具有恢复原平衡状态的性能,则称该系统是稳定stable的;否则,称该系统是不稳定unstable的。
可通过研究描述系统的微分或差分方程的解得到系统稳定性。
东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义基于稳定性研究的问题是扰动作用去除后系统的运动情况与输入量和初始偏差无关。
稳定性是系统本身的“固有特性”,一个控制系统的稳定性取决于系统本身的结构和参数值。
线性系统稳定性分析只需考虑齐次系统情况即可。
东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义李亚普诺夫Lyapunov 1892稳定性x t F x t t xc t F xc t t 0 x0 x t0 Lyapunov stability 0 0 if x0 xc then x t xc n Lyapunov asymptotic stability x xc xi xic 2 i 1 If in addition lim x t xc 0 t东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义x2 x2 xc xc x1 x1东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义x2 xc x1东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义x x x t x 0e t x t 0 x 0 e t x 0 0 xx x t x 0et x1 x2 x2 x1 1 x1 0 x东南大学自动控制系Southeast University Dept. of Automatic Control Chap 4 控制系统的稳定性分析4.2 线性定常系统稳定的充分必要条件4.2.1 状态空间模型若讨论稳定性是基于状态空间模型的,则只关心是齐次状态方程的响应是否收敛到xe0-渐进稳定性连续线性定常系统渐近稳定的充分必要条件是:它的系数矩阵A的特征值全都具有负实部。
判断系稳定性的方法一、 稳定性判据(时域)1、 赫尔维茨判据系统稳定的充分必要条件:特征方程的各项系数全部为正; 将系统特征方程各项系数排列成如下行列式;21231425310000000000000000a a a a a a a a a a a a a n nn n n n n n n n n当主行列式及其对角线上的各子行列式均大于零时,即00031425313231211n n n n n n n n n n n n n n a a a a a a a a a a a a a则方程无正根,系统稳定。
赫尔维茨稳定判据之行列式直接由系数排列而成,规律简单明确,使用也比较方便,但是对六阶以上的系统,很少应用。
例;若已知系统的特征方程为0516188234 s s s s试判断系统是否稳定。
解:系统特征方程的各项系数均为正数。
根据特征方程,列写系统的赫尔维茨行列式。
5181016800518100168由△得各阶子行列式;8690017281685181016801281811680884321各阶子行列式都大于零,故系统稳定。
2、 劳思判据(1)劳思判据充要条件:A 、系统特征方程的各项系数均大于零,即a i >0;B 、劳思计算表第一列各项符号皆相同。
满足上述条件则系统稳定,否则系统不稳定,各项符号变化的次数就是不稳定根的数目。
(2)劳思计算表的求法:A 、列写劳思阵列,并将系统特征方程的系数按如下形式排列成列首两行,即:111212432134321275311642w s v s u u s c c c c s b b b b s a a a a s a a a a s n n n n n n n n n n n nB 、计算劳思表176131541213211 n n n n n n n n n n n n n n n a a a a a b a a a a a b a a a a a b系数b i 的计算要一直进行到其余的b i 值都等于零为止。
第6章控制系统的稳定性系统能在实际中应用的必要条件是系统要稳定。
分析稳定性是经典控制理论的重要组成部分。
经典控制理论对于判定一个线性系统是否稳定提供了多种方法。
本章主要介绍几种线形定常系统的稳定性判据及其使用,以及提高系统稳定性的方法。
6.1系统稳定性概念及其条件稳定是控制系统完成期望工作任务的前提。
系统在实际工作中,会受到外部干扰作用和内部某些因素变动影响,偏离原来的平衡工作状态;在干扰或变动消失后,系统能否恢复到原来的平衡工作状 态一稳定性,这是我们最为关心的问题。
稳定性是控制系统的重要性能,对其进行分析并给出保证系 统稳定的条件,是自动控制理论的基本任务之一。
6.1.1稳定性定义控制系统稳定性定义为:如果一个系统受到扰动,偏离了原来的平衡状态,而当扰动取消后,经过充分长的时间,这个系统又能够以一定的精度逐渐恢复到原来的状态,则称系统是稳定的。
否 贝叽称这个系统是不稳定的。
由此可见,稳定性是系统的一种内在固有特性,这种特性只取决于系 统的结构和参数。
例如,图6-1 (a )所示是一个悬挂的单摆示意图。
其垂直位置 M 是原始平衡位置。
设在外界干扰作用下,摆偏离了原始平衡位置M 到达新平衡位置 b 或c 。
当外力去掉后,显然摆在重力作用下,将围绕点M 反复振荡,经过一定时间,当摆因受空气阻碍使其能量耗尽后,摆又回到原始平衡位置 M 上。
像这样的平衡点 M 就称为稳定的平衡点。
对于一个倒摆,图6-1 ( b )所示,摆的支撑点在下方。
垂直位置d 是一个平衡位置,若外力 f 使其偏离垂直位置平衡点 d ,即使外力消失,无论经过 多长时间,摆也不会回到原来平衡点d 上来。
对于这样的平衡点 d ,称为不稳定平衡点。
再如图6-2所示的小球,小球处在 a 点时,是稳定平衡点。
因为作用于小球上的有限干扰力消 失后,小球总能回到a 点。
而小球处于b 、c 点时为不稳定平衡位置, 因为只要有干扰力作用于小球, 小球便不再回到点 b 或c 。
判断系稳定性的方法一、 稳定性判据(时域)1、 赫尔维茨判据系统稳定的充分必要条件:特征方程的各项系数全部为正; 将系统特征方程各项系数排列成如下行列式; 当主行列式及其对角线上的各子行列式均大于零时,即00031425313231211>∆>=∆>=∆>=∆-----------n n n n n n n n n n n n n n a a a a a a a a a a a a a则方程无正根,系统稳定。
赫尔维茨稳定判据之行列式直接由系数排列而成,规律简单明确,使用也比较方便,但是对六阶以上的系统,很少应用。
例;若已知系统的特征方程为0516188234=++++s s s s试判断系统是否稳定。
解:系统特征方程的各项系数均为正数。
根据特征方程,列写系统的赫尔维茨行列式。
5181016800518100168=∆由△得各阶子行列式;8690017281685181016801281811680884321>=∆=∆>==∆>==∆>==∆各阶子行列式都大于零,故系统稳定。
2、 劳思判据(1)劳思判据充要条件:A 、系统特征方程的各项系数均大于零,即a i >0;B 、劳思计算表第一列各项符号皆相同。
满足上述条件则系统稳定,否则系统不稳定,各项符号变化的次数就是不稳定根的数目。
(2)劳思计算表的求法:A 、列写劳思阵列,并将系统特征方程的系数按如下形式排列成列首两行,即:111212432134321275311642w s v s u u s c c c c s b b b b s a a a a s a a a a s n n n n n n n n n n n n----------B 、计算劳思表176131541213211-------------=-=-=n n n n n n n n n n n n n n n a a a a a b a a a a a b a a a a a b系数b i 的计算要一直进行到其余的b i 值都等于零为止。
判断系稳定性的方法
一、 稳定性判据(时域)
1、 赫尔维茨判据
系统稳定的充分必要条件:特征方程的各项系数全部为正; 将系统特征方程各项系数排列成如下行列式;
当主行列式及其对角线上的各子行列式均大于零时,即
00
03
1425
3132
3
1211>∆>=∆>=
∆>=∆-----------n n n n n n n n n n n n n n a a a a a a a a a a a a a Λ
则方程无正根,系统稳定。
赫尔维茨稳定判据之行列式直接由系数排列而成,规律简单明确,使用也比较方便,但是对六阶以上的系统,很少应用。
例;若已知系统的特征方程为05161882
34=++++s s s s
试判断系统是否稳定。
解:系统特征方程的各项系数均为正数。
根据特征方程,列写系统的赫尔维茨行列式。
5181
016800
5
18100168=
∆
由△得各阶子行列式;
86900172816
8
518
10
168012818
11680884321>=∆=∆>==∆>==
∆>==∆
各阶子行列式都大于零,故系统稳定。
2、 劳思判据
(1)劳思判据充要条件:
A 、系统特征方程的各项系数均大于零,即a i >0;
B 、劳思计算表第一列各项符号皆相同。
满足上述条件则系统稳定,否则系统不稳定,各项符号变化的次数就是不稳定根的数目。
(2)劳思计算表的求法:
A 、列写劳思阵列,并将系统特征方程的系数按如下形式排列成列首两行,即:
1
112
124
321343212753116
42w s v s u u s c c c c s b b b b s a a a a s a a a a s n n n n n n n n n n n n M
M M
M
M
M
ΛΛΛ
Λ----------
B 、计算劳思表
Λ
1
7
61315
41213
211-------------=-=-=n n n n n n n n n n n n n n n a a a a a b a a a a a b a a a a a b
系数b i 的计算要一直进行到其余的b i 值都等于零为止。
用同样的前两行系数交叉相乘,再除以前一行第一个元素的方法,可以计算c ,d ,e 等各行的系数。
Λ
Λ
1
2
121114
171313
151212
1311c c b b c d b b a a b c b b a a b c b b a a b c n n n n n n -=-=-=-=------
(3)劳思判据的两种特殊情况
A 、劳思计算表第一列出现零的情况
因为不能用零作为除数,故第一列出现零时,计算表不能继续排下去。
为解决该问题,其办法是用一个小的正数ε代替0进行计算,再令ε→0求极限来判别第一列系数的符号。
B 、劳思计算表中出现某一行各项全为零的情况
此时,劳思表将在全为零的一行处中断,其解决办法是将不为零的最后一行的各项组成一个“辅助方程式”,将该方程式对s 求导数,用求得的各项系数代替原来为零的各项,然后按劳
思计算表的写法继续写完以后各项,对称根可由辅助方程求得。
例1:已知系统特征方程为0126322345=+++++s s s s s
判别系统是否稳定,若不稳定,求不稳定根的数目。
解:根据特征方程可知,其各项系数均为正。
列写劳思计算表并计算得:
()1
3
6231
362301622
310
2
1
2345s s
s s s s --
-εεε
εε
当ε →0时,
23
3623,3
62→
---∞→-εεε
ε
故第一列有两次变号,系统特征方程有两个正根,系统不稳定。
例2:已知控制系统的特征方程为
0161620128223456=++++++s s s s s s
试判定系统的稳定性。
解:根据系统的特征方程可知,其各项系数均为正。
列写劳思计算表并计算得:0
0861)16122(8
61)16122(162081344556s s s s s s
因s3行各项全为零,故以s4行的各项作系数,列写辅助方程如下:
()8624++=s s s A
将A(s)对s 求导,得:
()s
s s A ds d
1243+=
再将上式的系数代替s3行的各项系数,继续写出以下劳思计算表:
8
318331)124(86186116
20810
1233456s s s s s s s s
从劳思表的第一列可以看出,各项均无符号变化,故特征方程无正根。
但是因s 3行出现全为零的情况,故必有共轭虚根存在。
共轭虚根可通过辅助方程求得 0862
4=++s s
其共轭虚根为 j s j s 2;24,32,
1±=±= ,这四个根同时也是原方程的根,他们位于虚轴上,因此该控制系统处于临界状态,系统不稳定。
二、 根轨迹法(复域)
系统稳定的充要条件:所有的闭环极点都在S 平面的左半平面。
例:已知系统的开环传递函数为
,试应用根轨
迹法分析系统的稳定性。
解:
(K *=2k)
做根轨迹:
(a ) 有三条根轨迹(n=3 m=0 n-m=3)
(b)实轴上为根轨迹段
(c)渐近线的夹角与坐标:
(d)分离点坐标d:
解得 d1= -0.423
d2= -1.58 (舍去)因为d2不在根轨迹上(e)与虚轴的交点坐标:
令S=jw 代入到式中得:
解得:
故
根轨迹图如下所示:
三、频率特性
1、奈氏判据(奈奎斯特判据)
Z=P-2N 系统稳定时Z=0
由开环传递函数在S平面的极点个数P,奈氏曲线绕
(-1,j0)的圈数N,得到闭环传递函数在S平面的极点的个数Z
P通过G(S)可知 N:顺时针为负,逆时针为正
当V≠0时,需要做增补线 W:0
从幅相曲线位置开始沿逆时针方向画 V×90°的圆弧
增补线(理论半径为)计算圈数时要包括所画圆弧的增补线在内。
例:某单位负反馈系统的开环传递函数为
试用奈氏判据判别闭环稳定性。
解: W:
幅值趋于0,相角趋于-270°。
N=-1,P=0,Z=P-2N=2
故闭环系统不稳定。
2、对数频率判定系统稳定性
在截止频率之前,在对数幅频曲线L(W)>0.对应的频率范围对应的相角是否穿越 -180°
在V≠0时,也需要做增补线,从对数相频特性曲线上处开始,用虚线向上补90°角(补到0°或180°)
例:已知系统的开环传递函数为试用对数频率稳定判据判别系统闭环的稳定性。
解:
N=(N+)-(N-)=0-0=P/2。