阀杆的填料密封讲解共22页
- 格式:ppt
- 大小:2.28 MB
- 文档页数:22
阀门填料的密封原理和检修过程控制1 概述在线运行的阀门所出现的故障或缺陷中,因填料失效而引起回路内介质外漏的事件占有很高的比例。
探讨填料的密封原理和选择严格的检修控制,使介质外漏的几率下降到最低限度,对于在线运行中无法隔离检修的设备有重要意义。
2 填料的密封机理填料(PACKING)常用于阀门有转(滑)动部位的外密封,防止流动介质从相对运动部位向外界泄漏。
在核电站核阀所用的填料基本上是膨胀石墨填料和石墨(或石棉)编织填料。
膨胀石墨填料的润滑性和膨胀性好,但缺点是易碎,一般安装在填料函的中间部位。
石墨编织填料牢固性好,抗挤压,一般安装在填料函的上/下层面。
其作用是固定膨胀石墨填料,保护其完整无损和防止磨下的石墨粉掉入回路。
图1是填料安装的结构图,其右侧曲线给出了填料函内各层填料对填料压盖螺母施加的压紧力的承力分布情况。
很明显6层填料只有最上1~3层在真正起着抵制介质外漏的作用。
密封环承接填料压紧力传给第1道填料依次传给第2/3…道,第1道填料受力后产生轴向变形而向阀杆和填料函内壁上挤,直至达到变形极限,消耗了一部分填料压紧力。
剩下的力传给第2道填料,同时由于填料有效长度缩短过程产生的填料内壁面与阀杆/填料外表面与填料函的内壁的摩擦力,也消耗一部分填料压紧力。
按此机理,越往下层填料的受力越少,变形越小,也就是密封性越差。
然而在回路中带有工作压力的介质顺着填料函内壁挤压使其变形,很容易地就可以突破下端几道填料的密封防线。
因此真正能阻止带压介质的只有最上面二三道填料,而这几道的密封效果取决于填料的选材/结构尺寸/阀杆和函内壁的光洁度和足够的填料压紧力。
3 填料的预压紧力为了延长填料的使用寿命,提高阀门安全性,核电站核阀使用的是经过一定预紧压力压过的填料。
经过预压后,填料密度增大,抵御受压变形的能力增加了,内部保留的预紧力能补偿机组运行其间填料被磨损而失去的填料压力。
填料的预压过程一般由生产厂家在安装前完成,在仓库放置久了,填料侧面就会出现表明预压力松弛的纹路,核阀填料闲置1年以上都要求重新预压紧。
阀门的密封讲解阀门密封是指在阀门关闭位置时,能够完全阻止介质通过阀门内部的设备或构造物。
阀门的密封性能对于阀门的使用寿命、安全性和操作可靠性都具有重要的影响。
下面将从密封原理、密封结构和密封材料三个方面进行阀门密封的讲解。
一、密封原理阀门的密封原理可以分为两种:压力密封和摩擦密封。
1. 压力密封压力密封是阀门通过外力将阀瓣或密封面与阀座上的密封面紧密贴合,利用阀座、阀瓣及其密封面之间的压力差将密封面互相挤压,以达到密封的目的。
常见的压力密封结构有平面密封、凸面密封、凹面密封等。
2. 摩擦密封摩擦密封是阀门通过摩擦力将阀瓣或密封面与阀座上的密封面紧密贴合,并利用两者之间的摩擦力阻止介质泄漏。
常见的摩擦密封结构有柱面密封、圆锥密封、球体密封等。
二、密封结构阀门的密封结构是指阀门内部的构造和零件布置,决定了阀门的密封性。
常见的密封结构有以下几种:1. 弹性密封弹性密封是利用弹性材料的变形与回弹能力,实现阀门的密封。
常见的弹性密封结构有橡胶圈密封、橡胶衬垫密封等。
2. 堵塞密封堵塞密封是通过在阀门内部设置堵塞物,使其与阀座或阀座上的密封面紧密连接,实现阀门的密封。
常见的堵塞密封结构有卡套密封、软塑料密封等。
3. 升降密封升降密封是通过阀瓣升降来达到密封效果。
阀瓣上设置的密封面通过升降与阀座上的密封面紧密贴合,实现阀门的密封。
常见的升降密封结构有升降堰式密封、滚动型密封等。
三、密封材料阀门密封材料的选用直接影响着阀门的密封性能和寿命。
常见的密封材料有以下几种:1. 金属材料金属材料常用于高温、高压和腐蚀介质的阀门密封。
常见的金属密封材料有不锈钢、铜、铝等。
2. 橡胶材料橡胶材料常用于一般低温、低压的阀门密封。
常见的橡胶密封材料有丁腈橡胶、氯丁橡胶、天然橡胶等。
3. 聚合物材料聚合物材料常用于耐腐蚀、耐高温和耐磨损的阀门密封。
常见的聚合物密封材料有聚四氟乙烯、聚酰亚胺、聚醚醚酮等。
以上就是关于阀门密封的讲解。
填料密封原理填料密封是一种常见的静态密封方式,它通过填料在密封面上施加一定的压力,以实现密封目的。
填料密封广泛应用于阀门、泵、压力容器等设备中,具有结构简单、密封可靠、成本低廉等优点。
下面将从填料密封的原理、填料的选择和填料密封的应用等方面进行详细介绍。
填料密封的原理。
填料密封的原理是利用填料在填料腔中受到外部压力作用,填料受到压缩后充满填料腔,填料与被密封件之间产生一定的摩擦力,从而实现密封。
填料的选择和填装方式对密封效果起着至关重要的作用。
填料的选择应根据介质的性质、压力温度等条件进行合理选择,填装方式应保证填料的均匀密实,填料腔内无气泡和空隙。
填料的选择。
填料的选择是影响填料密封效果的重要因素。
常见的填料材料有柔性石墨、聚四氟乙烯、非金属填料等。
柔性石墨填料具有耐高温、耐腐蚀等特点,适用于高温高压介质的密封。
聚四氟乙烯填料具有优异的耐腐蚀性能,适用于强腐蚀性介质的密封。
非金属填料适用于一般介质的密封,选择填料时应根据介质性质和工作条件进行合理选择。
填料密封的应用。
填料密封广泛应用于阀门、泵、压力容器等设备中。
在阀门中,填料密封可实现阀瓣与阀座之间的密封,保证阀门的正常运行。
在泵中,填料密封可实现泵的吸入和排出口的密封,保证泵的正常工作。
在压力容器中,填料密封可实现容器的进出口的密封,保证容器的安全运行。
填料密封具有结构简单、密封可靠、成本低廉等优点,因此得到了广泛的应用。
填料密封的维护。
填料密封在使用过程中需要定期进行维护,包括填料的更换、填料腔的清洁等。
填料在长时间的工作过程中会因受到介质的冲刷而产生磨损,需要定期更换填料以保证密封效果。
同时,填料腔内会积聚杂质,需要定期清洁以保证填料的工作效果。
总结。
填料密封作为一种常见的静态密封方式,在工业生产中得到了广泛的应用。
通过合理选择填料、填装方式和定期维护,可以保证填料密封的密封效果,保证设备的正常运行。
填料密封具有结构简单、密封可靠、成本低廉等优点,是一种值得推广和应用的密封方式。
填料密封的正确装填方法填料密封的正确装填方法填料密封(盘根)关键用作动密封,普遍用作离心泵、压缩机、真空泵、搅拌机和船舶螺旋桨的转轴密封,往复式压缩机、制冷机的往复工作轴封,以及各种阀门阀杆的旋动密封等。
为了适应上述设备的工作条件,填料密封必需具备下列条件:密封填料装填前提1.润滑性能很好,抗摩擦,摩擦因数很小。
2.存在一定的塑性,在压紧力效果下可以出现一定的径向力并紧密与轴触及。
3.轴存在少许偏心的时候,填料应该有充足的浮动弹性。
4.生产简单,填装方便。
5.有充足的化学稳固性,不会污染介质,填料不会被介质泡胀,填料中的侵渍剂不被介质溶解,填料自身不腐蚀密封面。
密封填料装填工序1、清洁填料腔,检查轴外表是否有划痕和毛刺等现象,保证填料腔的清洁。
2、用百分表检查轴在密闭部位的径向跳动量,其公差应在允许的范围内。
3、填料腔内和轴外表应涂光滑密封剂。
4、对成卷包装的填料,运用时应先取一根与轴直径相同尺寸的木棒,将填料缠绕在上,再用刀切断,切口最好是45度斜面,对切断后的每一节填料,不应将它拉直和松散,而应取与填料同宽度的纸带把每节填料呈圆圈形包扎好,置于干净处待用。
5、装填时应一圈一圈装填,不得同时装填几圈。
办法是取一圈填料,将纸带撕去,涂以光滑剂,再用双手各持填料接口的一端,沿轴向拉开,使之呈螺旋形,再从接口处套入轴径,注意不得沿径向拉开,以免接口不齐。
6、取一只与填料腔同尺寸的木质两半轴套,合于轴上,将填料推入腔内的深部,并用压盖对木轴套施以一定的压力,使填料得到顶紧缩。
顶紧缩量约为5%~10%,最大到20%。
再将轴转动一周,取出木轴套。
7、以同样的办法装填第二圈,第三圈,但应留意:装填第二圈填料时,接口位置要错开180度,第三圈填料时应接口互相错开120度,四圈填料时错开90度,以防经过接口走漏。
低温球阀阀杆密封填料的性能试验与研究发布时间:2011-03-07 点击数:985球阀的填料密封结构(图1)通常由带凸台的阀杆、环形凸缘的阀体孔、填料、弹簧垫圈、螺母及顶压螺母等组成。
当旋紧螺母时,压缩弹簧垫圈.并带动阀杆向上移动。
在阀杆凸台与垫片及阀体孔环形凸缘的共同作用下,挤压上下填料。
此时填料压缩,轴向压缩量为δ。
温度下降时填料收缩,阀杆亦收缩。
当填料收缩超过填料回弹极限,填料与阀杆凸台和阀体孔端面将失去压紧力,端面密封失效。
如果填料收缩后仍在回弹范围,填料仍受压缩,但δ减小,压紧力也减小。
当单位压紧力仍大于1~2倍管线介质压力,介质就不会泄漏。
控制填料低温的单位压紧力,是低温密封的关键。
填料低温单位压紧力(由于填料与接触件已预压紧,可认为是应力)计算式为Δb1+Δb2=δ-btα′-b"tα"(1)N m=N n式中b--填料常温自由厚度,mmΔb1--填料低温条件变量,mmΔb2--阎杆低温条件变量,mmδ--常温装配时填料压缩量,mmα′--填料冷缩系数α"--阀杆冷缩系数t--温度下降量,℃b"--填料压缩后厚度,mmb"=b-δN m--填料收缩及弛张后低温时的轴向张力,MPaN n--阀杆低温时的轴向张力,MPaE m--填料低温压缩弹性系数E n--阀杆低温压缩弹性系数F m--填料低温截面积,mm2F n--阀杆低温截面积,mm2(2)因α"很小,故b"tα可忽略。
式(2)得当δ≥P~2P(介质压力)则可实现端面密封。
聚四氟乙烯E m=400~450MPa,柔性石墨E m=150~2O0MPa,2Cr13的E n=2.1×104MPa。
填料轴向压缩后产生径向弹性变形,由此产生的径向力阻挡了管线介质的泄漏压力。
管线介质泄漏压力从介质源头起.在阀杆轴向沿程一般呈抛物线或对数曲线减弱。
单一填料在阀杆上的轴向力,从压紧作用点起亦呈指数规律减小,其横向变形亦相应减小。