第23页/共48页
z
θM
R
y
Q
P
中心在原点,半径为r的球面的坐标式参数方程为
x r sin cos
y
r
s in
sin
(5)
z r cos
(4),(5)中的θ,为参数,其取值范围分别是 0θ与-<。
第24页/共48页
例7 求以z轴为对称轴,半径为R的圆柱面的参数方程。
解:如图,有
r=OM=OQ+QP+PM
称为曲线的坐标式参数方程。
O
第4页/共48页
A
P(x(t),y(t))
r(a)
r(t)
B
r(b)
x
5、直线的方程
已知直线l通过定点M0(x0,y0),且与非零矢量
v ={X,Y}共线,求直线l的方程。
解:设M(x,y)为直线l上任意一点,并设OM=r,OM0=r0, 则点M在l上的充要条件为矢量M0M与v共线,即
当u,v取遍变动区域的一切 值时,径矢
z
OM= r(u,v) =x(u,v)e1+y(u,v)e2+z(u,v)e3
的终点M(x(u,v),y(u,v),z(u,v)) 所画的轨迹一般为一张曲面。
S
o x
第21页/共48页
M y
2、曲面的矢量式参数方程
定义:若取u,v(aub,cvd)的一切可能值,由(2) 表示的径矢r(u,v)的终点M总在一个曲面上,反之,在 这个曲面上的任意点M总对应着以它为终点的径矢, 而这径矢可由u,v的值 (aub,cvd)通过(2)完全决 定,则称(2)式为曲面的矢量式参数方程,其中u,v为 参数。
z F (x, y, z) = 0