吸光光度法和分光光度计
- 格式:ppt
- 大小:1.26 MB
- 文档页数:60
荧光分光光度法与吸光光度法的异同
荧光分光光度法和吸光光度法都是基于物质对光的吸收或发射来进行分析的方法,但它们之间也存在一些区别。
1. 原理不同:吸光光度法是基于物质对光的选择性吸收来进行分析的方法,而荧光分光光度法是基于物质被激发后发出荧光的特性来进行分析的方法。
2. 光源不同:吸光光度法通常使用可见光或紫外光作为光源,而荧光分光光度法需要使用能够激发荧光的光源,通常是紫外线或短波长的可见光。
3. 灵敏度不同:荧光分光光度法的灵敏度通常比吸光光度法高,因为荧光的强度与物质的浓度成正比,而且荧光信号比吸光信号更容易检测。
4. 应用范围不同:吸光光度法适用于测定溶液中物质的浓度、纯度等,而荧光分光光度法更适用于分析低浓度、微量的物质,如生物样本中的蛋白质、核酸等。
5. 干扰因素不同:吸光光度法容易受到其他物质的干扰,因为其他物质也可能吸收光源的能量。
而荧光分光光度法的干扰相对较小,因为只有被激发的物质会发出荧光。
6. 仪器设备不同:荧光分光光度法需要特殊的荧光分光光度计,而吸光光度法则通常使用普通的分光光度计。
总之,荧光分光光度法和吸光光度法在原理、光源、灵敏度、应用范围、干扰因素和仪器设备等方面都存在一定的差异。
选择哪种方法取决于分析的具体需求和样品的特性。
紫外吸光度的检测方法
紫外吸光度(UV absorbance)是指物质对紫外光的吸收能力。
常用的紫外吸光度检测方法包括:
1. 分光光度法:使用分光光度计,将待测物溶液通过样品池,测量在特定波长下的吸光度。
这种方法可以同时测量多个波长的吸光度,可用于分析样品的成分和浓度等。
2. 过程分析法:通过不断测量待测物的吸光度变化,可以了解反应的进程和动力学。
常用的过程分析方法有动力学紫外吸收光谱(UV-vis动力学),用于研究快速反应和反应速率常数等。
3. 衍射光谱法:通过衍射光谱仪测量待测物在不同波长下的吸光度,可以确定样品的结构和光学参数。
4. 荧光光谱法:某些物质在紫外光照射下会发生光致荧光,可以通过测量荧光光谱来获得吸光度信息。
这种方法常用于分子结构和功能的研究。
上述方法需要根据具体的实验要求选择适当的波长范围和检测设备,以获得准确的吸光度结果。
吸光光度法和分光光度法
吸光光度法和分光光度法都是基于朗伯比尔定律的原理,用于测定溶液的吸光度以确定物质溶液的浓度。
吸光光度法是一种分析方法,基于物质对光的选择性吸收。
它包括紫外可见分光光度法和红外光谱法等不同的子类。
在紫外可见分光光度法中,所用的光谱区域为200~780nm,其中紫外分光光度法为200~400nm,可见分光光度法为400~780nm;红外光谱法的范围则为2.5~1000um。
吸光光度法的特点是入射光是纯度较高的单色光,这大大减少了偏离朗伯一比耳定律的情况,从而使标准曲线直线部分的范围更大,提高了分析结果的准确度。
分光光度法则是通过测定被测物质在特定波长处或一定波长范围内光的吸收度,对该物质进行定性和定量分析的方法。
它具有灵敏度高、操作简便、快速等优点,是生物化学实验中最常用的实验方法。
在实际操作中,分光光度计可以连续地照射不同波长的光到一定浓度的样品溶液上,从而得到与不同波长相对应的吸收强度。
总的来说,这两种方法都是通过测量溶液对特定波长光的吸收来进行分析的,但它们的应用范围和特点有所不同。
吸光光度分析法基于物质对光选择性吸收而建立起来的分析方法,称为吸光光度分析法。
本章重点讨论可见光区的吸光光度分析。
第一节吸光光度分析概述吸光光度分析法(absorption spectrophotometry),包括比色分析法、可见分光光度法、紫外分光光度法和红外分光光度法等。
与经典的化学分析方法相比,吸光光度法具有以下几个特点:1.灵敏度高吸光光度法主要用于测定试样中微量或痕量组分的含量。
测定物质浓度下限一般可达10—5~10—6 mol·L—1,若被测组分预先加以富集,灵敏度还可以提高。
2.准确度高比色法测定的相对误差为5%~10%,分光光度法测定的相对误差为2%~5%,完全可以满足微量组分测定的准确度要求。
若采用精密分光光度计测量,相对误差可减小至1%~2%。
3.仪器简便,测定速度快吸光光度法虽然需要用到专门仪器,但与其它仪器分析法相比,比色分析法和分光光度法的仪器设备结构均不复杂,操作简便。
近年来由于新的高灵敏度、高选择性的显色剂和掩蔽剂的不断出现,常常可以不经分离而直接进行比色或分光光度测定,使测定显得更为方便和快捷。
4.应用广泛吸光光度法能测定许多无机离子和有机化合物,既可测定微量组分的含量,也可用于一些物质的反应机理及化学平衡研究,如测定配合物的组成和配合物的平衡常数,弱酸、弱碱的离解常数等。
第二节吸光光度分析的基本原理一、溶液的颜色和对光的选择性吸收1.光的基本性质光是一种电磁波。
电磁波范围很大,波长从10—1 nm~103 m,可依次分为X–射线、紫外光区、可见光区、红外光区、微波及无线电波,见表8—1。
表8-1电磁波谱区域λ/ nmX –射线10-1~10远紫外光区10~200近紫外光区200~400可见光区400~760近红外光区760~5×104远红外光区5×104~1×106微波1×106~1×109无线电波1×109~1×1012注:1 m = 109 nm人的眼睛能感觉到的光称为可见光(visible light)。
第⼗⼀章_吸光光度法[1]第⼗⼀章吸光光度法第⼀节吸光光度法概述吸光光度法是光学分析法的⼀种,也称为吸收光谱法。
它是基于物质对光的选择性吸收⽽建⽴起来的分析⽅法。
吸光光度法包括⽐⾊法、可见光分光光度法、紫外分光光度法、红外光谱法和原⼦吸收分光光度法。
吸光光度法根据分⼦的特征吸收光谱可以进⾏定性分析, 根据分⼦的吸光程度⼤⼩可以进⾏定量分析。
吸光光度法的特点如下:(1)灵敏者度⾼可⽤于测定微量组分的含量,测定下限可达10-5~10-6mol·L-1。
若被测组分在测定前先进⾏分离和富集,实验的灵敏度还可以提⾼。
(2)准确度较⾼⽐⾊法的相对误差为5%~20%,分光光度法的相对误差为2%~5%。
吸光光度法的准确度虽然不如滴定分析法⾼,但对微量组分的测定,已完全能满⾜要求。
(3)简便快速吸光光度法所使⽤的仪器设备简单,价格便宜,⼀般实验室都能具备。
仪器的操作简单,易于掌握。
(4)应⽤范围⼴⼏乎所有的⽆机离⼦和有机化合物都可直接或间接的⽤分光光度法进⾏测定。
⽬前分光光度法在实验室中是⼀种常规的分析⽅法。
本章主要介绍其中的⽬视⽐⾊法和可见光分光光度法。
第⼆节基本原理⼀、光的本质与溶液的颜⾊光是⼀种电磁波,通常⽤频率或在真空中的波长来描述。
不同波长(或频率)的光,能量不同。
波长短的光能量⼤,波长较长的光能量⼩。
如按波长⼤⼩顺序排列即得表11-1所⽰的电磁波谱。
表11-1 电磁波谱区域波长范围跃迁类型光谱类型x射线10-3~10(nm)内层电⼦跃迁x射线吸收、发射、衍射,荧光光谱、光电⼦能谱远紫外10~200(nm)价电⼦和⾮键电⼦跃迁远紫外吸收光谱,光电⼦能谱紫外200~400(nm)紫外-可见吸收和发射光谱可见光400~750(nm)近红外0.75~2.5(µm)分⼦振动近红外吸收光谱红外 2.5~1000(µm)分⼦振动红外吸收光谱微波0.1~100(cm)分⼦转动、电⼦⾃旋微波光谱,电⼦顺磁共振⼈的⾁眼可按颜⾊分辨在可见光区域内不同波长的光,在可见光区各种有⾊光与波长范围如表11-2所⽰。
分光光度计的原理与使用一、目的要求:1、学会紫外-可见分光光度计的原理和使用方法2、学会测量溶液的浓度.二、实验原理:1、分光光度计原理:分光光度计是目前化验室中使用比较广泛的一种分析仪器,其测定原理是利用物质对光的选择性吸收特性,以较纯的单色光作为入射光,测定物质对光的吸收,从而确定溶液中物质的含量.其特点是灵敏度高;准确度高;测量范围广;在一定条件下,可同时测定水样中两种或两种以上的物质组分含量等.分光光度计按其波长范围可分为可见分光光度计〔工作范围360~800nm〕、紫外-可见分光光度计〔工作范围200~1000nm〕和红外分光光度计〔工作范围760~400000nm〕等.2、在日常使用与维护当中应注意以下几点:第一,在使用仪器前,必须仔细阅读其使用说明书.第二,若大幅度改变测试波长,需稍等片刻,等灯热平衡后,重新调零与满度后,再测量.第三,指针式仪器在未接通电源时,电表的指针必须位于零刻度上.若不是这种情况,需进行机械调零.第四,操作人员不应轻易触动灯泡与反光镜灯,以免影响光效率.第五,放大器灵敏度换挡后,必须重新调零.第六,比色皿使用时要注意其方向性,并应配套使用,以延长其使用寿命.新的比色皿使用前必须进行配对选择,测定其相对厚度,互相偏差不得超过2%透光度,否则影响测定结果.使用完毕后,请立即用蒸馏水冲洗干净〔测定有色溶液后,应先用相应的溶剂或〔1+3〕的硝酸进行浸泡,浸泡时间不宜过长,再用蒸馏水冲洗干净〕,并用干净柔软的纱布将水迹擦去,以防止表面光洁度被破坏,影响比色皿的透光率.第七,比色皿架与比色皿在使用中的正确到位问题.首先,应保证比色皿不倾斜.因为稍许倾斜,就会使参比样品与待测样品的吸收光径长度不一致,还有可能使入射光不能全部通过样品池,导致测试准确度不符合要求.其次,应保证每次测试时,比色皿架推拉到位.若不到位,将影响到测试值的重复性或准确度.第八,干燥剂的使用问题.干燥剂失效将会导致以下问题:①数显不稳,无法调零或满度.②反射镜发霉或沾污,影响光效率,杂散光增加.因此分光光度计应放置在远离水池等湿度大的地方,并且干燥剂应定期更换或烘烤.第九,分光光度计的放置位置应符合以下条件:避免阳光直射;避免强电场;避免与较大功率的电器设备共电;避开腐蚀性气体等.3、吸光光度法测定溶液浓度原理基于物质对不同波长的光波具有选择性吸收的能力而建立起来的分析方法. 〔1〕光线:光线的波长: 200nm-400nm 紫外线,400-750nm可见光, >750nm 红外线光具有波粒二相性,波长不同,其能量不同.〔2〕物质的吸收光谱与颜色:A.物质的原子吸收光谱和原子发射光谱:原子的最外层电子可以选择性吸收特征波长的电磁波成为激发态而产生的光谱称为原子吸收光谱.激发态原子恢复到基态,则释放出特征波长的光子,形成原子发射光谱.不同的溶液其光谱不同,即不同溶液对不同波长的光其吸收能力不同,对某一特定波长的光存在吸收峰. B.可见光由赤橙黄绿青兰紫等能量不同的光线组成,当可见光穿过某一溶液时,由于特定波长的光被吸收而使溶液呈现相应的颜色.〔如CuSO4由于吸收了可见光中的黄光<600nm>而成蓝色〕不同颜色的溶液对不同波长的光其吸收能力不同. 〔3〕光吸收的基本定律〔Lambert-Beer 定律〕:一束平行单色光〔Io〕通过有色的透明溶液时,一部分的光可以透过溶液〔It〕,另一部分被溶液吸收〔Ia〕,还有一部分被器皿表面反射〔Ir〕,则:Io=It+Ia+Ir .那么,该溶液透光率为: T = It / Io .1. Lambert 定律:设有一束平行单色光,通过液层厚度为b 的均匀透明溶液,则溶液对光的吸收能力:A=Ig<Io/It>=Ig<1/T>=k2bk2 为吸光系数,为常数.与入射光波长、溶液性质、浓度和温度有关;A 为吸光度〔又称光密度O.D 或消光度E〕,当入射光波长、吸光溶液的浓度和温度一定时,A 与b 成正比.2. Beer 定律:设有一束平行单色光,通过浓度为c 的均匀透明溶液,则溶液对光的吸收能力:A=lg<Io/It>=Ig<1/T>=k4ck2 为常数.由Beer 定律可知:当入射光波长、吸光溶液的厚度和温度一定时,A 与c 成正比.3. Lambert-Beer 定律:综合1.2.得: A=Kbc ,即:当入射光波长、吸光溶液的性质和温度一定时,A 与b、c 成正比.〔4〕吸光光度法的基本原理:1、不同物质,由于其分子结构和原子组成不同,故对光的吸收光谱不同〔如:CuSO4〕,在测定不同颜色的物质浓度时要用最大吸收的波长的入射光,这样测量的灵敏度最高.2、同一种物质,若浓度不同,则对同一波长的入射光的吸收能力〔吸光度〕也不同,且成正比关系.3、应此,利用特定波长的单色光〔通常用最大吸收波长的入射光〕照射不同浓度的某一溶液时,所得的吸光度大小应与溶液浓度呈线性关系,故可利用该线性关系通过计算或查标准曲线来求得未知溶液的浓度.〔5〕吸光光度法特点:1.灵敏度高:mg%级、甚至ug%级.2.准确度高:误差2-5%3.操作简便、快速,仪器设备不复杂,价格低廉,故应用广泛.三、实验器材:UV2000分光光度计四、实验步骤〔一〕 UV2000 型分光光度计的使用与注意事项1、插上插头,接通电源,打开暗箱盖,预热20min.* 注意:分光光度计在接通电源而不用时,必须打开暗箱盖,以免光电管老化.2、将准备好的试剂倒入比色杯中,用吸水纸擦去比色杯外侧水珠,并依次放入比色杯架中.* 注意:手拿比色杯毛面,试剂倒入杯中满2/3 即可,不得将比色杯放在仪器上.3、调节所需波长,选择功能至"T".4、调"0":放入挡光板,按调"0"键调节.5、调"100%":取出挡光板,盖上暗箱盖,调"100%",让光线通过"空白管".6、重复调"0"和调"100%"数次.7、将选择键由"T"调至"A",此时读数应由"100"至"0",若不为"0",可用"0%"键调节.8、拉动拉杆,分别读取"A 标"和"A 样".9、取出比色杯,弃去溶液,洗净晾干,备用.〔二〕计算1.利用标准管计算测定物含量:A 样=K 样b 样c 样A 标=K 标b 标c 标因为入射光的波长,溶液性质和温度以与比色杯的厚度都一样,即:K 样=K 标 b 样=b 标所以:A 样/ A 标= c 样/ c 标得:c 样= c 标×A 样/ A 标2.利用标准曲线进行计算:3.偏离Lambert-Beer 定律的原因1〕由于非但色光引起的偏离.2〕由于溶液本身原因引起的偏离:①由于介质不均匀引起的偏离②由于溶液中化学反应引起的偏离浓度的测定〔三〕CuSO4比色波长=650nm按上述操作步骤测定硫酸铜溶液A 样和A 标,按下式计算样品浓度:C 样 = C 标 * A 样 / A 标五、结果与思考1、如果用标准曲线法测定硫酸铜溶液浓度,该如何设计实验?2、分光光度计的维护要注意什么?3、比较各种分光光度计的使用范围.。
简述原子吸收分光光度法与可见分光光度法的异同点一、引言原子吸收分光光度法和可见分光光度法都是常见的分析化学方法,在实际应用中有着广泛的应用。
两种方法均是利用物质对电磁波的吸收特性进行分析,但在具体原理、适用范围、操作步骤等方面存在差异。
本文将从原理、仪器设备、样品制备、操作步骤等多个方面对两种方法进行详细比较和总结。
二、原理1. 原子吸收分光光度法原子吸收分光光度法又称为火焰原子吸收光谱法,是一种利用物质对特定波长的电磁辐射的吸收特性进行定量分析的方法。
该方法基于物质对电磁波的能量吸收,当物质受到特定波长的电磁辐射时,能量被物质吸收并转化为激发态,然后由于自发辐射或非辐射跃迁而返回基态并释放出能量。
根据不同元素在不同能级间跃迁时所需要的激发能量大小可以确定其特定波长下的吸收强度,从而定量分析样品中某种元素的含量。
2. 可见分光光度法可见分光光度法是一种利用物质对可见光波长的电磁辐射的吸收特性进行定量分析的方法。
该方法基于比尔-朗伯定律,即物质对电磁波的吸收与其浓度成正比,而与路径长度无关。
当物质受到可见光波长的电磁辐射时,能量被物质吸收并转化为激发态,然后由于自发辐射或非辐射跃迁而返回基态并释放出能量。
根据不同物质在不同波长下的吸收强度大小可以确定其浓度大小,从而定量分析样品中某种化合物或离子的含量。
三、仪器设备1. 原子吸收分光光度法原子吸收分光光度法需要使用火焰原子吸收仪器,主要包括火焰喷嘴、气体控制系统、灯源和检测系统等部分。
其中火焰喷嘴用于将样品溶液喷入氧化性火焰中,气体控制系统用于调节火焰温度和氧化性程度,灯源用于提供特定波长的电磁辐射,检测系统用于测量样品对电磁辐射的吸收强度。
2. 可见分光光度法可见分光光度法需要使用分光光度计,主要包括光源、单色器、样品池和检测器等部分。
其中光源用于提供可见光波长的电磁辐射,单色器用于将可见光波长分离出特定波长的电磁辐射,样品池用于容纳待测样品,检测器用于测量样品对电磁辐射的吸收强度。