数形结合思想在函数中的应用
- 格式:ppt
- 大小:1.83 MB
- 文档页数:11
例谈二次函数教学中“数形结合”思想的应用【摘要】二次函数教学中,数形结合思想的应用是非常重要的。
通过将数学与几何相结合,可以帮助学生更深入地理解二次函数的概念和特性。
通过实例分析和图形展示,学生能够直观地看到二次函数的图像与方程之间的关系,从而加深对这一知识点的理解。
通过实践操作,学生可以更好地掌握数学知识,提升他们的实际运用能力。
数形结合思想不仅可以提升学生的学习兴趣和效果,还可以帮助他们从多角度理解数学知识,提高数学素养。
在二次函数教学中,充分利用数形结合思想是非常有益的,可以有效提升学生的学习水平和综合素质。
【关键词】二次函数、数形结合、教学、图形、特性、实例分析、数学、几何、理解、实践操作、学习兴趣、学习效果、多角度、数学素养。
1. 引言1.1 二次函数教学的重要性二次函数作为高中数学中的重要内容之一,在学生数学学习中具有重要的地位。
学会了二次函数的相关知识,可以帮助学生理解和掌握高中数学中的很多概念和方法,为以后的学习打下坚实的基础。
二次函数的教学内容丰富多样,不仅可以帮助学生提高数学的解题能力,还可以培养学生的数学思维和创新能力。
二次函数具有许多独特的特性和规律,通过学习二次函数,可以让学生在数学上有更深入的认识和了解。
二次函数也广泛应用于生活和科学领域,学会了二次函数相关知识可以帮助学生更好地理解和解决实际问题。
二次函数教学的重要性不言而喻。
只有深入理解和掌握二次函数的相关知识,才能在数学学习中取得更好的成绩,为将来的发展打下坚实的基础。
二次函数的教学不仅具有重要的理论意义,更具有重要的实践意义。
通过深入的学习和实践,可以帮助学生更好地理解和应用二次函数相关知识,提高数学素养和解决实际问题的能力。
1.2 数形结合思想的意义数形结合思想在二次函数教学中扮演着至关重要的角色。
通过将数学与几何相结合,可以帮助学生更直观地理解抽象的数学概念,提高他们的学习兴趣与学习效果。
在二次函数这一抽象概念中,数形结合思想可以将函数的数学性质与图形的几何特征相联系,使学生更全面地理解二次函数的本质。
高中数学中数形结合思想在函数解题中的运用(一)数形结合在求函数定义域方面的应用例1:求函数y =的定义域. 解析:若要解决该函数的定义域,则有23200x x x ⎧-+≥⎨≠⎩,要解决此类不等式的解集, 需要借助图像,如右图:由图像可以看出,若要2320x x -+≥,只需1,x ≤或2x ≥,再由0x ≠,得出该函数的定义域即为:()(][),00,12,-∞+∞. 小结:随着学生做题熟练程度的增强,二次不等式的求解已不用再画图。
因此在求函数定义域方面,多见于画数轴选择出取值范围。
(二)数形结合在求函数值域方面的应用例2:求函数(]223,1,2y x x x =--∈-的值域. 解析:看到所求函数为二次函数,由于函数是非单调的,所以并不能代端点值去求出值域,因此需要借助图像来观察,如右图:借助图像的直观表达可知道,具有区间范围的该二次函数的图像应为黄色区域部分,此函数的最小值是在对称轴处取得,即当1x =时,4y =-。
从而该函数的值域为:(]0,4-。
小结:对于此类问题是学生的常见出错点,学生们习惯于直接带入端点值得出其值域,因此对于给定区间上的二次函数值域问题,培养学生数形结合的思想是非常重要的。
(三)数形结合在函数单调性方面的应用例3:已知2()2(1)2f x x a x =+-+在(],4-∞上是减函数,求实数a 的取值范围。
解析:函数解析式中含有字母,因此函数在坐标系内的具体位置不能固定,需要画图分析,看何种情况才能满足题干要求:通过图像分析可知:若要满足函数在给定区间上为单调函数,只能是后两种情况,也就是函数图像的对称轴不能出现在所给区间内,从而解题找到突破口。
所给函数对称轴方程:1x a =- ,由图像分析可知,需有a 14-≥,从而a 5≥。
小结:该类问题常见于二次函数中,因其单调性与对称轴的位置有关,故通常画图分析更能直观得出题目所需情况,从而快速得出结论。
(四)数形结合在函数奇偶性方面的应用例4:已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.试求当0x <时,函数()f x 的解析式。
数形结合思想在函数解题中的应用摘要:数形结合思想是数学教学重视数学思想培养之一。
高中数学教学和学习中,灵活地应用数形结合思想可以更好地对于数的概念以及形的特征把握,可以化抽象为具体,能通过数与形快速解决问题。
解决数学问题关键的一大利器是利用数形结合思想关键词:数形结合思想;函数;解题1. 阐述数形结合思想在高中数学的教与学的过程中要重视合理的转化数与形,实现将难懂的的数学问题的性质清晰表现处理。
寻找到潜藏在数与形之间的对应关系是数形结合思想的本质所在,常见的我们是把数转化成形,从而直观形象的解决问题,同时大家不要忽略有时学会形转化成数。
这是因为过于直观和具体的形,无法凝练出具有一般性的特征。
充分理解数与形互化关系,把形转化成为数,答案通过计算得出。
总而言之,数形结合是高中数学重要的数学思想之一,学会数学互化的重要思想。
本文主要讨论的是数形结合的思想在函数解题中的应用:研究单调性,求函数的最值,函数的零点问题等。
2.数形结合思想在函数性质中的应用新课改更注重学生的自主学习,自己提练信息,所以出题更偏爱将函数的几种性质综合在一起考查学生。
如果学生只是从代数的角度去解题,那无疑会增加解题的难度,如果能利用图形的直观性,能大大的提高解题效果。
我们要引导学生解题的要充分利用数形结合的思想。
(1)数形结合思想在函数单调中的应用例1.设函数f(x)=若函数f(x)在区间(a,a+1)上单调递增,求实数a取值范围解析:函数f(x)的图象如图所示,由图象可知f(x)在(a,a+1)上单调递增,需满足a≥4或a+1≤2,即a≤1或a≥4.总结:单调性是函数的重要性质之一,它的主要应用是用来求解最值,求解不等式,比较大小,求参数等,不管哪一种应用,能画出函数的图像,通过图像中的单调得出答案,能大大的提高解题效率,充分体现了数形结合思想的重要性(2)数形结合思想在函数最值中的应用例题1:定义max{a,b,c}为a,b,c中的最大值,设M=max{2x,2x-3,6-x},求M的最小值解析:画出函数M={2x,2x-3,6-x}的图象(如图),由图可知,函数M在点A(2,4)处取得最小值22=6-2=4,故M的最小值为4.总结:函数的最值是函数中比较热点的题目。
例谈二次函数教学中“数形结合”思想的应用二次函数教学中的“数形结合”思想的应用二次函数作为高中数学中的重要内容之一,其教学一直备受学生和教师的关注。
在二次函数教学中,要求学生不仅要能够掌握相关的概念和定理,还要能够应用所学的知识解决实际问题。
“数形结合”思想在二次函数教学中的应用显得尤为重要。
本文将针对二次函数教学中的“数形结合”思想进行分析和探讨,以期能够更好地引导学生理解和掌握二次函数的相关知识。
一、探究二次函数图像的特点在二次函数教学中,学生首先需要了解二次函数的图像特点。
一般来说,二次函数的图像是一个抛物线,其开口方向由二次项系数的正负性决定,开口向上的抛物线代表二次项系数大于0,开口向下的抛物线代表二次项系数小于0。
二次函数的顶点坐标、对称轴方程、零点坐标等也是学生需要掌握的内容。
通过学习这些内容,学生可以初步认识二次函数图像的特点,从而为后续的学习打下基础。
在教学中,可以通过让学生观察二次函数图像的变化,来引导他们探究二次函数图像的特点。
可以让学生改变二次函数的系数,观察对图像的影响,从而深入理解二次函数的图像特点。
老师还可以通过实例演示的方式,引导学生进一步理解二次函数图像的特点,激发学生的学习兴趣,提高他们对二次函数图像特点的理解能力。
二、数形结合的实际应用在学生掌握了二次函数的图像特点后,就可以引入“数形结合”思想,让学生将数学知识与实际问题相结合,进行实际应用。
可以通过实际问题来引导学生分析和解决问题,从而培养学生的数学建模能力和解决问题的能力。
通过实际问题的应用,还可以让学生更加直观地理解二次函数的意义和应用价值,提高他们对数学知识的兴趣和学习积极性。
在教学中,老师可以鼓励学生提出问题、进行实验和观察,从而引导他们进行自主探究。
通过这样的方式,学生可以更加深入地理解二次函数的相关知识,同时也可以培养其独立思考和问题解决的能力。
在探究性学习的过程中,老师要给予适当的指导和帮助,促进学生的学习成果,从而提高他们的学习效果。
数形结合思想在函数与方程中的应用数形结合思想,就是把代数中的数与几何中的形结合起来理解问题,通过数与形的相互转化来解决数学问题的思想.数形结合思想在高考数学中占有重要地位。
下面练习利用数形结合思想解决函数与方程问题(一)数形结合在函数中的应用例1.定义在R上的奇函数f(x)满足f(x+1)=f(-x),当x∈时,f(x)=log(x+1),则f(x)在区间内是( )2A.减函数且f(x)>0B.减函数且f(x)<0C.增函数且f(x)>0D.增函数且f(x)<0解析由f(x+1)=f(-x)可知,函数f(x)的图象关于直线x=对称,又函数f(x)为奇函数,故f(x+1)=f(-x)=-f(x),∴f(x+2)=f(x),即函数f(x)的周期为2,又当x∈时,f(x)=log(x+1),故可得到函数f(x)的大致图象如图所示.由图象可知选B.2答案 B例2.已知函数y=的图象与函数y=kx的图象恰有两个交点,则实数k的取值范围是________.解析y===函数y=kx过定点(0,0).由数形结合可知:0<k<1或1<k<k,OC∴0<k<1或1<k<2.答案 (0,1)∪(1,2)例3.已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是( )A.9B.10C.11D.18解析:在坐标平面内画出y=f(x)与y=|lg x|的大致图象(如图),由图象可知,它们共有10个不同的交点,因此函数F(x)=f(x)-|lg x|的零点个数是10,故选B.答案 B[点评] 解决本题的关键是在同一坐标系中准确画出两函数的图象,有几个交点,原函数就有几个零点.1.数形结合在方程中的应用例4.已知点在函的图象上,且.求方程解的个数。
思路分析方程解的个数问题,用数形结合思想,其实是画出图像求图像交点个数答案:3解析:,画出及的图像,方程解的个数既为函数图像交点的个数,由图像知原方程有3个解。
数形结合思想在函数中的应用(江苏省泰州市海军中学杨金宝 225300)数形结合是数学研究的重要方法之一,是转化的数学思想的重要体现。
数形结合包括代数问题几何解和几何问题代数解两个方面,前者初中阶段有解析法和构造几何图形法,后者包括方程法和函数法。
本文从两方面探讨数形结合思想在初中数学中的应用。
(一)数形结合的简介中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。
”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。
“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。
(二)函数数形结合的应用1、图形信息的获取,建立适当的代数模型。
不少函数问题以图形的形式出现,图形中包含丰富的代数知识,仔细观察图形、图像、把握图形的特点、找出图形中的信息是解决问题的关键所在。
例1:某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头。
假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图像如图。
请结合图像,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟。
数形结合在函数教学中的应用数学中存在着“数”与“形”两个基础概念,数量关系与空间图形往往有机结合在一起,相互解释,这便是“数形结合”的思想。
在初中函数中,函数变量关系与绘制图像联系密切,变量关系中彰显出隐含的图像信息,图像之中也能反映出函数的变量关系。
在解答函数题目时,往往需要结合绘制图像,在较为直观的图形中把握函数关系,为分析、解答提供了极大的方便。
例如在一次函数的教学中,设计了如下一些教学思路:(1)探究性课题:1、水电费账单数据的分析。
2、物理学科中电阻、电压、电流关系。
提出一些问题:探究这些变量之间的数量关系,画出相应的函数图象,并结合数学知识编制新问题。
这样把实际生活中的问题上升为数学问题并构建为数学模型。
设计练习:a:直角三角形的两个锐角的度数分别为x、y,用x表示y的关系式;b:从边长为20的正方形的四角剪去四个边长为x的小正方形,做成一个无盖的小方盒子,设此盒的容量为v,写出v关于x的函数解析式,所有这些问题中自变量的取值范围是什么?(2)问题情境:龟兔赛跑的结局提出新的问题:兔子醒来后,发现乌龟已在自己前面2500米处,很后悔,就以每小时3000米的速度去追,而乌龟仍以每小时500米的速度前进,那么谁能最终获胜?学生猜测、讨论思考:若设兔子醒后追了t小时,龟、兔离开睡觉处S(米)与时间t(小时)是什么关系?学生:兔:S=3000t (t>0)龟:S2=2500+500t (t>0)提问:1:能用学过的方法直观反映问题吗?(画图)2:图像的交点表示什么实际意义?交点的左侧呢?右侧呢?由学生通过讨论、计算得出3个结论。
教学策略:猜想—探究通过讨论、质疑、尝试,结合函数关系,利用数形结合进行分析,在实际问题与数学知识之间建立数学模型,探究结论,准确直观的解决问题。
在反比例函数和二次函数的教学中,有意识的去引导学生把“数”和“形”结合起来去解决相关问题,让学生在自我尝试中体会数学的魅力,从而降低了教与学的难度。
2020年36期208数形结合思想在二次函数问题中的应用探析李佳彬(福建省南安国光中学,福建 南安 362321)二次函数是我国中考必考的常见知识点,而且二次函数的考察方式也是十分灵活的,二次函数既可以以现实生活中实际的问题作为载体进行考察,又能出现在一些综合题中。
在对学生进行二次函数考察的过程中,能够很好地检验出学生对于二次函数知识掌握的情况,并巩固学生所学。
初中数学教师在教学的过程中需要结合数形结合的思想,让学生可以更加深入地理解二次函数的深刻含义。
一、数形结合思想的概述数形结合的思想主要包括两个方面,主要为“以数论性”和“以形论数”。
在年代比较久远的《中国数学杂志》中,就曾经提到过“形”与“数”之间比较密切的关系。
有关数形结合这一概念正式出现的地方是在我国著名数学家华罗庚的《谈谈与蜂房结构有关的数学问题》一书中。
华罗庚在书中这样说道:“数无形而少直观,形无数而难入微”,通过数和形的相互转化能够简化一些比较复杂的难以理解的数学问题,体现了数学中精简的思想。
数形结合这种思想将直观的图像和数学语言相结合,将形象的思维和抽象的思维相结合,可以通过直观的图形发挥出抽象概念的支柱作用。
通过这种相互转化、相互补充,使得数形结合成为了解决数学问题的重要思想[1]。
二、数形结合思想在二次函数教学中的应用探析(一)从数到形,“以形论数”学过二次函数的我们都知道,y=ax2+bx+c的形式称之为二次函数,其中a、b、c是常数,a≠0,其中x是自变量,y是因变量,a、b、c是常 量,a是二次项系数,b是一次项系数,c是常数项。
首先,数学教师要先让学生理解这个一元二次函数的内涵,让学生理解常数a不仅仅是二次函数中二次项的系数,也决定了二次函数图像的开口方向和开口的大小,常数a和b决定了二次函数对称轴的位置,常数c决定了二次函数y=ax2+bx+c与y轴交点的位置,在学生确定了常数a、b、c之后,就能确定二次函数的图像以及表达式。