统计学第3章概率分布与抽样分布
- 格式:ppt
- 大小:1.61 MB
- 文档页数:67
概率与统计中的抽样分布与假设检验概率与统计是一门研究随机事件及其规律的学科,其中抽样分布与假设检验是概率与统计学中至关重要的概念。
本文将介绍抽样分布的概念及其重要性,并探讨假设检验的原理和应用。
一、抽样分布在统计学中,抽样是指从总体中选取一部分样本进行观察和测量,通过对样本的分析和推断,得出对总体特征的结论。
而抽样分布则是在多次抽取样本的基础上得到的一组统计量的概率分布。
抽样分布的重要性在于它为统计推断提供了理论基础。
根据中心极限定理,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。
这意味着通过对样本数据的分析,我们可以对总体特征进行合理的推断和估计。
二、假设检验假设检验是概率与统计学中常用的分析方法,用于检验关于总体参数的某种假设。
它基于样本数据,通过比较样本统计量与假设值之间的差异,来判断是否拒绝或接受某个假设。
假设检验的基本步骤包括:1. 建立原假设(H0)和备择假设(H1):原假设通常是关于总体特征的某种陈述,而备择假设则是与原假设相对立的假设。
2. 选择适当的检验统计量:根据具体问题选择合适的统计量进行计算和分析。
3. 确定显著性水平(α):显著性水平是进行假设检验时预先设定的一个界限,用来判断是否拒绝原假设。
通常将显著性水平设定为0.05或0.01。
4. 计算检验统计量的观察值:通过对样本数据进行计算,得到实际的检验统计量的值。
5. 判断检验统计量的观察值是否落在拒绝域内:拒绝域是指在显著性水平下,根据分布函数得到的一组临界值。
如果观察值落在拒绝域内,则拒绝原假设;否则,接受原假设。
6. 得出结论:根据判断结果,对于原假设的合理性进行结论。
假设检验在实际问题中有着广泛的应用。
例如,在医学研究中,可以使用假设检验来判断新药物是否对疾病有显著疗效;在工商管理中,可以使用假设检验来判断某种市场策略是否能够提高销售业绩。
总结:概率与统计中的抽样分布与假设检验是概率与统计学的重要概念。
统计学的概率分布与抽样统计学是一门研究数据的收集、分析和解释的学科,它在许多领域中起着重要的作用。
其中一个关键的概念是概率分布和抽样。
本文将介绍统计学中的概率分布和抽样方法,并讨论它们在实际应用中的作用。
一、概率分布概率分布是指描述一个随机变量所有可能取值的概率。
常见的概率分布包括离散概率分布和连续概率分布。
离散概率分布是指随机变量只能取有限个或可列无限个值的分布。
其中最常见的是二项分布和泊松分布。
二项分布描述了在进行有限次的独立重复试验时,成功的次数的概率分布。
而泊松分布用于描述单位时间或者单位空间内某事件发生次数的概率分布。
连续概率分布是指随机变量可以取任意实数值的分布。
其中最常见的是正态分布。
正态分布在自然界和社会科学中广泛应用,它是一个对称的钟形曲线,具有许多重要的特性。
二、抽样方法抽样是指从总体中选取样本的过程。
样本是指总体中的一个子集,通过对样本的研究和分析,可以推断总体的特征。
常见的抽样方法包括随机抽样、系统抽样和分层抽样。
随机抽样是指在总体中随机选择样本,使每个个体被选中的概率相等。
系统抽样是指按照一定的规则,选择样本中的个体。
分层抽样是将总体分为若干层次,然后在每个层次中进行抽样。
抽样方法的选择取决于研究的目的和总体的特点。
合适的抽样方法可以提高样本的代表性和可靠性,从而提高统计分析的准确性。
三、概率分布与抽样的应用概率分布和抽样在许多领域中都有重要的应用。
以下将介绍几个具体的例子。
1. 市场调研:在市场调研中,研究者通常需要从总体中选取样本,然后通过对样本的调查和分析来推断总体的特征。
这时候可以使用随机抽样或者分层抽样的方法,并根据样本数据的概率分布来进行统计分析。
2. 医学研究:医学研究中经常需要进行临床试验,以评估某种治疗方法的有效性和安全性。
在临床试验中,研究者需要随机选取一部分患者接受治疗,然后比较治疗组和对照组的结果。
这时候可以使用随机抽样的方法,并根据结果的概率分布做出结论。
抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。
样本分布:样本中所有个体关于某个变量大的取值所形成的分布。
抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。
即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。
样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。
那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。
由样本平均数x 所构成的总体称为样本平均数的抽样总体。
它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。
统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μσ2x = σ2 /n 由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2σ)分布。
但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。
于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。
样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx e x f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。
相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。
2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。