一步血清PT-PCR
- 格式:pdf
- 大小:462.30 KB
- 文档页数:3
pcr四个步骤PCR(聚合酶链反应)是一种常用的生物分子扩增技术,被广泛应用于基因组学、医学诊断、犯罪调查等领域。
PCR通常包括四个关键步骤:变性、退火、延伸和终止。
下面将详细介绍PCR的四个步骤及其在实验中的应用。
第一步:变性(Denaturation)变性是PCR的第一步,其目的是将DNA双链解开,得到两条单链DNA。
这一步通常在94-98℃的高温条件下进行,高温能够破坏DNA 的氢键,使DNA解开。
变性步骤在PCR中非常重要,因为它为后续步骤提供了单链DNA 模板。
在变性后,每个DNA模板都可以与引物(引导DNA扩增的短DNA片段)结合形成PCR产物。
第二步:退火(Annealing)退火是PCR的第二个步骤,其目的是使引物与DNA模板序列特异性结合。
在退火步骤中,温度降至50-65℃左右,使引物与DNA模板的互补碱基序列相互结合。
引物是为了扩增目标DNA序列而设计的短DNA片段,通常包含20-30个碱基。
引物的互补碱基序列与目标DNA序列的两个末端相对应,使引物能够与目标DNA序列的两个末端结合。
第三步:延伸(Extension)延伸是PCR的第三个步骤,其目的是通过DNA聚合酶酶活性,在引物的引导下合成新的DNA链。
在延伸步骤中,温度通常在65-75℃之间,取决于所使用的DNA聚合酶。
DNA聚合酶是一种酶,能够识别引物与DNA模板结合的区域,并在该区域上合成新的DNA链。
延伸步骤会在每个引物结合的DNA模板区域合成新的DNA链,形成两个新的DNA双链。
第四步:终止(Termination)终止是PCR的最后一个步骤,其目的是阻止DNA链的继续合成。
在终止步骤中,温度通常在72℃左右,这是DNA聚合酶的最佳工作温度。
终止步骤中使用的方法是在PCR反应体系中加入一种特殊的终止试剂,该试剂能够在DNA合成链上添加一个无法与其他核苷酸连接的特殊核苷酸。
这样,当DNA链合成到终止试剂所添加的核苷酸时,DNA聚合酶无法进一步合成,从而终止了DNA的扩增。
PCR技术的操作步骤高中生物摘要聚合酶链反应(PCR)是一种重要的分子生物学技术,广泛应用于基因工程、医学诊断和犯罪调查等领域。
本文将介绍PCR技术的操作步骤,包括材料准备、PCR反应体系的制备、PCR循环程序的设定和PCR产物分析等内容。
引言PCR技术是在体外模拟DNA的复制过程,通过放大目标DNA段,产生大量的特定DNA序列。
PCR技术的操作步骤简便、快速,并且具有高灵敏度和高特异性,因此被广泛应用于生物学研究和生物工程实践中。
PCR技术的操作步骤1. 材料准备•DNA模板:PCR的起始物质,可以是基因组DNA或DNA片段。
•引物:引物是一对寡聚核苷酸链(通常是20-30个碱基的寡核苷酸),用于在PCR 反应中选择性地扩增目标DNA。
•酶:聚合酶(如Taq聚合酶)和反式转录酶(如M-MLV逆转录酶),用于DNA扩增和反转录。
•反应缓冲液:提供适宜的pH和离子浓度,稳定PCR反应体系。
2. PCR反应体系的制备PCR反应体系由DNA模板、引物、酶和反应缓冲液组成。
制备PCR反应体系的步骤如下:•将PCR反应管标记编号,避免混淆。
•根据所需PCR反应的样品数量,按照实验设计准备相应的反应管。
•计算PCR反应物的体积,通常为20-100 μl。
•按照比例将DNA模板、引物、酶和反应缓冲液加入反应管中。
•轻轻混匀反应液,避免形成气泡。
3. PCR循环程序的设定PCR循环程序是PCR反应的核心部分,它包括一系列温度变化的步骤,以实现DNA 的分离、引物的结合和DNA的扩增。
常见的PCR循环程序大致分为三个阶段:变性、退火和扩增。
•变性阶段:将PCR反应体系加热至95℃,使DNA变性成两股单链。
•退火阶段:将温度降至50-65℃,引物与DNA模板结合,形成DNA双链。
•扩增阶段:将温度升至72℃,聚合酶活化,开始DNA扩增反应。
这个PCR循环程序通常重复20-40次,以产生大量目标DNA。
4. PCR产物分析PCR反应后,可以通过凝胶电泳和DNA测序等方法来分析PCR产物。
PCR一步法和磁珠法引言PCR一步法和磁珠法是现代生物技术领域中常用的分子生物学方法。
它们通过运用特定的实验步骤,能够在较短的时间内高效地扩增DNA分子,从而为科研工作和临床诊断提供了重要的技术支持。
PCR一步法PCR一步法(即Polymerase Chain Reaction)是一种快速扩增DNA分子的技术。
它是由美国生物化学家Kary Mullis在1983年发明的,因此他也因此荣获了1993年的诺贝尔化学奖。
PCR一步法主要通过模板DNA的分离、引物的设计和DNA扩增酶的作用来实现DNA的复制。
具体步骤如下:1.Denaturation(变性):将待扩增的DNA样本加热至95℃,使其双链DNA解开成两条单链DNA。
2.Annealing(退火):将体积较小的引物加入反应体系中,使其与目标DNA的互补序列结合。
3.Extension(延伸):在稳定的温度下,DNA扩增酶(如Taq聚合酶)沿引物的互补序列在DNA链上合成新的DNA链。
通过以上三个步骤的循环反复,可以迅速扩增出数量庞大的目标DNA。
PCR一步法具有扩增效率高、操作简单、时间快等优点,被广泛应用于基因分型、病原体检测和DNA指纹鉴定等领域。
磁珠法磁珠法是一种利用磁性微珠将目标分子从混合溶液中进行快速富集和分离的技术。
该方法广泛应用于DNA和RNA的提取、基因组分离纯化、蛋白质富集和细胞分离等领域。
磁珠法的基本原理是利用对目标分子特异性的磁性微珠,结合目标分子的相应探针或抗体等分子,通过磁力作用将目标分子从混合溶液中分离出来。
具体步骤如下:1.富集:将磁性微珠与目标分子特异性的分子(如探针或抗体)进行共价结合,形成复合物。
2.混合:将复合物与样本混合并充分反应,使目标分子与复合物结合。
3.分离:通过磁力作用,将复合物牢牢地聚集在一起,并将其分离出来。
磁珠法具有操作简单、富集效果好、损失小等优点,因此被广泛应用于生物学研究和临床实验中。
PCR包括哪些步骤和方法及步骤的实验过程及原理PCR简介聚合酶链式反应(PCR)是一种常用的分子生物学技术,可以在体外扩增目标DNA 序列。
它通过不断的循环反应,迅速大量复制目标DNA,从而能够快速获取足够的起始模板用于后续的实验。
PCR具有高效、敏感、特异性强等优点,在基因工程、医学诊断和犯罪鉴定等领域得到广泛应用。
PCR步骤和方法PCR主要分为三个步骤:变性、退火和延伸。
这三个步骤通过循环反应,反复进行以达到目标DNA扩增的目的。
1.变性(Denaturation):在高温条件下(通常为94-98°C),双链DNA被迅速分离成两条单链DNA。
这被认为是PCR反应的起始步骤,使得目标DNA的两个互补链分开,为后续的PCR步骤提供单链DNA模板。
2.退火(Annealing):降温至50-65°C的退火温度,引入特异性引物(primers),使其与目标DNA序列上的两个互补区域发生配对。
引物是短寡核苷酸序列,用于定位目标序列的起始和终止位置。
3.延伸(Extension):在60-75°C条件下,DNA聚合酶(Taq DNA聚合酶等)以引物为起点,沿模板链的互补链合成新的DNA链。
延伸速率通常为60-100 bp/分钟。
以上三个步骤完成后,产生的DNA分子会成为下一轮PCR反应的起始模板。
每个PCR循环通常需要几十秒到几分钟的时间。
PCR的方法可以进一步分为常规PCR、荧光定量PCR(qPCR)和逆转录PCR(RT-PCR)等。
PCR实验过程以下是PCR在实验室内的基本步骤:1.提取DNA:从待检测的样品(如血液、组织等)中提取目标DNA。
这一步需要遵循相应的DNA提取方法,如酚/氯仿法或商用DNA提取试剂盒。
2.准备反应体系:将PCR反应所需的各种试剂按比例加入反应管中。
通常,反应体系包括目标DNA、引物、核苷酸、DNA聚合酶、缓冲液和Mg2+等。
3.PCR反应:将反应管置于PCR仪中,按照设定的PCR程序进行反应。
免疫组化是融合了免疫学原理(抗原抗体特异性结合)和组织学技术(组织的取材、固定、包埋、切片、脱蜡、水化等),通过化学反应使标记抗体的显色剂(荧光素、酶、金属离子、同位素)显色,来对组织(细胞)内抗原进行定位、定性及定量的研究(主要是定位)。
样本是细胞或组织,要在显微镜下观察结果,可能出现膜阳性、质阳性和核阳性。
elisa(酶联免疫吸附试验)用到了免疫学原理和化学反应显色,待测的样品多是血清、血浆、尿液、细胞或组织培养上清液,因而没有用到组织包埋、切片等技术,这是与免疫组化的主要区别,操作上开始需要将抗原或抗体结合到固相载体表面,从而使后来形成的抗原-抗体-酶-底物复合物粘附在载体上,这就是“吸附”的含义。
免疫组化和elisa所用到的原理大致相同,只是因为所检测的样品不同,从而在操作方法上有所不同。
Elisa多用于定量分析,其灵敏度非常高。
western bolt 先要进行SDS-PAGE,然后将分离开的蛋白质样品用电转仪转移到固相载体上,而后利用抗原-抗体-标记物显色来检测样品,可以用于定性和半定量。
免疫学三大工具,免疫组化、Western、ELISA,分别用于定位,定性和定量。
以下western 和Elisa的区别不是原创,是找的资料。
western blotting 可以看到特异性的条带,但是定量比较烦elisa可以直接读出浓度,但是如果抗体有非特异性结合,那得到的数值就不可信。
WB只能半定量,但是可以检测细胞膜蛋白,这点ELISA做不到ELISA可用定量方法检测蛋白,也就是说可以观察不同浓度刺激物对目的蛋白的影响WB所检测的一般是抗原,而Elisa抗原抗体都可以检测。
WB所检测的抗原可以知道其分子量的大小,或是否是多聚体、降解产物等,一句话,WB 可以确定所用抗体是与那种蛋白起作用的;而Elisa无能为力,一锅端了。
WB所适用的一抗一般是线性位点的,ELISA线性或构象型抗体都可以使用。
从另一个意义上讲,WB可以做抗体是线性位点还是构象型位点的补充判定,而Elisa不行。
pcr检测流程步骤PCR(聚合酶链反应)是一种常用的分子生物学技术,用于检测和扩增DNA。
下面将介绍PCR检测的流程步骤。
第一步:样品采集PCR检测的第一步是采集样品。
样品可以是人体组织、血液、唾液、尿液等。
采集样品时要保证样品的纯净性和完整性,避免污染和损伤。
第二步:DNA提取提取样品中的DNA是PCR检测的关键步骤。
常用的DNA提取方法包括酚-氯仿法、盐析法、磁珠法等。
提取过程中要注意避免DNA的降解和污染,保证提取到的DNA质量和浓度。
第三步:DNA扩增DNA扩增是PCR检测的核心步骤。
扩增过程中需要使用特定的引物(一对寡核苷酸序列)和DNA聚合酶。
引物与待扩增的DNA序列互补结合,并由DNA聚合酶在不断变温循环的条件下进行DNA 链的合成。
循环反复进行多次,可以在短时间内扩增出大量目标DNA序列。
第四步:凝胶电泳凝胶电泳是PCR检测的常用分析方法。
通过将PCR产物置于凝胶中,通过电场作用使DNA分子向电极迁移,根据DNA分子的大小和电荷差异,可以将PCR产物分离。
凝胶电泳的结果可以通过紫外光照射或染色剂染色来观察,从而判断PCR是否成功以及目标DNA片段的大小。
第五步:结果分析通过凝胶电泳后,可以根据PCR产物的带型和大小来判断PCR是否成功。
如果目标DNA片段的带型明显且与预期一致,则说明PCR成功扩增出目标DNA序列。
而如果没有扩增出目标DNA序列,则说明PCR反应失败,需要重新优化反应条件。
第六步:数据解读根据PCR检测的结果,可以对目标DNA序列进行定性和定量分析。
定性分析可以判断样品是否存在目标DNA序列,定量分析可以确定目标DNA序列的浓度。
通过数据解读,可以得出与待测物相关的信息,如基因型、病毒感染程度等。
PCR检测的流程包括样品采集、DNA提取、DNA扩增、凝胶电泳、结果分析和数据解读。
每个步骤都有其重要性和特殊要求,只有在严格遵循操作规程的情况下,才能获得准确可靠的PCR检测结果。
PCR操作步骤及结果PCR(聚合酶链反应,Polymerase Chain Reaction)是一种体外放大特定DNA片段的技术,具有高效、快速和特异性的特点。
下面将详细介绍PCR的操作步骤及其结果。
一、PCR的操作步骤:1.模板DNA制备:-从样品中提取DNA,常见的提取方法包括CTAB法、盐溶法和商用DNA提取试剂盒等。
-根据实验需求,选择合适的DNA浓度作为PCR的模板。
2.PCR反应体系的配制:PCR反应体系由模板DNA、引物、dNTPs(四个单核苷酸)、缓冲液和聚合酶等组成。
-引物:引物是PCR反应中的两个短链DNA分子,分别与待扩增的目标DNA的两个互补区域序列相配对。
-dNTPs:dNTPs是脱氧核苷酸,包括A、T、C和G四种,供给聚合酶合成新DNA链使用。
-缓冲液:缓冲液用于提供合适的pH值和离子环境,维持PCR反应的正常进行。
-聚合酶:聚合酶是PCR反应的酶,能够识别引物,并在引物上逐个添加dNTPs,合成新的DNA链。
3.PCR循环反应:PCR反应主要包括三个步骤:变性、引物结合和延伸。
-变性:将PCR反应混合液加热至95°C,使模板DNA的双链解开,得到两条单链DNA。
-引物结合:将PCR反应体系降温至合适的温度(通常为45-65°C),使引物与单链DNA的互补区域结合。
-延伸:将PCR反应体系升温至聚合酶的最适温度(通常为65-75°C),聚合酶在引物的基础上合成新的DNA链,延伸特定的目标序列。
4.PCR循环程序:PCR的循环程序通常分为三个阶段:变性、引物结合和延伸。
-变性:95°C,持续时间为30秒至2分钟。
用于使DNA变性,并解开双链。
-引物结合:温度通常为45-65°C,持续时间为20秒至1分钟。
用于引物与模板DNA的互补区域结合。
-延伸:温度通常为65-75°C,持续时间为0.5-2分钟。
用于聚合酶在引物的基础上合成新的DNA链。
pcr三个步骤(pcr技术三大步骤)本文介绍了PCR的详细操作流程,强调了实验中的注意事项,列举了常用缓冲液的配方。
帮助我们在理解实验的基础上更顺利的操作。
聚合酶链式反应(Polymerase Chain Reaction,PCR)是体外合成双链DNA的一种方法,其原理类似于天然DNA的复制过程,其特异性主要依赖于与其目的片段两端互补的特异引物和高特异性的酶(热启动酶)。
典型的PCR反应有三个步骤:变性,退火,延伸,经过多次循环反应,获得目的片段。
1.DNA模板2.特异性引物3.dNTP Mix4.PCR buffer5.热启动酶1.配置反应体系将各成分依次加入到0.5ml的离心管中扩增使用热启动酶,可在常温下操作,非热启动型的酶要在低温配置反应体系。
2.按照试剂盒说明书设置反应时间和温度,扩增结束后电泳鉴定3.琼脂糖核酸电泳·将电泳所用器具蒸馏水洗净,架好梳子·根据要分离的DNA片段大小制备合适浓度的琼脂糖凝胶,准确称取一定的琼脂糖加入到锥形瓶中,加入30ml左右的电泳缓冲液(TAE或TBE)·在微波炉中加热融化后冷却至40℃左右,充分混匀后倒入电泳槽中·室温下凝固40分钟左右,小心拔出梳子,将凝胶放置电泳槽中准备点样·在电泳槽中加入电泳缓冲液,漫过凝胶表面即可,点样孔内不要有气泡·样品点样前准备好,(在八连管中)加入5ul样品,1ul的6xLoding buffer和1ul的染料混合,用抢将混合后的样品缓缓注入到点样孔中,注意不要串孔·按照正负极(红正黑负),接通电源,电压40-60V,时间30-40min,可根据溴酚蓝的位置判断是否终止电泳·电泳结束,关闭电源,凝胶成像观察,并对比marker确定片段大小不同的琼脂糖浓度分离不同大小的DNA片段:引物引物是决定PCR反应成败的关键,要保证扩增的准确、高效,引物的设计要遵循如下原则:1.引物的设计在cDNA的保守区域,在NCBI上搜索不同物种的同一基因,通过序列分析的软件,得到不同基因相同的序列就是该基因的保守区2.引物的长度:15-28bp,长度大于38bp,会使退火温度升高,不利于普通Taq酶的扩增3.引物GC含量在40%-60%,Tm值最好接近72℃4.因密码子的简并性,引物的3’端最好避开密码子的第三位(最好为T)5.碱基分布错落有致,3’端不超过3个连续G或C6.引物自身不要形成发夹结构,引物设计完成,要BLAST验证模板PCR扩增对模板的要求不高,单链、双链DNA均可作为扩增片段,虽然PCR能够扩增微量的DNA,为了保证扩增的特异性,对不同来源的模板,起始浓度有一定要求,如下:模板可以是纯化后的样品也可以是粗制品,不同来源的模板采取不同的处理方法,实验模板的纯化越简单越好,但模板中如果含有任何的Taq酶抑制剂、蛋白酶、核酸酶等,会干扰反应。
一步法RT-PCR说明书
TaKaRa PrimeScript TM One Step RT-PCR Kit Ver.2
试剂盒使用说明书
该试剂盒采用一步(One step)RT-PCR法。
RNA→cDNA →PCR反应操作在同一反应体系中连续进行,反应中途不需添加任何试剂。
实验操作
1.配制RT-PCR反应液,以n个反应管为例。
首先,配制如下混合体系,混匀后分加到n个PCR反应管中。
RNase Free dH2O 20μI X (n+1)
2x1 Step Buffer 25μI X (n+1)
PrimeScript 1 Step Enzyme Mix 2μI X (n+1)
其次,向PCR反应管中加入欲检测病原的扩增引物(即上下游引物)和样品抽提RNA。
上游引物1μI
下游引物1μI
样品RNA 1μI
总体系:50 μI
2.进行RT-PCR反应
50℃30 min
94℃ 2 min
94℃30 sec
50~65℃(以相应的引物而定) 30 sec 30 循环72℃ 1 min
72℃ 10 min
试剂盒自带有确保试剂有效性的阳性对照RNA以及相应的扩增引物(Positive Control RNA, Control F-1 Primer, Control R-1 Primer),扩增产物为462bp。
扩增后如果试剂盒阳性对照电泳结果为阳性说明试剂盒所有试剂有效,RT-PCR反应液体系没问题。
Journal of Virological Methods 190 (2013) 1–3Contents lists available at SciVerse ScienceDirectJournal of VirologicalMethodsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j v i r o m etShort communicationDirect RT-PCR from serum enables fast and cost-effective phylogenetic analysis of bovine viral diarrhoea virusClaudia Bachofen a ,∗,Kim Willoughby a ,Ruth Zadoks a ,Paul Burr b ,Dominic Mellor c ,George C.Russell aaMoredun Research Institute,Pentlands Science Park,Penicuik,Midlothian EH260PZ,UK bBiobest Laboratories Ltd.,The Edinburgh Technopole,Penicuik,Midlothian EH260PY,UK cSchool of Veterinary Medicine,College of Medical,Veterinary and Life Sciences,University of Glasgow,Bearsden Road,Glasgow G611QH,UKArticle history:Received 17December 2012Accepted 13March 2013Available online 26 March 2013Keywords:PestivirusBovine viral diarrhoea Direct RT-PCR Sequencing DatabaseMolecular epidemiologya b s t r a c tStudies of the molecular epidemiology of viral diseases are dependent on the analysis of large numbers of samples from infected individuals,and the assembly of relevant sequence databases are a prerequisite to investigate chains of infection.As part of research in support of the Scottish BVDV eradication campaign,we have established a direct RT-PCR method for the high throughput amplification and analysis of the informative 5 -untranslated region of the BVDV genome.Heat-treatment followed by a one-step RT-PCR,performed in 96-well plates,produced sufficient material for sequence analysis from 0.5l of serum or plasma.Of 93samples assayed,only five failed to give full sequence data for the region amplified and these were subsequently successfully analysed in single tube format reactions.This approach improved the speed of analysis,reduced costs,operator time and the potential for contamination,and may allow analysis of samples for which volumes are too low for conventional RNA isolation.It also has the potential for wider application in both human and animal disease research in which high throughput and low cost would increase the size of datasets that can be obtained.© 2013 Elsevier B.V. All rights reserved.Bovine viral diarrhoea virus (BVDV)is a major pathogen of cattle that causes important economic losses for cattle producers around the world.It is a single-strand RNA virus,closely related to classical swine fever virus (CSFV)of pigs and border disease virus (BDV)of sheep,belonging to the genus Pestivirus within the family Flaviviri-dae (Pletnev et al.,2011).BVDV also shares genetic similarity with hepatitis C virus (HCV)of humans,another flavivirus,and has often been used as a model for HCV (Zitzmann et al.,1999;Buckwold et al.,2003).BVDV has the ability to infect the bovine foetus and to cause a persistent infection that is tolerated by the host’s immune system (Peterhans and Schweizer,2010).This complex strategy is only possible if infection occurs between the second and fourth months of gestation (Liess,1985).Persistently infected (PI)animals are virus ‘factories’:BVDV can be isolated from most tissues and secretions and is shed very efficiently.Hence,PI animals enable the virus to spread and persist in cattle herds (Nettleton and Entrican,1995).The clinical signs in affected herds are variable and non-specific:abortions,reduced fertility,pneumonia and diarrhoea are common (Moerman et al.,1994).At the herd level,∗Corresponding author.Tel.:+4401314455111.E-mail addresses:claudia.bachofen@ ,c.bachofen@ (C.Bachofen).BVDV can only be effectively controlled by detecting and removing PI animals (Lindberg,2003).Due to the economic impact of this infection,several European countries,including Scotland,have ongoing national eradica-tion programmes (Heffernan et al.,2009),following the lead of Scandinavian countries.As the example of Sweden has shown,re-infections of previously BVDV-free herds are a major problem towards the end of the eradication programme and can prolong the final phase.In this situation,molecular epidemiology,by means of molecular tracing of chains of infections,has proven to be an important addition to classical epidemiology in order to find sources of infections and routes of virus transmission responsible for herd breakdowns (Ståhl et al.,2005).However,for molecular tracing to be used efficiently,a comprehensive collection of BVDV sequences is required for comparison with ‘new’virus samples.Ideally,BVDV PCR products from all PI animals detected during eradication would be sequenced to form a national database.Since this entails sequencing hundreds or thousands of samples,a fast and cost-effective method is required.In addition,since BVDV is an RNA virus,reverse transcription of purified viral RNA is required before PCR amplification.RNA isolation,reverse transcriptase (RT)-PCR and sequencing in 96-well format constitute a time-consuming and potentially costly workflow.In addition,the multiple steps involved may be susceptible to cross-contamination between samples.Hence,prior to the establishment of a sequence database in support of BVDV0166-0934/$–see front matter © 2013 Elsevier B.V. All rights reserved./10.1016/j.jviromet.2013.03.0152 C.Bachofen et al./Journal of Virological Methods190 (2013) 1–3eradication in Scotland,we have tested methods for direct RT-PCR of BVDV from serum.RT-PCR of BVDV without prior RNA isolation has been described by Gilbert et al.(1999)and Deregt et al.(2002), who used direct amplification from tissue culture supernatant or whole blood in a nested multiplex RT-PCR.However,in our case,the only samples currently available are frozen sera and plasma sub-mitted for diagnostic testing.In addition,since the use of a nested RT-PCR is time-consuming and susceptible to contamination,we sought a one-step RT-PCR method that was suitable for serum sam-ples.Direct RT-PCR methods have been described for several other viruses,e.g.influenza virus(Song et al.,2009),Chikungunya virus (Pastorino et al.,2005)and Newcastle disease virus(Wambura, 2006).In most cases,however,the template material used was tissue culture propagated virus,whole blood or tissue samples. Abe(2003)described the detection of HCV by direct RT-PCR from serum.The serum was diluted1:5in phosphate buffered saline (PBS),heated at95◦C for4min and cooled on ice for3–5min before using directly in RT-PCR.Because of the relatedness of HCV and BVDV,this method was tested using serum from a BVDV PI animal. Dilutions of serum(heat-treated or controls)were analysed using an established BVDV RT-PCR.Briefly,10l of PI serum was diluted 1:5with PBS in a0.2ml PCR tube and heated in a thermal cycler for 3min at95◦C before being cooled on ice for a minimum of5min. We then added2.5l samples of heat-treated or control serum to22.5l of RT-PCR mix.For RT-PCR,the SuperScript III one-step RT-PCR system with Platinum Taq polymerase(Invitrogen)was supplemented with0.2l of recombinant RNasin RNase inhibitor (Promega).The previously described primer pair324/326(Vilˇc ek, 1994)was used to amplify a244–247base pair(bp)fragment of the conserved5 untranslated region(UTR)of BVDV.This fragment is widely used for phylogenetic analyses of pestiviruses(Becher et al.,1997;Harasawa,1996;Vilˇc ek et al.,2004)and for molecular tracing of BVDV(Ståhl et al.,2005).Cycling conditions were as follows:30min at50◦C for reverse transcription;2min at94◦C for Taq activation;40cycles of15s at94◦C for denaturation,30s at55◦C for annealing,1min at68◦C for extension;and afinal extension of5min at68◦C.To visualise the amplified products, 10l of the RT-PCR products were used for gel electrophoresis. Amplification of untreated sera gave only very faint bands,but the diluted and heat-treated sera produced bands comparable to those seen using isolated serum RNA as template(data not shown).To estimate the detection limit of the direct RT-PCR compared to RT-PCR after RNA isolation,we diluted serum from the same PI animal1:3,1:10,1:30and1:100with bovine serum(tested free of BVDV RNA or antibodies against BVDV).The undiluted serum and each of the4dilutions were then further diluted1:5in PBS.From the1:5dilutions,140l were used for RNA isolation(QIAmp viral RNA mini kit,Qiagen;elution in60l)and50l were heat-treated for direct amplification.The RT-PCR was performed asdescribed Fig.2.Image of96-well plate containing50l aliquots of1:5diluted,heat-treated serum used as RT-PCR templates.The degree of haemolysis can be estimated from the colour of each well.Samples used for additional tests and controls are ringed and numbered as follows:1,Heparin plasma;2,EDTA plasma;3,cell culture medium; 4,PBS control;5,serum storage trial samples;6,water control;7,Qiaxcel size standards.Samples that failed to give complete5 UTR sequences are boxed:solid boxes indicate samples that failed,while dashed boxes indicate samples that gave incomplete or poor quality sequence data.above:2.5l of pre-treated serum or eluted RNA were used in a 25l reaction and10l of each RT-PCR product were visualised after agarose gel electrophoresis.The detection limit of the direct RT-PCR was similar to RT-PCR after RNA isolation(Fig.1).In both cases,the PCR products of the1:100diluted materials could be visu-alised but the bands from the direct RT-PCR were slightly stronger. Thisfinding is quite remarkable when considering that the input volume of serum in the undiluted lanes was only0.5l for the direct RT-PCR while the RNA used for the‘normal’RT-PCR was equivalent to1.2l of serum(Fig.1,nes).Based on this encouraging result,we tested the suitability of this method for RT-PCR in96-well plates for sequence analysis of serum or plasma samples from PI animals detected during the Scot-tish BVDV eradication programme.This test used86serum samples that had previously been tested positive for BVDV by a commercial antigen capture ELISA(Idexx BVDV Ag/serum plus test)performed by Biobest Laboratories.The sera originated from animals older than one month of age,were tested between January and July2012 and were stored frozen at−20◦C in the interim.In addition to the86serum samples,we also tested one sample each of known BVDV positive EDTA plasma,heparin plasma and cell culture super-natant(Fig.2).Furthermore,serum from one PI animal was used to test the stability of the RNA in heat-treated samples bystoring Fig.1.Agarose gel electrophoresis of RT-PCR products amplified from serum with and without prior RNA isolation.Undiluted positive serum,or positive serum serially diluted up to100-fold in BVDV-negative serum,was further diluted1:5in PBS and used as template for direct RT-PCR(right lanes,B)or RT-PCR after RNA isolation(left lanes, A).The degree of dilution in BVDV-negative serum is given above each gel lane(undil.=undiluted)and sizes(bp)of DNA markers(Hyperladder IV,Bioline)are given on the right of the gel.C.Bachofen et al./Journal of Virological Methods190 (2013) 1–33aliquots for24h at room temperature,4◦C or−20◦C prior to RT-PCR in the96-well plate(Fig.2).After sample pre-treatment and RT-PCR as described above,we screened the plate for the presence of amplicons using the Qiaxcel Advanced capillary gel electrophore-sis system(Qiagen).Except for two samples that showed only a faint band,all positive samples amplified a clear single product of the correct size.The RT-PCR products were diluted1:2in water to reach the DNA concentration required for sequencing and20l of each sample were transferred to two fresh96-well plates.The plates were sealed and sent to GATC Biotech(GATC Biotech AG, Konstanz,Germany)for clean-up and Sanger sequencing with the primers used for RT-PCR:one plate with the forward primer(324) and one with the reverse primer(326).Complete BVDV5 UTR PCR product sequences were obtained from all exceptfive of93positive samples analysed(5.4%failure rate).In the complete sequences,the reads from the forward and reverse primers were clear and assembled perfectly,suggesting that inter-well contamination or sample misplacement was not an issue at any stage of the workflow.In addition,the plate contained a number of duplicate samples(storage trial)and several sam-ples that had been analysed previously.In these cases,the samples were identical to each other or to the previously defined sequence, respectively.The successful sequencing of94.6%of the samples was surprising because the quality of the serum was highly variable, including some that were very haemolytic(Fig.2).Indeed,all of the sample types tested,including serum,EDTA plasma,heparin plasma and BVDV cell culture supernatant amplified and sequenced without problems.The wells containing PBS control,RT-PCR nega-tive control(water)and Qiaxcel marker gave no sequencing results. The two samples that showed faint bands in the Qiaxcel analy-sis resulted in low quality sequences that did not cover the entire 5 UTR fragment.Three other sera that gave detectable RT-PCR prod-ucts failed completely.The reason for this failure is unknown but 96-well format sequencing of the same PCR product from purified serum RNA in the Swiss eradication programme has been observed to give a similar failure rate of6.3%(H.P.Stalder,personal com-munication;n=7299).The direct RT-PCR and sequencing reactions were repeated in single tubes for thefive serum samples that failed in the96-well sequencing reaction,and they all yielded complete BVDV5 UTR sequences.The successful amplification and sequencing of heat-treated serum that had been stored for24h at room temperature,4◦C or −20◦C prior to RT-PCR indicates that the viral RNA is relatively stable after heat-treatment.This was unexpected as the heating process should denature the protein capsid of the virus,making the viral RNA accessible for RT-PCR but also susceptible to serum RNases,some of which may be heat resistant.This suggests that the heat-treatment of samples largely inactivates serum RNases.The heat-treated serum samples used for comparison of the detection limit of the direct RT-PCR(Fig.1)were also tested in a BVDV real-time RT-PCR(Willoughby et al.,2006)but,in this format, detection of viral RNA in the heat-treated serum was reduced by nearly10-fold compared to detection of BVDV after RNA isolation (data not shown).As expected,real-time PCR seemed to be more susceptible to inhibition by serum components than conventional RT-PCR.In conclusion,we have shown that the method of Abe(2003), using simple dilution and heat-treatment of serum samples instead of RNA isolation,can be easily adapted for direct RT-PCR of BVDV. The detection limit is comparable to using isolated RNA(Fig.1) but direct RT-PCR can be used to analyse tiny volumes of serum. Furthermore,this approach is a fast,easy and cost-effective way to prepare samples for sequencing of the5 UTR of BVDV for phy-logenetic analysis of large numbers of samples,facilitating the assembly of sequence databases for molecular epidemiology.Since this approach has been shown to work for direct RT-PCR of hep-atitis C virus and direct PCR of hepatitis B virus(Abe,2003)in addition to BVDV,it might be applicable to a wider range of RNA and DNA viruses of animal or human origin,reducing time and costs for conventional(RT-)PCR.AcknowledgmentsThis work was supported by the Scottish government through the Centre of Expertise on Animal Disease Outbreaks(EPIC).The work of C.B.was funded by a fellowship grant from the Swiss National Science Foundation.We are indebted to Jess Gaudy and Richard Irvine from The School of Veterinary Medicine,University of Glasgow,and to col-leagues at Biobest Laboratories for provision of the BVDV-positive serum samples used in this publication.ReferencesAbe,K.,2003.Direct PCR from serum:application to viral genome detection.In: Bartlett,J.M.S.,Stirling,D.(Eds.),PCR Protocols.Tatowa,New Jersey,pp.161–166. Becher,P.,Orlich,M.,Shannon,A.D.,Horner,G.,König,M.,Thiel,H.J.,1997.Phylo-genetic analysis of pestiviruses from domestic and wild ruminants.J.Gen.Virol.78(Pt6),1357–1366.Buckwold,V.E.,Beer,B.E.,Donis,R.O.,2003.Bovine viral diarrhea virus as a surrogate model of hepatitis C virus for the evaluation of antiviral agents.Antiviral Res.60,1–15.Deregt,D.,Carman,P.S.,Clark,R.M.,Burton,K.M.,Olson,W.O.,Gilbert,S.A.,2002.A comparison of polymerase chain reaction with and without RNA extraction and virus isolation for detection of bovine viral diarrhea virus in young calves.J.Vet.Diagn.Invest.14,433–437.Gilbert,S.A.,Burton,K.M.,Prins,S.E.,Deregt,D.,1999.Typing of bovine viral diarrhea viruses directly from blood of persistently infected cattle by multiplex PCR.J.Clin.Microbiol.37,2020–2023.Harasawa,R.,1996.Phylogenetic analysis of pestivirus based on the5 -untranslated region.Acta Virol.40,49–54.Heffernan,C.,Misturelli,F.,Nielsen,L.,Gunn,G.J.,Yu,J.,2009.Analysis of Pan-European attitudes to the eradication and control of bovine viral diarrhoea.Vet.Rec.164,163–167.Liess,B.,1985.The significance of immune tolerance for the pathogenesis of bovine virus diarrhea.Berl.Munch.Tierarztl.Wochenschr.98,420–423.Lindberg,A.L.,2003.Bovine viral diarrhoea virus infections and its control.A review.Vet.Q.25,1–16.Moerman,A.,Straver,P.J.,de Jong,M.C.M.,Quak,J.,Baanvinger,T.,van Oirschot,J.T., 1994.Clinical consequences of a bovine virus diarrhoea virus infection in a dairy herd:a longitudinal study.Vet.Q.16,115–119.Nettleton,P.F.,Entrican,G.,1995.Ruminant pestiviruses.Br.Vet.J.151,615–642. Pastorino,B.,Bessaud,M.,Grandadam,M.,Murri,S.,Tolou,H.J.,Peyrefitte,C.N.,2005.Development of a TaqMan®RT-PCR assay without RNA extraction step for the detection and quantification of African Chikungunya viruses.J.Virol.Methods 124,65–71.Peterhans,E.,Schweizer,M.,2010.Pestiviruses:how to outmaneuver your hosts.Vet.Microbiol.142,18–25.Pletnev,A.,Gould,E.,Heinz,F.X.,Meyers,G.,Thiel,H.-J.,Bukh,J.,Stiasny,K.,Collett, M.S.,Becher,P.,Simmonds,P.,Rice,C.M.,Monath,T.P.,2011.Flaviviridae.In: King,A.M.Q.,Adams,M.J.,Carstens,E.B.,Lefkowitz,E.J.(Eds.),Virus Taxonomy., 9th edition.Academic Press,Oxford,pp.1003–1020.Song,M.K.,Chang,J.,Hong,Y.,Hong,S.,Kim,S.W.,2009.Direct multiplex reverse transcription-nested PCR detection of influenza viruses without RNA purifica-tion.J.Microbiol.Biotechnol.19,1470–1474.Ståhl,K.,Kampa,J.,Baule,C.,Isaksson,M.,Moreno-López,J.,Belák,S.,Alenius,S., Lindberg,A.,2005.Molecular epidemiology of bovine viral diarrhoea during thefinal phase of the Swedish BVD-eradication programme.Prev.Vet.Med.72, 103–108.Vilˇc ek,S.,1994.Development of PCR tests for the detection of bovine herpesvirus-1,bovine respiratory syncytial viruses and pestiviruses.Vet.Med.(Praha)39, 687–700.Vilˇc ek,S.,Durkovic,B.,Kolesarova,M.,Greiser-Wilke,I.,Paton,D.,2004.Genetic diversity of international bovine viral diarrhoea virus(BVDV)isolates:identifi-cation of a new BVDV-1genetic group.Vet.Res.35,609–615.Wambura,P.,e of virus suspensions without RNA extraction as RT-PCR tem-plates for detection of Newcastle disease virus.Afr.J.Biotechnol.5,1722–1724. Willoughby,K.,Valdazo-Gonzalez,B.,Maley,M.,Gilray,J.,Nettleton,P.F.,2006.Development of a real time RT-PCR to detect and type ovine pestiviruses.J.Virol.Methods132,187–194.Zitzmann,N.,Mehta,A.S.,Carrouee,S.,Butters,T.D.,Platt,F.M.,McCauley,J.,Blum-berg,B.S.,Dwek,R.A.,Block,T.M.,1999.Imino sugars inhibit the formation and secretion of bovine viral diarrhea virus,a pestivirus model of hepatitis C virus: implications for the development of broad spectrum anti-hepatitis virus agents.Proc.Natl.Acad.Sci.U.S.A.96,11878–11882.。