八年级数学你能肯定吗PPT优秀课件
- 格式:ppt
- 大小:512.50 KB
- 文档页数:20
第六章证明(一)
●课时安排 8课时
§6.1 你能肯定吗
●教学目标
(一)教学知识点
1.通过观察、猜测得到的结论不一定正确.
2.让学生初步了解,要判定一个数学结论正确与否,需要进行有根有据的推理.
(二)能力训练要求
1.通过探索,让学生初步了解数学中推理的重要性.
2.初步了解要判定一个数学结论正确与否,需要进行有根有据的推理.
●教学重点
判定一个结论正确与否需进行推理.
●教学难点
理解数学推理的重要性.
●教学过程
Ⅰ.巧设现实情境,引入新课
在数学学习中,我们通过观察、度量、猜测来得到一些结论.那这样得到的结论都是正确的吗?如果不是,那么用什么方法才能说明它的正确性呢?
Ⅱ.讲授新课
1、学生动手操作并讨论结果
2、用推理证明法
[师]刚才我们连接了四边形的对角线后,通过推理得证了:连接任意四边形四边的中点所组成的图形是平行四边形.
通过观察、猜测、度量得到的结论是否正确,需要用推理过程得证.
例2、
例3、
Ⅲ.课堂练习
Ⅳ.课时小结
本节课主要研究了:要判断一个数学结论是否正确,需要有根有据地进行推理.
Ⅴ.课后作业。
6.1你能肯定吗学习目标、重点、难点【学习目标】1、了解通过观察、猜测得到的结论不一定正确;2、要判定一个数学结论正确与否,需要进行有根有据的推理.【重点难点】要判定一个数学结论正确与否,需要进行有根有据的推理.知识概览图你能肯定吗⎪⎩⎪⎨⎧推理举出反例实验验证新课导引观察下图中的图形.图(1)中AB,CD的位置关系是怎样的?图(2)中线段a与b相等吗?图(3)中线段d与a,b,c哪一条在同一直线上?【问题探究】观察图形,图(1)中AB∥CD,图(2)中线段a=b,图(3)中线段d与a在同一条直线上,那么你知道用什么方法来检验对上述问题回答的正确与否呢?点拨对于上面观察得到的数学结论可以用实验验证后加以检验.教材精华知识点观察和实验得到的结论可靠吗教材中首先给出了一个几何问题,经过反复画不同形状的四边形,反复度量,可能会得出“顺次连接四边形各边中点所得的四边形是平行四边形”的结论,但是我们的度量准确吗?我们所画的几个四边形有足够的代表性吗?我们的结论肯定能成立吗?教材中给出的第二个例子是“对于所有自然数n,n2-n+11的值都是质数吗?”这是一个十分容易得出错误结论的问题.事实上,当n=0,1,2,…,9,10时,n2-n+11的值都是质数,而当n=11时,n2-n+11=112变成了合数.当我们依次对自然数进行实验时,若次数达不到11,则很可能得出错误结论.教材中给出的第三个例子是“用一根比地球赤道长1 m的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大?能放进一颗红枣吗?能放进一个拳头吗?”这个问题若凭直觉去判断,偌大一个地球,围赤道的铁丝仅比赤道长1 m,那还剩什么间隙了,但实际计算一下,又会让人感到意外,铁丝与地球赤道之间的间隙为(C表示赤道的周长)π=ππ21221CC-+≈0.16(m),这样的间隙不仅可以放进一颗红枣,而且也能放进一个拳头.通过上面几个例子,会使我们产生这样的认识:通过观察、验证、归纳、猜想所得出的结论未必是正确的,是值得怀疑的.这样就引出了一个问题——如何判断一个数学结论的正确与否呢? 拓展 (1)依靠经验、观察或实验能发现一些数学结论.(2)要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须进行推理,这也就是证明的必要性.(3)检验数学结论的常用方法:①实验验证;②举出反例;③推理.(4)遇到问题要大胆猜测并尝试用所学知识证明结论.课堂检测基础知识应用题1、当n 为正整数时,式子n 2+n +41的值都是质数吗?综合应用题2、观察下列各式及其验证过程..833833322322++=;= 验证:233222222222212223321213-+-++--()()====; 3.833133)13(3133)33(838322233+=-+-=-+-== (1)按照上述两个等式及其验证过程的基本思路,猜想4154的变形结果,并进行验证; (2)针对上述各式所反映的规律,写出用n (n 为任意自然数,且n ≥2)表示的等式,并进行验证.探索创新题3、如图6-2所示,线段AM ∥DN ,直线l 与AM , DN 分别交于点B ,C ,直线l 绕BC 的中点P 旋转(点C 由 D 点向N 点方向移动).(1)线段BC 与AD ,AB ,CD 围成的图形在初始状态下,形状是△ABD (即△ABC ),请你写出变化过程中其余的各种特殊四边形的名称;(2)任取变化过程中的两个图形,测量AB ,CD 的长度后,分别计算每一个图形中的AB +CD (结果精确到1 cm),比较这两个和是否相等,试说明理由.体验中考1、如图6-5所示的是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n (n 是正整数)个图案中由 个基础图形组成.2、如图6—6所示,四边形ABCD 是矩形,E 是AB 上一点,且DE =AB ,过点C 作CF ⊥DE ,垂足为E .(1)猜想AD 与CF 的大小关系;(2)请证明猜想的结论.学后反思附: 课堂检测及体验中考答案课堂检测1、分析 本题主要考查举出反例的方法来判断问题.解:当n =40时,式子n 2+n +41=402+40+41=412,412不是质数.∴当n 为正整数时,式子n 2+n +41的值不都是质数.【解题策略】 解此题的方法是举出反例对问题作出判断.2.解:(1)4,=1544154+验证:4.15441441441444415415422233+-+--+-=)(=)(== (2)由题设及(1)可猜想:对于任意自然数n (n ≥2),都有n ,1122-+=-n n n n n 验证:n 1)1(1)(112223232-+-=-+-=-=-n n n n n n n n n n n n =.12-+n n n 【解题策略】 此题运用由特殊到一般的思想对问题作出猜想,并加以推理论证.3、分析 此题用动态的思维方式来研究图形的变化情况.CB 以中点P 为中心,点C 由D 点向N 点移动,且CB 是按顺时针方向旋转的.解:(1)其余的各种特殊四边形分别为一般梯形、等腰梯形、直角梯形和平行四边形.(2)经测量、计算,两个图形中的AB +CD 都相等.如图6-3所示,过点P 作PP ′∥AM ,交AD 于点P ′,∴PP ′是梯形AB 1C 1D 的中位线,∴AB 1+C 1D =2PP ′.同理AB 2+C 2D =2PP ′,∴这两个和是相等的.体验中考1、 分析 第(1)个图中有4个基础图形,即3×1+1.第(2)个图中有7个基础图形,即3×2+1.第(3)个图中有10个基础图形,即3×3+1.第(4)个图中有13个基础图形,即3×4+1.……第n 个图中有3·n +1=3n +1.故填3n +1.【解题策略】 解决本题的关键是准确地找出其中的规律.2、 分析 通过观察,再根据已知条件,可猜想AD =CF .再运用理论进行推理论证猜想的结论正确.解:(1)AD =CF .(2)∵四边形ABCD 是矩形,∴CD ∥AB ,∴∠AED =∠FDC ,∵DE =AB =CD .又∵CF ⊥DE ,∴∠CFD =∠A =90°,在△AED 和△FDC 中,(∠A =∠CFD ,∠AED =∠FDC , DE =DC ),∴△AED ≌△FDC ,∴AD =CF .。