生物化学:第一章 蛋白质
- 格式:doc
- 大小:33.50 KB
- 文档页数:3
⽣物化学复习重点⽣物化学复习重点第⼀章蛋⽩质1.蛋⽩质的元素组成:C、H、O、N、S及其他微量元素,蛋⽩质含氮量:16%公式:每克样品含氮量×6.25×100=100克样品蛋⽩质含量(克%)2.氨基酸通式特点:α-L -氨基酸,只有⽢氨酸没有⼿性(旋光性),脯氨酸为亚氨基酸。
3.氨基酸分类:(1)、酸性氨基酸:⼀氨基⼆羧基氨基酸,有天冬氨酸、⾕氨酸,带负电荷(2)、碱性氨基酸:⼆氨基⼀羧基氨基酸,有赖氨酸、精氨酸、组氨酸,带正电荷(3)、中性氨基酸:⼀氨基⼀羧基氨基酸,有⽢氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸、半胱氨酸、苯丙氨酸、⾊氨酸、酪氨酸、脯氨酸、天冬酰胺、⾕氨酰胺、丝氨酸、苏氨酸。
不带电荷。
(4)含S氨基酸:甲硫氨酸、半胱氨酸(5)含羟基氨基酸:丝氨酸、苏氨酸(6)芳⾹族氨基酸:苯丙氨酸、⾊氨酸、酪氨酸(7)含酰胺基氨基酸:天冬酰胺、⾕氨酰胺4.氨基酸的等电点PI:氨基酸所带正负电荷相等时的溶液pH。
pI=(pK1,+pK2,)/25.氨基酸紫外吸收:280nm,苯丙氨酸、⾊氨酸、酪氨酸有紫外吸收6.蛋⽩质的⼀级结构(Primary structure):它是指蛋⽩质中的氨基酸按照特定的排列顺序通过肽键连接起来的多肽链结构。
肽键:⼀个氨基酸的a-COOH 和相邻的另⼀个氨基酸的a-NH2脱⽔形成共价键。
7.蛋⽩质⼆级结构的概念:多肽链在⼀级结构的基础上,按照⼀定的⽅式有规律的旋转或折叠形成的空间构象。
其实质是多肽链在空间的排列⽅式蛋⽩质⼆级结构主要类型有:a-螺旋、β-折叠、β-转⾓维持⼆级结构的作⽤⼒:氢键a-螺旋(a-Helix)⼜称为3.613螺旋,Φ= -57。
,Ψ= -47。
结构要点:(1)、多个肽键平⾯通过α-碳原⼦旋转,主链绕⼀条固定轴形成右⼿螺旋。
(2)、每3.6个氨基酸残基上升⼀圈,相当于0.54nm。
(3)、相邻两圈螺旋之间借肽键中C=O和N-H形成许多链内氢健,即每⼀个氨基酸残基中的NH和前⾯相隔三个残基的C=O 之间形成氢键,这是稳定α-螺旋的主要键。
第一章:蛋白质蛋白质的等电点:当蛋白质溶液处在某一pH值时,蛋白质解离成正、负离子的趋势和程度相等,即称为兼性离子或两性离子,净电荷为零,此时溶液的pH值称为该蛋白质的等电点。
蛋白质的一级结构:是指多肽链中氨基酸(残基)的排列的序列,若蛋白质分子中含有二硫键,一级结构也包括生成二硫键的半胱氨酸残基位置。
维持其稳定的化学键是-肽键。
蛋白质二级结构:是指多肽链中相邻氨基酸残基形成的局部肽链空间结构,是其主链原子的局部空间排布。
蛋白质二级结构形式:主要是周期性出现的有规则的α-螺旋、β-片层、β-转角和无规则卷曲等。
蛋白质的三级结构:是指整条多肽链中所有氨基酸残基,包括相距甚远的氨基酸残基主链和侧链所形成的全部分子结构。
因此有些在一级结构上相距甚远的氨基酸残基,经肽链折叠在空间结构上可以非常接近。
蛋白质的四级结构:是指各具独立三级结构多肽链再以各自特定形式接触排布后,结集所形成的蛋白质最高层次空间结构。
蛋白质的变性:在某些理化因素的作用下,蛋白质的空间结构受到破坏,从而导致其理化性质的改变和生物学活性的丧失,这种现象称为蛋白质的变性作用。
蛋白质变性的实质是空间结构的破坏。
蛋白质沉淀:蛋白质从溶液中聚集而析出的现象。
构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。
一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。
构象改变不会改变分子的光学活性。
结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。
构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。
构型的转变伴随着共价键的断裂和重新形成。
构形的改变往往使分子的光学活性发生变化。
生物活性肽:生物体内具有调节及保护作用的小分子肽。
模体:模体是具有特殊功能的超二级结构。
分子伴侣:分子伴侣是一类帮助新生多肽连正确折叠的蛋白质,参与蛋白质空间构想的正确形成。
蛋白质的变构效应:蛋白质变构效应指在某些代谢物或调节因子与蛋白质结合,其结构发生适应性改变的现象。
第一章:蛋白质化学蛋白质系数:由于蛋白质中氮的百分含量比较恒定,一般平均为16%,所以蛋白质的总质量除以含氮量总等于6.25,称之为蛋白质系数。
酰胺(肽键)平面:肽键具有双键性质,使得形成肽键的N、C原子以及它们相连的四个原子形成一个平面,这个平面就叫做肽键平面。
变性作用:天然蛋白质分子由于受到物理或化学因素的影响使次级键断裂,引起天然构象的改变,导致其生物活性的丧失及一些理化性质的改变,但未引起肽键的断裂,这种现象称为蛋白质的变性作用。
两性解离:蛋白质和氨基酸一样,既能和酸作用,也能和碱作用。
这种既能在酸环境下解离,又能在碱环境下解离的现象就称为两性解离。
等电点:当溶液在某pH值时,使蛋白质所带正电荷与负电荷恰好相等,即总静电荷为零,这是溶液的pH值称为该蛋白质的等电点(pI)。
盐析:向蛋白质溶液中加入大量的中性盐时,可使蛋白质脱去水化层而聚集沉淀,这种现象称为盐析。
沉降:在强离心场中,大分子化合物向离心力方向移动的现象。
透析:利用胶体对半透膜的选择透性,可将蛋白质溶液内低分子量的杂质与蛋白质分离开,因而得到较纯净的蛋白质。
这种以半透膜提纯蛋白质的方法称透析法。
一级结构:蛋白质分子中氨基酸的排列顺序,包括二硫键的位置。
二级结构:蛋白质多肽链骨架的折叠和盘绕方式。
天然蛋白质的二级结构主要有四种基本类型:α–螺旋、β–折叠、β–转角和无规则卷曲。
超二级结构:蛋白质中相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的、在空间上能辨认的二级结构组合体。
超二级结构在结构的组织层次上高于二级结构,可充当三级结构的构件,但没有形成完整的结构域。
已知的超二级结构有三种基本组合形式:αα、βχβ、βββ。
结构域:多肽链在二级结构或超二级结构的基础上形成三级结构的局部折叠区,它是相对独立的紧密球状实体,称为结构域。
三级结构:多肽链在二级结构、超二级结构乃至结构域的基础上进一步折叠、卷曲形成借各种次级键维持的复杂的球状分子构象,称为三级结构。
第一篇蛋白质的结构与功能(第一~四章小结)第一章氨基酸氨基酸是一类同时含有氨基和羧基的有机小分子。
组成多肽和蛋白质的氨基酸除Gly外,都属于L型的α- 氨基酸(Pro为亚氨基酸)。
氨基酸不仅可以作为寡肽、多肽和蛋白质的组成单位或生物活性物质的前体,也可以作为神经递质或糖异生的前体,还能氧化分解产生ATP。
目前已发现蛋白质氨基酸有22种,其中20种最为常见,而硒半胱氨酸和吡咯赖氨酸比较罕见。
非蛋白质氨基酸通常以游离的形式存在,作为代谢的中间物和某些物质的前体,具有特殊的生理功能。
22种标准氨基酸可使用三字母或单字母缩写来表示。
某些标准氨基酸在细胞内会经历一些特殊的修饰成为非标准蛋白质氨基酸。
氨基酸有多种不同的分类方法:根据R基团的化学结构和在pH7时的带电状况,可分为脂肪族氨基酸、不带电荷的极性氨基酸、芳香族氨基酸、带正电荷的极性氨基酸和带负电荷的极性氨基酸;根据R基团对水分子的亲和性,可分为亲水氨基酸和疏水氨基酸;根据对动物的营养价值,可分为必需氨基酸和非必需氨基酸。
氨基酸的性质由其结构决定。
其共性有:缩合反应、手性(Gly除外)、两性解离、具有等电点,以及氨基酸氨基和羧基参与的化学反应,包括与亚硝酸的反应、与甲醛的反应、Sanger反应、与异硫氰酸苯酯的反应和与茚三酮的反应等。
与亚硝酸的反应可用于Van Slyke定氮,与甲醛的反应可用于甲醛滴定,Sanger反应和与异硫氰酸苯酯的反应可用来测定N-端氨基酸。
只有脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余生成蓝紫色物质,利用此反应可对氨基酸进行定性或定量分析。
多数氨基酸的侧链可能发生特殊的反应,可以此鉴定氨基酸。
不同氨基酸在物理、化学性质上的差异可用来分离氨基酸,其中最常见的方法是电泳和层析。
第二章蛋白质的结构肽是氨基酸之间以肽键相连的聚合物,它包括寡肽、多肽和蛋白质。
氨基酸是构成肽的基本单位。
线形肽链都含有N端和C端,书写一条肽链的序列总是从N端到C端。
第一章蛋白质
(一)氨基酸
1.组成蛋白质的氨基酸都为α-氨基酸(除Pro),都为L型(除Gly)
2.非极性R基氨基酸丙氨酸 Ala 缬氨酸 Val 亮氨酸 Leu 异亮氨酸 Ile 脯氨酸Pro(亚氨基)苯丙氨酸Phe(苯环)色氨酸 Trp(苯环) 甲硫氨酸 Met(含硫)
不带电荷的极性R基氨基酸甘氨酸 Gly 丝氨酸Ser(羟基)苏氨酸Thr(羟基)半胱氨酸 Cys(巯基)酪氨酸 Tyr(苯环、羟基) 天冬酰胺Asn 谷氨酰胺 Gln
▲除Gly以外,都能形成氢键
碱性氨基酸赖氨酸Lys 精氨酸 Arg(胍基)组氨酸His(咪唑基)
酸性氨基酸天冬氨酸 Asp 谷氨酸 Glu
3.必需氨基酸
Ile Met Val Leu Trp Phe Thr Lys(“一家写三两本书来”)
4.稀有的蛋白质氨基酸通常是常见氨基酸的衍生物,如4-羟脯氨酸、5-羟赖氨酸;非蛋白质氨基酸,如瓜氨酸、鸟氨酸
5.两性性质和等电点使氨基酸净电荷为零时溶液的pH值,用 pI 表示
中性氨基酸pI = 1/2 ( pK1' + pK2' )
酸性氨基酸pI = 1/2 ( pK1' + pK R' )
碱性氨基酸pI = 1/2 ( pK2' + pK R' )
pH > pI 带负电,移向正极;pH < pI 带正电,移向负极; pH = pI 不带电,不移动。
6.氨基酸的重要化学反应
茚三酮反应在酸性条件下,氨基酸与茚三酮共热,生成紫色化合物
Sanger反应在弱碱溶液中,氨基酸的α-氨基与2,4-二硝基氟苯(DNFB) 反应,生成黄色的二硝基苯氨基酸(DNP-AA)
Edman反应可用层析法加以分离鉴定
(二)肽
1.肽:一个氨基酸的羧基与另一个氨基酸的氨基脱去一分子水而形成酰胺键,这个键称为肽键(peptide bond),产生的化合物叫做肽(peptide)。
2.肽的结构:无分枝的长链;具有方向性;两个末端分别为N端(氨基端)和C端(羧基端);由“N-C-C”单元的周期性连接,构成多肽链的主链
3.简述谷胱甘肽的结构特点和功能
结构(GSH):Glu-Cys-Gly
功能:参与氧化还原反应;保护巯基酶类的活性;防止H2O2等在生物体内的积累
(三)蛋白质的分子结构
1.蛋白质的一级结构:蛋白质的一级结构(primary structure)是指蛋白质肽链中氨基酸的排列顺序。
2.蛋白质的二级结构指多肽链本身通过氢键沿一定方向盘绕、折叠而形成的构象。
氢键是维持二级结构的主要作用力。
3.天然蛋白质主要二级结构单元包括:a-螺旋 (a-helix) b-折叠 (b-pleated sheet) b-转角 (b-turn) 无规卷曲 (nonregular coil)
4.α-螺旋(α-helix)α-螺旋蛋白质中最常见、含量最丰富的二级结构
◆肽链中的酰胺平面绕Cα相继旋转一定角度形成α-螺旋,呈右手螺旋。
酰胺平面平行于
中心轴;
◆螺旋体中所有氨基酸残基侧链都伸向外侧;
◆每个氨基酸残基的N-H都与前面第四个残基C=O形成氢键;
每隔3.6个氨基酸残基,螺旋上升一圈;每圈间距0.54nm。
5.β-折叠是由两条或多条伸展的多肽链靠氢键联结而成的锯齿状片状结构。
6.蛋白质的超二级结构:指多肽链上若干相邻的二级结构单位(即单个a-螺旋或b-转角)彼此作用,组合成有规则的结构组合体。
7.结构域:指在二级结构或超二级结构的基础上,多肽链进一步折叠成几个相对独立,近似球形的组装体,可作为三级结构的局部折叠区。
8.蛋白质的三级结构:指的是多肽链在二级结构、超二级结构和结构域的基础上,主链构象和侧链构象相互作用,进一步折叠卷曲形成特定的构象。
维持蛋白质三级结构的作用力主要是一些非共价键,包括氢键、范德华力、疏水相互作用和盐键(离子键),还有二硫键。
9.蛋白质的四级结构:由两条或两条以上具有三级结构的多肽链聚合而成、有特定三维结构的蛋白质构象。
每条多肽链又称为亚基。
亚基一般是一条多肽链, 有时是二硫键连接的几条多肽链。
由两个或多个亚基构成的蛋白质, 称为寡聚蛋白质,寡聚蛋白质的亚基可以相同,也可以不相同,单亚基蛋白质无四级结构。
与三级结构基本相同,有时还涉及二硫键。
(四)蛋白质功能
1.分子病:由于基因突变导致蛋白质一级结构发生变异,使蛋白质的生物功能减退或丧失,甚至造成生理功能的变化而引起的疾病。
2.蛋白质结构与对应物质
一级结构牛胰岛素细胞色素C
结构域己糖激酶
三级结构肌红蛋白
四级结构血红蛋白(寡聚酶)
(五)蛋白质理化性质
1.蛋白质:蛋白质的分子量1万~100万之间,其分子直径1~100nm之间,在胶体颗粒的范围。
测定方法:超速离心法、凝胶过滤法、聚丙烯酰胺电泳等。
由于蛋白质中的Tyr、Trp 和Phe 残基在紫外区有光吸收,所以蛋白质在 280nm 的光波长处有最大光吸
2.蛋白质的等电点(pI):当蛋白质在一定的pH的溶液中,所带的正负电荷相等,它在电场中既不向阳极也不向阴极移动,此时溶液的pH值叫做该蛋白质的等电点 ( pI ) 。
3. 蛋白质变性蛋白质受到某些理化因素的影响,其空间结构发生改变,蛋白质的理化性质和生物学功能随之改变或丧失,但未导致蛋白质一级结构的改变,这种现象叫变性作用(denaturation)。
4.蛋白质变性的因素物理因素:加热、紫外线、超声波、高压等;化学因素:强酸、强碱、脲、盐酸胍、去垢剂、重金属盐等。
5.蛋白质变性后的表现:生物活性丧失(酶);溶解度降低,粘度增大,扩散系数变小(蛋清);基团位置改变;对蛋白酶敏感性增大。
6. 蛋白质复性蛋白质的变性作用若不过于剧烈,则是一种可逆过程。
高级结构松散了的变性蛋白质通常在除去变性因素后,可缓慢地重新自发折叠形成原来的构象,恢复原有的理化性质和生物活性,这种现象称为复性(renaturation)。
7.能使蛋白质沉淀的试剂高浓度中性盐(NH4)2SO4、Na2SO4、NaCl(中和蛋白质的电荷),这种加入盐使蛋白质沉淀析出的现象称为盐析,用于蛋白质分离制备。
低浓度的中性盐可以增加蛋白质的溶解度,这种现象成为盐溶。
有机溶剂丙酮、乙醇 (破坏蛋白质水膜) 。
重金属盐 Hg2+、Ag+、Pb+(与蛋白质中带负电基团形成不易溶解的盐)。
生物碱试剂:苦味酸、三氯乙酸、目酸、钨酸等(与蛋白质中带正电荷的基团生成不溶性盐)。
等电点法
8.颜色反应
双缩脲反应NaOH溶液+ 少量稀CuSO4溶液,紫红至蓝紫,所有蛋白质
茚三酮反应茚三酮,蓝色,a-氨基
Folin-酚反应碱性CuSO4+ 磷钼酸-磷钨酸,蓝色,Tyr。