电力工程绘图-第6章-杆式变压器安装图CAD快速绘制学习资料
- 格式:ppt
- 大小:1.13 MB
- 文档页数:14
1.Introduction to Transformers(引言)EMTDC中使用变压器有两种方法:经典方法和统一的磁等效电路(unified magnetic equivalent circuit (UMEC))方法。
经典方法用来模拟同一变压器铁芯上的绕组。
也就是说,每一相都是独立的,各单相变压器之间没有相互作用。
而UMEC方法计及了相间的相互作用:由此,可以对3相3臂或3相5臂式变压器构造进行精确的模拟。
每一模型中,铁芯的非线性特征是最基本的不同。
经典模型中的铁芯饱和是通过对选定绕组使用补偿注入电流实现的。
UMEC方法采用完全插值,采用分断线性化的ϕ-I曲线来表征饱和特性。
2.Transformer Models Overview(变压器模型概述)对电力系统进行电磁暂态分析过程中必然会出现变压器。
PSCAD中有两种方法对变压器进行模拟:经典方法和UMEC方法。
经典方法仅限于单相设备,其中不同的绕组处于同一铁芯腿上。
而UMEC方法,考虑到来铁芯的几何外形和相间的相互耦合因素。
除了以上的显著区别外,两种变压器模型之间最基本的区别是对铁芯非线性特性的描述。
在经典模型中,非线性特性采用近似地基于“拐点”、“空心电抗”和额定电压的磁化电流曲线进行模拟。
而UMEC模型则直接采用V-I曲线进行模拟。
与经典模型不同,UMEC模型没有配置在线分接头调整功能。
但是,可以在指定绕组上设置分接头,不过分接头在仿真过程中不能动态调整。
3.1-Phase Auto Transformer(单相自耦变压器)此组件基于经典方法模拟了单相自耦变压器。
用户可以选择采用磁化支路(线性铁芯)或注入电流模拟磁化特性。
理想情况下,可以忽略磁化支路,变压器即为理想模式,仅保留串联的漏抗。
4.3-Phase Star-Star Auto Transformer(三相星形连接的自耦变压器)此组件模拟了由3个单相构成的3相自耦变压器。
用户可以选择采用磁化支路(线性铁芯)或注入电流模拟磁化特性。
电力变压器结构图解这是一个三相电力变压器的模型。
从外观看主要由变压器的箱体、高压绝缘套管、低压绝缘套管、油枕、散热管组成。
移去变压器箱体可看到变压器的铁芯与绕组,铁芯由硅钢片叠成,硅钢片导磁性能好、磁滞损耗小.在铁芯上有A、B、C三相绕组,每相绕组又分为高压绕组与低压绕组,一般在内层绕低压绕组,外层绕高压绕组。
图2左边是高压绕组引出线,右边是低压绕组引出线。
把铁芯与绕组放入箱体,绕组引出线通过绝缘套管内的导电杆连到箱体外,导电杆外面是瓷绝缘套管,通过它固定在箱体上,保证导电杆与箱体绝缘.为减小因灰尘与雨水引起的漏电,瓷绝缘套管外型为多级伞形。
右边是低压绝缘套管,左边是高压绝缘套管,由于高压端电压很高,高压绝缘套管比较长。
变压器箱体(即油箱)里灌满变压器油,铁芯与绕组浸在油里。
变压器油比空气绝缘强度大,可加强各绕组间、绕组与铁芯间的绝缘,同时流动的变压器油也帮助绕组与铁芯散热。
在油箱上部有油枕,有油管与油箱连通,变压器油一直灌到油枕内,可充分保证油箱内灌满变压器油,防止空气中的潮气侵入。
油箱外排列着许多散热管,运行中的铁芯与绕组产生的热能使油温升高,温度高的油密度较小上升进入散热管,油在散热管内温度降低密度增加,在管内下降重新进入油箱,铁芯与绕组的热量通过油的自然循环散发出去。
一些大型变压器为保证散热,装有专门的变压器油冷却器。
冷却器通过上下油管与油箱连接,油通过冷却器内密集的铜管簇,由风扇的冷风使其迅速降温。
油泵将冷却的油再打入油箱内,下图是一台容量为400000KVA的特大型电力变压器模型,其低压端电压为20KV,高压端电压为220KV。
采用油冷却的变压器结构较复杂,由于油是可燃物,也就存在安全性问题。
目前,在城市内、大型建筑内使用的变压器已逐渐采用干式电力变压器,变压器没有油箱,铁芯与绕组安装在普通箱体内。
干式变压器绕组用环氧树脂浇注等方法保证密封与绝缘,容量较大的绕组内还有散热通道,大容量变压器并配有风机强制通风散热.由于材料与工艺的限制,目前多数干式电力变压器的电压不超过35KV,容量不大于20000KVA,大型高压的电力变压器仍采用油冷方式。
课 程 设 计课程名称 电气工程制图课题名称 变压器装配图绘制专 业 电气工程及其自动化班 级 电气工程1091学 号 201001019205姓 名 郭石峰指导教师 李春菊 彭磊 邓秋玲2012年 12 月 21 日湖南工程学院课程设计任务书课题名称电气工程制图题目变压器装配图绘制及接触器三维造型专业班级电气工程及其自动化学生姓名郭石峰学号20100101205指导老师李春菊彭磊邓秋玲审批李春菊任务书下达日期2012年12月17日设计完成日期2012年12月21日目录1 概述 (5)2 绘图过程 (6)3 总结与体会 (14)4 参考文献 (15)一概述本次课程设计的任务用CAD软件绘制变压器的装配图和用proe绘制接触器的三维图。
此次课程设计是整个教学计划中一个重要的实践性教学环节,是AutoCAD和proe知识的强化训练,它对进一步优化学生的知识能力结构、加强专业技术应用能力培养有重要意义。
目的:能正确无误地读懂所给图纸,进一步熟悉机械标准,培养学生熟练运用AutoCAD、Pro/ENGINEER软件绘制工程图纸的能力,培养正确理解和运用专业技术标准的能力。
意义:通过CAD课程设计可以达到温习,强化课堂学习知识,把知识运用与实践中,更好的掌握软件。
任务:(1)用AutoCAD软件绘制电机/接触器/变压器的装配图。
(2)用PROE软件对电器典型零件做三维造型,并进行装配。
二绘图过程2.1 表格制作安装并打开AutoCAD 2007 - Simplified Chinese;在新建中找到Gb-a3-Color Dependent Plot Styles.dwt,如下图所示,并双击打开,建立新文件夹;图2-1 选择图纸式样示意图然后按照所给图纸绘制标题栏。
先用偏移等命令绘制标题栏表格,再用单行文字和阵列等命令填写表格内容。
在绘制标题栏是我遇到一个问题,有两个字符我不知道如何输入。
一个是“□”;另一个是“Ⅲ”。
1.Introduction to Transformers(引言)EMTDC中使用变压器有两种方法:经典方法和统一的磁等效电路(unified magnetic equivalent circuit (UMEC))方法。
经典方法用来模拟同一变压器铁芯上的绕组。
也就是说,每一相都是独立的,各单相变压器之间没有相互作用。
而UMEC方法计及了相间的相互作用:由此,可以对3相3臂或3相5臂式变压器构造进行精确的模拟。
每一模型中,铁芯的非线性特征是最基本的不同。
经典模型中的铁芯饱和是通过对选定绕组使用补偿注入电流实现的。
UMEC方法采用完全插值,采用分断线性化的ϕ-I曲线来表征饱和特性。
4.Transformer Models Overview(变压器模型概述)对电力系统进行电磁暂态分析过程中必然会出现变压器。
PSCAD中有两种方法对变压器进行模拟:经典方法和UMEC方法。
经典方法仅限于单相设备,其中不同的绕组处于同一铁芯腿上。
而UMEC方法,考虑到来铁芯的几何外形和相间的相互耦合因素。
除了以上的显著区别外,两种变压器模型之间最基本的区别是对铁芯非线性特性的描述。
在经典模型中,非线性特性采用近似地基于“拐点”、“空心电抗”和额定电压的磁化电流曲线进行模拟。
而UMEC模型则直接采用V-I曲线进行模拟。
与经典模型不同,UMEC模型没有配置在线分接头调整功能。
但是,可以在指定绕组上设置分接头,不过分接头在仿真过程中不能动态调整。
5.1-Phase Auto Transformer(单相自耦变压器)此组件基于经典方法模拟了单相自耦变压器。
用户可以选择采用磁化支路(线性铁芯)或注入电流模拟磁化特性。
理想情况下,可以忽略磁化支路,变压器即为理想模式,仅保留串联的漏抗。
6.3-Phase Star-Star Auto Transformer(三相星形连接的自耦变压器)此组件模拟了由3个单相构成的3相自耦变压器。
用户可以选择采用磁化支路(线性铁芯)或注入电流模拟磁化特性。
一招学会变压器24种接线的相量图画法及钟点数判别电工学习网:技术驱动未来,关注电工学习网官方微信公众号“电工电气学习”,收获更多经验知识。
一、时钟钟点数与变压器接线组别的关系变压器的接线组别有12种,然而我们的时钟有12点共360°,则有:360°/12=30°。
图1 变压器接线组别与时钟钟点数对应关系二、基本知识点1.变压器的接线组别均是以高压侧为基准,看低压侧线电压与高压侧线电压的关系来确定变压器的接线组别。
2.同一铁芯柱上绕组电压的关系要么平行,要么在一条直线上。
三、画相量图的步骤(以Yd1为例)1.变压器所有接线组别,都先画出此相量图,B与b共点。
2.确定二次侧a点(若为星型接线需要先确定y点)①由于AX与ax绕组在同一铁芯柱上,故UAX与Uax平行或在一条直线上。
从绕组接线图知b与x共点,可以看出UAX与Uax只可能是平行,不可能是共线。
②相量图上A在X的右上方,a也必须是在x的右上方。
根据绕组接线图极性端A在非极性端X的右上方,所以极性端a 也必须在非极性端x的右上方,从而确定出a点的位置。
③根据相量互差120°确定出其他相量。
④根据UAB与Uab的夹角,确定接线组别。
四、变压器判断点数的方法:1. 同名端确定点数①同名端在ABC(abc)为0点。
②同名端在XYZ(xyz)为6点1. 相序确定点数A(a)在第一位(从左往右)为0点,A(a)在第二位(从左往右)为4点,A(a)在第三位(从左往右)为8点。
2. 星角接确定点数①正三角接+1点。
(正三角:a→b先经过绕组,再经过导线到b点。
)②反三角接-1点。
(反三角:a→b先经过导线,再经过绕组到b点。
)③从a点进入绕组,画闭合路径,依次经过ABC(abc)为正三角接,依次经过ACB(acb)为反三角接。
④分别确定原副变钟点数后,用副边点数—原边点数,结果为负数,则+12;结果超过12,则—12。