柯西不等式的几何意义-高中数学知识点讲解
- 格式:doc
- 大小:62.00 KB
- 文档页数:2
柯西不等式的几何意义
《柯西不等式的几何意义到底是啥玩意儿》
嘿呀,大家知道不,柯西不等式那可是相当有来头的呀!要说它的几何意义,咱就拿个事儿来说吧。
就说那次我和朋友去逛商场,那商场可大了去了,我们在里面就像两只小蚂蚁一样。
然后我们看到一个巨大的长方体展示台,这时候我就突然想到了柯西不等式。
你看啊,这个长方体的长、宽、高就像是不等式里的那些项,它们之间有着一种奇妙的关系呢。
这长、宽、高各自有自己的长度,但它们组合在一起,通过柯西不等式的几何意义,就能体现出这个长方体的一些特性。
就好像我们每个人都有自己的特点,但在某个特定的情境下,这些特点相互作用,就会产生一些特别的结果。
哎呀呀,这柯西不等式的几何意义就像是这个商场里的展示台一样,虽然看起来很平常,但仔细想想,真的是很神奇呀!它在数学的世界里默默发挥着作用,就像那个展示台在商场里默默展示着商品一样。
咱以后可得好好研究研究它,说不定还能发现更多有趣的地方呢!嘿嘿,你们觉得呢?
以上作文仅供参考,你可以根据实际情况进行调整。
柯西不等式知识点总结
以下是一份关于“柯西不等式知识点总结”的文稿:
前言:嘿,朋友们!今天咱要来聊聊超厉害的柯西不等式呀!这可是数学世界里的一个大宝贝呢!
正文:柯西不等式啊,简单来说,就是描述了两组数之间的一种特殊关系。
比如说,有两组数 a、b 和 c、d 吧,那 (a^2 + b^2)(c^2 + d^2) 肯定大于等于 (ac + bd)^2,这不就像两个队伍在比谁更厉害嘛!举个例子,就像你去参加跑步比赛,你速度快,那你赢得比赛的机会不就大嘛!比如说,你知道向量不?两个向量的模长的乘积不小于它们内积的绝对值,哎呀呀,这不就是柯西不等式在向量里的神奇表现嘛!再比如,在解决一些几何问题的时候,哇塞,柯西不等式就像一把神奇钥匙,一下子就能打开难题的大门呢!就好像你在迷宫里找不到出口,突然看到了一道亮光,那就是柯西不等式来帮你啦!
结尾:咋样,是不是觉得柯西不等式超级有趣又厉害呀!学会它,你就能在数学的海洋里畅游啦,快快来探索吧!
以上内容仅供参考,你可以根据实际需求进行修改调整。
(完整版)高中数学:柯西不等式柯西不等式是十九世纪三十年代德国数学家柯西的一项重要贡献,它是组合数学中的重要理论,也是非线性规划中常用的工具。
柯西不等式是关于凸集的一种重要结构性性质,它可以被应用于最大值与最小值、优化以及多元函数定理的证明。
柯西不等式是通过一种特殊的方式来研究凸集内部结构的,这种方式叫做“凸组合”,它指的是将凸集分割成几部分,每一部分都是对凸集的一种模拟,两个凸组合直接组合在一起可以构成一个新的凸集。
柯西不等式的英文全称为“Carathéodory’s ConvexCousin Theorem”,它是开始于1909年提出的,是关于凸组合的数学定理,它的英文解释为“如果凸组合的所有子集的每一个子组合都存在相应的点中,那么它们包含的点总数也至少有相应的数量”。
柯西不等式可以用来证明给定凸多面体 $V_1,V_2,V_3,\ldots,V_n$ 中任意 $m$ 个多面体组合在一起构成的凸组合多面体 $K$ 的点数至少为 $m$。
柯西不等式的应用不仅仅是理论上的,它也广泛地被用于工程上,总结一下它在工程上可以用来做什么:1、共轭梯度下降法:共轭梯度下降法是一种求解最优化问题的数值方法,用柯西不等式可以得到一个凸集的边界,从而得到一个最优解;2、统计学:柯西不等式可以用来处理多元函数,进而可以用来应用到多重相关性分析方面,从而推出统计学中的相关概率论;3、V-S型模型:柯西不等式可以用来优化可变结构模型中的V型凸组合,从而得到更具有效性的可变结构模型;4、路径规划:柯西不等式可以通过函数将多余的点过滤掉,从而得到更优的路径规划结果。
以上就是柯西不等式的内容,由于它的重要性,它已经广泛地被应用到多个学科领域,有助于构建凸组合分割、优化以及路径规划等问题。
综上所述,柯西不等式是一个重要的数学定理,它在研究凸集内部结构,求解最优化问题和构建凸组合分割、优化以及路径规划等问题中皆有广泛的应用,也是高中数学中的一项重要知识点。
第三讲 柯西不等式与排序不等式
本讲知识概
1.能够利用柯西不等式求一些特定函数的最值.
2.认识柯西不等式的几种不同形式,理解它们的几何意义.
(1)柯西不等式向量形式:|α||β|≥|α·β|.
(2) (a 2+b 2)(c 2+d 2)≥(ac +bd )2. (3) x 1-x 22+y 1-y 22+x 2-x 32+y 2-y 32≥x 1-x 32+y 1-y 32
(通常称作平面三角不等式).
3.用参数配方法讨论柯西不等式的一般情况:
∑i =1n
a 2
i ·∑i =1n b 2i ≥(∑i =1
n a i b i )2.
4.用向量递归方法讨论排序不等式.
1.在本讲教学中,教师应引导学生了解重要的不等式都有深刻的数学意义和背景,例如本讲给出的不等式大都有明确的几何背景.学生在学习中应该把握这些几何背景,理解这些不等式的实质.
2.准确记忆柯西不等式的向量形式以及其他几何形式,深刻理解其几何意义,综合提升数学应用能力.。
柯西不等式【基础知识】1、什么是柯西不等式:定理1:(柯西不等式的代数形式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++,其中等号当且仅当bc ad =时成立。
几何意义:设α,β为平面上以原点O 为起点的两个非零向量,它们的终点分别为A (b a ,),B (d c ,),那么它们的数量积为bd ac +=∙βα, 而22||b a +=α,22||d c +=β,所以柯西不等式的几何意义就||||||βαβα∙≥⋅,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。
2、定理2:(柯西不等式的向量形式)设α,β为平面上的两个向量,则||||||βαβα∙≥⋅,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。
3、定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 思考:三角形不等式中等号成立的条件是什么?4、定理4:(柯西不等式的推广形式):设n 为大于1的自然数,i i b a ,(=i 1,2,…,n )为任意实数,则:211212)(∑∑∑===≥ni i i n i i n i ib a b a ,其中等号当且仅当nn a b a b a b === 2211时成立(当0=i a 时,约定0=i b ,=i 1,2,…,n )。
柯西不等式有两个很好的变式:变式1 设),,,2,1(0,n i bi R a i =>∈∑∑∑≥=i i ni i i b a b a 212)( ,等号成立当且仅当 )1(n i a b i i ≤≤=λ变式2 设a i ,b i 同号且不为0(i=1,2,…,n ),则:∑∑∑≥=i i i ni i i b a a b a 21)(,等号成立当且仅当n b b b === 21。
柯西不等式在解析几何方面的几个应用
柯西不等式是数学中一种重要的思想,它具有广泛的应用前景。
在解析几何方面,这种不等式也发挥了重要的作用。
首先,柯西不等式可以用于分析多边形或图形的面积。
通过研究多边形的结构,可以将其表示为由不同顶点及其相应的柯西不等式。
根据这些不等式,可以计算出多边形或图形的面积。
其次,柯西不等式可以用于研究空间平面上的一些几何问题。
比如,我们可以利用柯西不等式,推导出空间几何问题中关于外接圆的形状和大小的一些理论结论。
此外,柯西不等式还可以用于求解两个三角形的面积大小关系以及多边形的角平分线等。
总之,柯西不等式在解析几何中拥有重要的应用前景。
它不仅有助于我们分析多边形或图形的面积,而且还能帮助我们求解几何问题中的各种理论结论。
因此,正确理解和运用柯西不等式,对学习几何有着积极的意义。
高中数学柯西不等式知识点高中数学中的柯西不等式(Cauchy-Schwarz Inequality)是一项重要的不等式定理,它在代数和几何中有着广泛的应用。
柯西不等式是由法国数学家Augustin-Louis Cauchy和德国数学家Hermann Amandus Schwarz在19世纪提出的,其形式为:对于任意实数或复数序列a₁, a₂, ..., aₙ和b₁, b₂, ..., bₙ,有:|a₁b₁+ a₂b₂+ ... + aₙbₙ| ≤√(a₁²+ a₂²+ ... + aₙ²) √(b ₁²+ b₂²+ ... + bₙ²)这个不等式可以用来比较向量的内积和向量的长度,它在线性代数、几何学、概率论、信号处理等领域具有广泛的应用。
柯西不等式的证明可以使用多种方法,其中最常见的是使用向量的内积和长度的性质进行推导。
以下是柯西不等式的一种证明方法:设向量u = (a₁, a₂, ..., aₙ)和v = (b₁, b₂, ..., bₙ),考虑它们的内积(u·v)²:(u·v)²= (a₁b₁+ a₂b₂+ ... + aₙbₙ)²根据内积的性质,(u·v)²≤||u||²||v||²,其中||u||和||v||分别表示向量u和v的长度。
所以,有(u·v)²≤(a₁²+ a₂²+ ... + aₙ²)(b₁²+ b₂²+ ... + b ₙ²)再对上式两边取平方根,即可得到柯西不等式的形式:|a₁b₁+ a₂b₂+ ... + aₙbₙ| ≤√(a₁²+ a₂²+ ... + aₙ²) √(b ₁²+ b₂²+ ... + bₙ²)柯西不等式在数学中有着广泛的应用,一些常见的应用领域包括:1. 向量几何:柯西不等式可用于证明向量之间的夹角关系,以及证明向量的正交性。
高考数学柯西不等式知识点总结柯西不等式和排序不等式是两个非常重要的不等式,它们在高等数学中的应用很普遍。
下面店铺给大家带来高考数学柯西不等式知识点,希望对你有帮助。
高考数学柯西不等式知识点(一)所谓柯西不等式是指:设ai,bi∈R(i=1,2…,n,),则(a1b1+a2b2+…anbn)2≤(a12+a22+…+an2)(b12+b22+…+bn2),等号当且仅当==…=时成立。
柯西不等式证法:柯西不等式的一般证法有以下几种:(1)柯西不等式的形式化写法就是:记两列数分别是ai,bi,则有(∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2.我们令f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)则我们知道恒有f(x) ≥ 0.用二次函数无实根或只有一个实根的条件,就有Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.于是移项得到结论。
(2)用向量来证.m=(a1,a2......an) n=(b1,b2......bn)mn=a1b1+a2b2+......+anbn=(a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+......+bn^2)^(1/2)乘以cosX.因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+.....+bn^2)^(1/2)这就证明了不等式.柯西不等式还有很多种,这里只取两种较常用的证法.柯西不等式应用:可在证明不等式,解三角形相关问题,求函数最值,解方程等问题的方面得到应用。
巧拆常数:例:设a、b、c 为正数且各不相等。
求证: 2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)分析:∵a 、b 、c 均为正数∴为证结论正确只需证:2*(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9而2(a+b+c)=(a+b)+(a+c)+(c+b)又 9=(1+1+1)(1+1+1)证明:Θ2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)(1+1+1)=9又 a、b 、c 各不相等,故等号不能成立∴原不等式成立。
(完整版)高中化学-公式-柯西不等式高中化学-公式-柯西不等式1. 柯西不等式的基本概念柯西不等式,又称柯西-施瓦茨不等式,是数学中的一种重要不等式,用于描述向量空间中两个向量之间内积(或点乘)的上界。
2. 柯西不等式的表达式柯西不等式的表达式为:a·b ≤ ||a|| × ||b||其中,a和b为向量,||a||表示向量a的长度(模),||b||表示向量b的长度(模),a·b表示向量a和b的内积。
3. 柯西不等式的含义柯西不等式通过比较向量的长度和内积的关系,给出了向量之间的关系限制。
当向量a和b夹角为锐角时,a·b的值越大,则向量a和向量b的夹角越小;当向量a和b夹角为钝角时,a·b的值越大,则向量a和向量b的夹角越大。
4. 柯西不等式的推导为了推导柯西不等式,我们可以从向量的内积的定义入手,即:a·b = ||a|| × ||b|| × cosθ其中,θ表示向量a和向量b的夹角。
根据三角函数的性质,cosθ的值介于-1和1之间,所以:-||a|| × ||b|| ≤ a·b ≤ ||a|| × ||b||这就得到了柯西不等式的推导过程。
5. 柯西不等式的应用柯西不等式在数学和物理等领域都有广泛的应用。
在向量空间中,柯西不等式可用于推导其他重要不等式,如三角不等式、内积的性质等。
在物理学中,柯西不等式可用于推导能量不等式、功不等式等重要关系。
6. 总结柯西不等式作为数学中的重要不等式,可以帮助我们理解向量之间的关系限制。
通过比较向量的长度和内积的关系,柯西不等式给出了向量夹角大小的限制。
在实际应用中,柯西不等式有助于推导其他重要不等式和建立重要物理关系。
以上是对柯西不等式的介绍和应用的完整版文档。
高中数学柯西不等式在整个高中数学课程中,柯西不等式是一个重要的话题,它涉及到大量的数学知识,同时又能够深入探讨数学思想。
本文将详细介绍柯西不等式及其相关知识点,以便对此有更深入的理解和认识。
首先,值得注意的是柯西不等式的定义,即柯西不等式是一种数学不等式,用于描述一组数的取值的范围。
根据定义,柯西不等式的主要目的是限定一组数在一定范围内取值,以保证函数的正确性。
此外,它还可以用于描述变量之间的关系,从而帮助数学家们推导出更复杂的公式。
接下来将着重介绍几种常见的柯西不等式,包括小于等于不等式、大于等于不等式、负号不等式和两边不等式等。
其中,小于等于不等式表示在范围内的数据均小于等于某一数;大于等于不等式表示在范围内的数据均大于等于某一数;负号不等式表示在范围内的数据均小于等于某一数或大于等于某一数;两边不等式表示在范围内的数据均大于某一数,或小于某一数。
柯西不等式可以用来解决各种数学问题,最常见的就是找出一组数据的取值范围。
例如,假设在一个三角形中,角A的边长为a,角B的边长为b,角C的边长为c,则可以用柯西不等式求出三角形中每一边的取值范围,从而确定三角形是否合理。
此外,柯西不等式还可以用于解决其他各种数学问题,例如求函数的极值,求多元函数的极值等。
为了更好地解决这些问题,除了柯西不等式之外,数学家们还引入了一系列其他的不等式,例如傅立叶不等式、黎曼不等式等。
最后,要特别提醒的是,在解决数学问题时,柯西不等式的应用仍然是一个重要的话题,需要学生加以重视。
通过科学的思考和扎实的计算,能够帮助学生更好地理解柯西不等式的概念,并有效地运用它们解决数学问题。
总而言之,柯西不等式是高中数学中重要的一个概念,它能够帮助学生更好地理解数学思想,并有效地应用到实际问题中去,而且还可以推导出更加具体的公式。
柯西不等式的几何解释嘿,朋友!您知道柯西不等式不?这玩意儿听起来是不是挺高深莫测的?但别怕,咱今天就来好好唠唠柯西不等式的几何解释,保准让您恍然大悟!咱先说说啥是柯西不等式。
它就像是数学世界里的一个神秘宝藏,等待着我们去挖掘和理解。
想象一下,它就像是一座坚固的城堡,有着独特的结构和规则。
那柯西不等式的几何解释到底是啥呢?您就把它想象成两个向量之间的“悄悄话”。
比如说,有两个向量 A 和 B ,它们的长度和夹角就藏着柯西不等式的秘密。
假设向量 A 的坐标是(a1, a2, a3,..., an),向量 B 的坐标是(b1, b2, b3,..., bn)。
柯西不等式就告诉我们,(a1b1 + a2b2 + a3b3 +... + anbn)² ≤ (a1² + a2² + a3² +... + an²)(b1² + b2² + b3² +... + bn²)。
这像不像两个小伙伴在比谁的力量更大?一个小伙伴的力量分布在各个方向(就是向量的各个分量),另一个小伙伴也有自己的力量分布。
而柯西不等式就是在衡量他们综合力量对比的规则。
再打个比方,这就好比我们盖房子。
向量的长度就像是房子的柱子长度,夹角就像是柱子之间的倾斜角度。
柯西不等式规定了柱子长度和角度之间的某种平衡关系,要是打破了这个平衡,房子可能就歪歪扭扭盖不起来啦!您看,柯西不等式的几何解释是不是很有趣?它不仅仅是一堆枯燥的公式,而是隐藏在我们身边的各种现象中的规律。
比如说,在物理学中,力和位移的关系也能通过柯西不等式的几何解释来理解。
力就像是一个向量,位移也是一个向量,它们的乘积就代表着做功的多少。
在计算机图形学中,计算两个方向的关系时,柯西不等式的几何解释也能派上用场。
所以说,柯西不等式的几何解释就像是一把万能钥匙,能打开好多知识的大门。
它让我们看到了数学和现实世界紧密相连,是不是很神奇?总之,柯西不等式的几何解释虽然看起来复杂,但只要我们用心去感受,去想象,就能发现它其实就在我们身边,帮助我们理解和解决好多问题!您说是不是这个理儿?。
解析几何柯西不等式几何柯西不等式是数学中一项重要的不等式,它描述了向量的内积与向量的模长之间的关系。
几何柯西不等式的表述非常简洁,但背后蕴含着深刻的几何意义。
假设有两个n维实数向量a和b,它们的内积可以表示为a·b。
根据几何柯西不等式,任意两个向量的内积的绝对值不会大于它们的模长之积的绝对值。
即有:|a·b| ≤ |a||b|这个不等式告诉我们,两个向量的内积的绝对值最大的情况是当它们的方向完全相同的时候,此时内积等于它们的模长之积。
而当两个向量的方向完全相反时,内积的绝对值最小,等于它们的模长之积的相反数。
几何柯西不等式的证明可以通过向量的投影来进行。
我们可以将向量a在向量b上进行投影,得到一个与向量b同方向的向量a'。
根据向量的投影,我们可以将向量a表示为a'和与b垂直的另一个向量a''的和。
同样地,向量b也可以表示为b'和与a垂直的向量b''的和。
利用向量的投影,我们可以得到以下等式:a = a' + a''b = b' + b''将这些等式代入a·b的表达式中,可以得到:a·b = (a' + a'')·(b' + b'')展开后可以得到:a·b = a'·b' + a'·b'' + a''·b' + a''·b''根据向量的几何意义,a'·b''和a''·b'都是与b垂直的向量与与a垂直的向量的内积,因此它们的值为0。
于是,上式可以简化为:a·b = a'·b' + a''·b''根据向量的投影,我们可以得到a'·b'的值不会大于a'和b'的模长之积,同样,a''·b''的值不会大于a''和b''的模长之积。
数学人教B 选修4-5第二章2.1.2 柯西不等式的一般形式及其参数配方法的证明1.认识一般形式的柯西不等式.2.理解一般形式的柯西不等式的几何意义.3.会用一般形式的柯西不等式求解一些简单问题.定理(柯西不等式的一般形式)(1)设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则11222222221212(+)(+)n n a a a b b b ++++ ≥____________________,其中等号成立____________________(当某b j =0时,认为a j =0,j =1,2,…,n ). (2)柯西不等式的一般形式的证明方法是__________.记忆柯西不等式的一般形式,一是抓住其结构特点:左边是平方和再开方的积,右边是积的和的绝对值;二是与二维形式的柯西不等式类比记忆.柯西不等式的变形和推广:变形(1) 设a i ,b i ∈R ,b i >0(i =1,2,…,n ),则∑i =1na i 2b i≥(∑i =1na i )2∑i =1n b i,当且仅当a i =λb i (i =1,2,…,n )时,等号成立.变形(2) 设a i ,b i (i =1,2,…,n )同号且不为零,则∑i =1na ib i≥(∑i =1na i )2∑i =1na ib i,当且仅当b 1=b 2=…=b n 时,等号成立.【做一做1】已知a ,b ,c ∈(0,+∞),且a +b +c =1,则a 2+b 2+c 2的最小值为( ) A .1 B .4C .13D .12【做一做2】若22212+=1n a a a ++ ,22212+=4n b b b ++ ,则a 1b 1+a 2b 2+…+a n b n的最大值为( )A .1B .-1C .2D .-2 答案:(1)|a 1b 1+a 2b 2+…+a n b n |a 1b 1=a 2b 2=…=a n b n(2)参数配方法【做一做1】C 由柯西不等式,知(a 2+b 2+c 2)(12+12+12)≥(a ×1+b ×1+c ×1)2,又a +b +c =1,∴a 2+b 2+c 2≥13,当且仅当a =b =c =13时等号成立.【做一做2】C 由柯西不等式,得2222221212()()n n a a a b b b ++++++≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当a 1b 1=a 2b 2=…=a nb n时,等号成立.∴(a 1b 1+a 2b 2+…+a n b n )2≤4. ∴-2≤a 1b 1+…+a n b n ≤2. ∴所求的最大值为2.1.一般形式的柯西不等式如何应用? 剖析:我们主要利用柯西不等式来证明一些不等式或求值等问题,但往往不能直接应用,需要对数学式子的形式进行变化,拼凑出与一般形式的柯西不等式相似的结构,才能应用,因而适当变形是我们应用一般形式的柯西不等式的关键,也是难点.我们要注意在数学式子中,数或字母的顺序要对比柯西不等式中的数或字母的顺序,以便能使其形式一致,然后应用解题.2.如何利用“1”?剖析:数字“1”的利用非常重要,为了利用柯西不等式,除了拼凑应该有的结构形式外,对数字、系数的处理往往起到某些用字母所代表的数或式子所不能起的作用.这要求在理论上认识柯西不等式与实际应用时二者达到一种默契,即不因为“形式”与“面貌”的影响而不会用柯西不等式.题型一 利用柯西不等式证明不等式【例题1】已知a 1,a 2,…,a n 都是正实数,且a 1+a 2+…+a n =1.求证:222212112231112n n n n n a a a a a a a a a a a a --++++≥++++ .分析:已知条件中a 1+a 2+…+a n =1,可以看作“1”的代换,而要证的不等式的左侧,“数式”已经可以看出来,为a 1a 1+a 2,a 2a 2+a 3,…,所以a 1+a 2+…+a n =1应扩大2倍后再利用,本题还可以利用其他的方法证明.反思:通过以上不同的证明方法可以看出,构造出所需要的某种结构是证题的难点,因此,对柯西不等式或其他重要不等式,要熟记公式的特点,能灵活变形,才能灵活应用.题型二 利用柯西不等式求函数的最值【例题2】设2x +3y +5z =29,求函数u =2x +1+3y +4+5z +6的最大值. 分析:将已知等式变形,直接应用柯西不等式求解. 反思:要求ax +by +z 的最大值,利用柯西不等式(ax +by +z )2≤(a 2+b 2+12)(x 2+y 2+z 2)的形式,再结合已知条件进行配凑,是常见的变形技巧.题型三 易错辨析易错点:应用柯西不等式时,因忽略等号成立的条件而致误.【例题3】已知x ∈[2,3],求f (x )=1+x +1x的最小值.错解:∵x >0,∴⎝⎛⎭⎫1+x +1x ⎝⎛⎭⎫1+1x +x =⎣⎡⎦⎤12+(x )2+⎝⎛⎭⎫1x 2⎣⎡⎦⎤12+⎝⎛⎭⎫1x 2+(x )2≥⎣⎡1×1+x ×1x +⎦⎤x ×1x 2=9,∴1+x +1x ≥3.∴f (x )的最小值为3.错因分析:上题在求解时,由于等号不成立,故求解过程错误,结果也不正确. 答案:【例题1】证明:证法一:根据柯西不等式,得左边=2222121122311n n n n n a a a a a a a a a a a a --++++++++ =[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )+(a n +a 1)]×⎣⎢⎡⎝ ⎛⎭⎪⎫a 1a 1+a 22+⎝ ⎛⎭⎪⎫a 2a 2+a 32+⎝ ⎛⎭⎪⎫a 3a 3+a 42+…+⎦⎥⎤⎝ ⎛⎭⎪⎫a n -1a n -1+a n 2+⎝ ⎛⎭⎪⎫a n a n +a 12×12=[(a 1+a 2)2+(a 2+a 3)2+…+(a n -1+a n)2+(a n +a 1)2]×⎣⎢⎡⎝ ⎛⎭⎪⎫a 1a 1+a 22+⎝ ⎛⎭⎪⎫a 2a 2+a 32+…+⎝ ⎛⎭⎪⎫a n -1a n -1+a n 2+⎦⎥⎤⎝ ⎛⎭⎪⎫a n a n +a 12×12≥⎣⎢⎡⎝⎛⎭⎪⎫a 1+a 2×a 1a 1+a 2+⎝ ⎛⎭⎪⎫a 2+a 3×a 2a 2+a 3+…+⎝⎛⎭⎪⎫a n -1+a n ×a n -1a n -1+a n +⎦⎥⎤⎝ ⎛⎭⎪⎫a n +a 1×a n a n +a 12×12=(a 1+a 2+…+a n )2×12=12=右边.∴原不等式成立.证法二:∵a ∈(0,+∞),∴a +1a ≥2,∴a ≥2-1a.利用上面的结论,知2112a a a +=a 12×2a 1a 1+a 2≥a 12⎝⎛⎭⎫2-a 1+a 22a 1=a 1-a 1+a 24. 同理,有2223a a a +≥a 2-a 2+a 34,…211n n na a a --+≥a n -1-a n -1+a n 4,21n n a a a +≥a n -a n +a 14.以上式子相加整理,得2222112122311n n n n n a a a a a a a a a a a a --++++++++ ≥12(a 1+a 2+…+a n )=12. ∴原不等式成立.证法三:对于不等式左边的第一个分式2112a a a +,配制辅助式k (a 1+a 2),k 为待定的正数,这里取k =14,则2112a a a ++14(a 1+a 2)≥a 1. 同理,2223a a a ++14(a 2+a 3)≥a 2.…211n n n a a a --++14(a n -1+a n )≥a n -1,21n n a a a ++14(a n +a 1)≥a n .以上式子相加整理,得2222121122311n n n n n a a a a a a a a a a a a --++++++++ ≥12(a 1+a 2+…+a n ). ∵a 1+a 2+…+a n =1,∴2222121122311n n n n n a a a a a a a a a a a a --++++++++ ≥12. 【例题2】解:根据柯西不等式,得 120=3[(2x +1)+(3y +4)+(5z +6)]≥(1×2x +1+1×3y +4+1×5z +6)2, 故2x +1+3y +4+5z +6≤230, 即u ≤230.当且仅当2x +1=3y +4=5z +6,即x =376,y =289,z =2215时等号成立,此时,u max =230.【例题3】正解:应用函数单调性的定义(或导数)可证得f (x )在[2,3]上为增函数,故f (x )min=f (2)=1+2+12=72.1若a ,b ,c ∈(0,+∞),则⎝⎛⎭⎫a b +b c +c a ·⎝⎛⎭⎫b a +c b +a c 的最小值为( )A .1B .-1C .3D .92设a 1,a 2,…,a n 为正实数,P =a 1+a 2+…+a n n ,Q =n1a 1+1a 2+…+1a n,则P ,Q 间的大小关系为( )A .P >QB .P ≥QC .P <QD .P ≤Q3已知a +b +c =1,且a ,b ∈(0,+∞),则2a +b +2b +c +2c +a的最小值为( )A .1B .3C .6D .94设a ,b ,c ,d 均为正实数,P =(a +b +c +d )·⎝⎛⎭⎫1a +1b +1c +1d ,则P 的最小值为__________.5已知x +4y +9z =1,则x 2+y 2+z 2的最小值为__________. 答案:1.D 原式=⎣⎡⎦⎤⎝⎛⎭⎫a b 2+⎝⎛⎭⎫b c 2+⎝⎛⎭⎫c a 2·⎣⎡⎦⎤⎝⎛⎭⎫b a 2+⎝⎛⎭⎫c b 2+⎝⎛⎭⎫a c 2 ≥⎣⎡⎝⎛⎭⎫ab ×b a +⎝⎛⎭⎫b c ×c b +⎦⎤⎝⎛⎭⎫c a ×a c 2=9, 当且仅当a =b =c >0时等号成立. 2.B3.D ∵a +b +c =1,∴2a +b +2b +c +2c +a=2(a +b +c )·⎝⎛⎭⎫1a +b +1b +c +1c +a =[(a +b )+(b +c )+(c +a )]·⎝⎛⎭⎫1a +b +1b +c +1c +a ≥(1+1+1)2=9, 当且仅当a =b =c =13时等号成立.4.165.198(x 2+y 2+z 2)(12+42+92)≥(x +4y +9z )2=1, ∴x 2+y 2+z 2≥198,当且仅当x 1=y 4=z9,即x =198,y =249,z =998时等号成立.1n 个正数的和与这n 个正数的倒数和的乘积的最小值是( ) A .1 B .n C .n 2 D .1n答案:C 设n 个正数为x 1,x 2,…,x n , 由柯西不等式,得 (x 1+x 2+…+x n )12111n x x x ⎛⎫+++⎪⎝⎭≥2⎫+++ =(1+1+…+1)2=n 2,当且仅当x 1=x 2=…=x n >0时等号成立.2若实数x +y +z =1,则F =2x 2+y 2+3z 2的最小值为( ) A .1 B .6 C .11 D .1611答案:D ∵(2x 2+y 2+3z 2)11123⎛⎫++⎪⎝⎭≥21y ⨯=(x +y +z )2=1, 当且仅当3=11x ,6=11y ,2=11z 时等号成立.∴2x 2+y 2+3z 2≥1116=611.3设m ,n ,p ∈(0,+∞),且m 2+n 2-p 2=0,则pm n+的最小值为( )A .0B .3C .1D .2答案:D ∵m ,n ,p ∈(0,+∞),m 2+n 2-p 2=0, ∴2p 2=2(m 2+n 2)=(12+12)(m 2+n 2)≥(m +n )2, 当且仅当m =n 时等号成立.∴221()2p m n ≥+.∴2p m n ≥+. 4已知实数x ,y ,z 满足x +2y +z =1,则x 2+4y 2+z 2的最小值为__________.答案:13(x 2+4y 2+z 2)(12+12+12)≥(x +2y +z )2=1, ∴x 2+4y 2+z 2≥13.当且仅当x =2y =z =13,即1=3x ,1=6y ,1=3z 时等号成立.5已知(x -3)2+(y -3)2=6,则yx 的最大值为__________.答案:设=yk x(k ≠0),则kx -y =0,∴[(x -3)2+(y -3)2][k 2+(-1)2] ≥[k (x -3)-(y -3)]2=(3-3k )2. 当且仅当331x y k --=-时等号成立, ∴6(k 2+1)≥(3-3k )2,解得3-k ≤∴max k =yx的最大值为6求实数x ,y 的值,使得(y -1)2+(x +y -3)2+(2x +y -6)2取到最小值. 答案:解:由柯西不等式,得(12+22+12)×[(y -1)2+(3-x -y )2+(2x +y -6)2] ≥[1×(y -1)+2×(3-x -y )+1×(2x +y -6)]2=1,即(y -1)2+(x +y -3)2+(2x +y -6)2≥16, 当且仅当1326121y x y x y ---+-==,即 5=2x ,5=6y 时,上式取等号. 故5=2x ,5=6y 时,(y -1)2+(x +y -3)2+(2x +y -6)2取到最小值.7设a ,b ,c 为正数,且a +b +c =1,求证:2221111003a b c a b c ⎛⎫⎛⎫⎛⎫+++++≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.答案:证明:222111a b c a b c ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=13(12+12+12)·222111a b c a b c ⎡⎤⎛⎫⎛⎫⎛⎫+++++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦≥211111113a b c a b c ⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯++⨯++⨯+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ =2111113a b c ⎡⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦=211111()3a b c a b c ⎡⎤⎛⎫+++++ ⎪⎢⎥⎝⎭⎣⎦≥22113⎡⎤++⎢⎥⎢⎥⎣⎦ =21100(1+9)33=, ∴原不等式成立.8如图所示,等腰直角△AOB 的直角边长1,在这个三角形内任取一点P ,过P 分别引三边的平行线,与各边围成以P 为顶点的三个三角形.求这三个三角形面积和的最小值,以及取得最小值时点P 的位置.答案:解:分别以OA ,OB 所在直线为x ,y 轴建立平面直角坐标系,则AB 所在直线的方程为x +y =1,设点P 的坐标为(x ,y ),以点P 为顶点的三个三角形的面积和为S ,则S =12x 2+12y 2+12(1-x -y )2. 由于x +y +(1-x -y )=1(定值),故当且仅当x =y =1-x -y , 即x =y =13时,x 2+y 2+(1-x -y )2有最小值13,从而面积S 有最小值16,此时点P 恰为△AOB 的重心.9设()12(1)lg x x x xn a n f x n+++-+⋅ =,若0≤a ≤1,n ∈N *,且n ≥2,求证:f (2x )≥2f (x ).答案:证明:∵f (2x )=222212(1)lg x x x xn a n n+++-+⋅ ,∴要证f (2x )≥2f (x ),只要证222212(1)lg x x x xn a n n+++-+⋅≥212(1)2lg x x x n a n n+++-+⋅ ,即证222212(1)x x x xn a n n +++-+⋅≥212(1)x x x x n a n n ⎡⎤+++-+⋅⎢⎥⎣⎦,也即证n [12x +22x +…+(n -1)2x +a ·n 2x ]≥[1x +2x +…+(n -1)x +a ·n x ]2.(*)∵0≤a ≤1,∴a ≥a 2,根据柯西不等式,得 n [12x +22x +…+(n -1)2x +a ·n 2x ]≥222(1+11)n ++个{(1x )2+(2x )2+…+[(n -1)x ]2+(a ·n x )2}≥[1x +2x +…+(n -1)x +a ·n x ]2,即(*)式显然成立,故原不等式成立.。
柯西不等式的几何意义
1.柯西不等式的几何意义
【知识点的认识】
柯西不等式的几何意义
柯西不等式的代数形式十分简单,但却非常重要.数学当中没有巧遇,凡是重要的结果都应该有一个解释,一旦
掌握了它,就使这个结果变得不言而喻了.而一个代数结果最简单的解释,通常驻要借助于几何背景.现在就对
柯西不等式的二维、三维情况做出几何解释.
(1)二维形式(a2+b2)(c2+d2)≥(ac+bd)2
如图,可知线段OP,OQ 及PQ 的长度分别由下面的式子给出:
|푂푃|=푎2+푏2,|푂푄|=푐2+푑2,|푃푄|=(푎―푐)2+(푏―푑)2,
θ表示OP 与OQ 的夹角.由余弦定理,我们有
|PQ|2=|OP|2+|OQ|2﹣2|OP|⋅|OQ|cosθ,
将|OP|,|Oq|,|PQ|的值代入,化简得到푐표푠휃
=
푎푐+푏푑
푎2+푏2⋅푐2+
푑2,
而 0≤cos2θ≤1,故有
푐표푠2휃=
(푎푐+푏푑)2
(푎2+푏2)(푐2+
푑2)
≤1,
于是(a2+b2)(c2+d2)≥(ac+bd)2
这就是柯西不等式的二维形式.
我们可以看到当且仅当 cos2θ=1,即当且仅当θ是零或平角,亦即当且仅当O,P,Q 在同一条直线上是时等号成
푎
立.在这种情形,斜率之间必定存在一个等式;换句话说,除非c=d=0,我们们总有푐=
푏
푑
.
(2)三维形式(푎21+푎2+푎32)(푏21+푏2+푏32)≥(푎1푏1+푎2푏2+푎3푏3)2
对于三维情形,设P(a1,a2,a3),Q(b1,b2,b3)是不同于原点O(0,0,0)的两个点,则OP 与OQ 之间的夹角θ的余弦有
푐표푠휃=
푎1푏1+푎2푏2+푎3푏3푎12+푎2+푎32⋅푏12+푏2+푏23
又由 cos2θ≤1,得到柯西不等式的三维形式:
(푎21+푎2+푎23)(푏21+푏2+푏23)≥(푎1푏1+푎2푏2+푎3푏3)2
푎1当且仅当三点共线时,等号成立;此时只要这里的都不是零,就有푏1=푎2
푏2=
푎3
푏3
.。