吸光光度法和分光光度计
- 格式:ppt
- 大小:1.26 MB
- 文档页数:60
荧光分光光度法与吸光光度法的异同
荧光分光光度法和吸光光度法都是基于物质对光的吸收或发射来进行分析的方法,但它们之间也存在一些区别。
1. 原理不同:吸光光度法是基于物质对光的选择性吸收来进行分析的方法,而荧光分光光度法是基于物质被激发后发出荧光的特性来进行分析的方法。
2. 光源不同:吸光光度法通常使用可见光或紫外光作为光源,而荧光分光光度法需要使用能够激发荧光的光源,通常是紫外线或短波长的可见光。
3. 灵敏度不同:荧光分光光度法的灵敏度通常比吸光光度法高,因为荧光的强度与物质的浓度成正比,而且荧光信号比吸光信号更容易检测。
4. 应用范围不同:吸光光度法适用于测定溶液中物质的浓度、纯度等,而荧光分光光度法更适用于分析低浓度、微量的物质,如生物样本中的蛋白质、核酸等。
5. 干扰因素不同:吸光光度法容易受到其他物质的干扰,因为其他物质也可能吸收光源的能量。
而荧光分光光度法的干扰相对较小,因为只有被激发的物质会发出荧光。
6. 仪器设备不同:荧光分光光度法需要特殊的荧光分光光度计,而吸光光度法则通常使用普通的分光光度计。
总之,荧光分光光度法和吸光光度法在原理、光源、灵敏度、应用范围、干扰因素和仪器设备等方面都存在一定的差异。
选择哪种方法取决于分析的具体需求和样品的特性。
紫外吸光度的检测方法
紫外吸光度(UV absorbance)是指物质对紫外光的吸收能力。
常用的紫外吸光度检测方法包括:
1. 分光光度法:使用分光光度计,将待测物溶液通过样品池,测量在特定波长下的吸光度。
这种方法可以同时测量多个波长的吸光度,可用于分析样品的成分和浓度等。
2. 过程分析法:通过不断测量待测物的吸光度变化,可以了解反应的进程和动力学。
常用的过程分析方法有动力学紫外吸收光谱(UV-vis动力学),用于研究快速反应和反应速率常数等。
3. 衍射光谱法:通过衍射光谱仪测量待测物在不同波长下的吸光度,可以确定样品的结构和光学参数。
4. 荧光光谱法:某些物质在紫外光照射下会发生光致荧光,可以通过测量荧光光谱来获得吸光度信息。
这种方法常用于分子结构和功能的研究。
上述方法需要根据具体的实验要求选择适当的波长范围和检测设备,以获得准确的吸光度结果。
吸光光度法和分光光度法
吸光光度法和分光光度法都是基于朗伯比尔定律的原理,用于测定溶液的吸光度以确定物质溶液的浓度。
吸光光度法是一种分析方法,基于物质对光的选择性吸收。
它包括紫外可见分光光度法和红外光谱法等不同的子类。
在紫外可见分光光度法中,所用的光谱区域为200~780nm,其中紫外分光光度法为200~400nm,可见分光光度法为400~780nm;红外光谱法的范围则为2.5~1000um。
吸光光度法的特点是入射光是纯度较高的单色光,这大大减少了偏离朗伯一比耳定律的情况,从而使标准曲线直线部分的范围更大,提高了分析结果的准确度。
分光光度法则是通过测定被测物质在特定波长处或一定波长范围内光的吸收度,对该物质进行定性和定量分析的方法。
它具有灵敏度高、操作简便、快速等优点,是生物化学实验中最常用的实验方法。
在实际操作中,分光光度计可以连续地照射不同波长的光到一定浓度的样品溶液上,从而得到与不同波长相对应的吸收强度。
总的来说,这两种方法都是通过测量溶液对特定波长光的吸收来进行分析的,但它们的应用范围和特点有所不同。
吸光光度分析法基于物质对光选择性吸收而建立起来的分析方法,称为吸光光度分析法。
本章重点讨论可见光区的吸光光度分析。
第一节吸光光度分析概述吸光光度分析法(absorption spectrophotometry),包括比色分析法、可见分光光度法、紫外分光光度法和红外分光光度法等。
与经典的化学分析方法相比,吸光光度法具有以下几个特点:1.灵敏度高吸光光度法主要用于测定试样中微量或痕量组分的含量。
测定物质浓度下限一般可达10—5~10—6 mol·L—1,若被测组分预先加以富集,灵敏度还可以提高。
2.准确度高比色法测定的相对误差为5%~10%,分光光度法测定的相对误差为2%~5%,完全可以满足微量组分测定的准确度要求。
若采用精密分光光度计测量,相对误差可减小至1%~2%。
3.仪器简便,测定速度快吸光光度法虽然需要用到专门仪器,但与其它仪器分析法相比,比色分析法和分光光度法的仪器设备结构均不复杂,操作简便。
近年来由于新的高灵敏度、高选择性的显色剂和掩蔽剂的不断出现,常常可以不经分离而直接进行比色或分光光度测定,使测定显得更为方便和快捷。
4.应用广泛吸光光度法能测定许多无机离子和有机化合物,既可测定微量组分的含量,也可用于一些物质的反应机理及化学平衡研究,如测定配合物的组成和配合物的平衡常数,弱酸、弱碱的离解常数等。
第二节吸光光度分析的基本原理一、溶液的颜色和对光的选择性吸收1.光的基本性质光是一种电磁波。
电磁波范围很大,波长从10—1 nm~103 m,可依次分为X–射线、紫外光区、可见光区、红外光区、微波及无线电波,见表8—1。
表8-1电磁波谱区域λ/ nmX –射线10-1~10远紫外光区10~200近紫外光区200~400可见光区400~760近红外光区760~5×104远红外光区5×104~1×106微波1×106~1×109无线电波1×109~1×1012注:1 m = 109 nm人的眼睛能感觉到的光称为可见光(visible light)。
第⼗⼀章_吸光光度法[1]第⼗⼀章吸光光度法第⼀节吸光光度法概述吸光光度法是光学分析法的⼀种,也称为吸收光谱法。
它是基于物质对光的选择性吸收⽽建⽴起来的分析⽅法。
吸光光度法包括⽐⾊法、可见光分光光度法、紫外分光光度法、红外光谱法和原⼦吸收分光光度法。
吸光光度法根据分⼦的特征吸收光谱可以进⾏定性分析, 根据分⼦的吸光程度⼤⼩可以进⾏定量分析。
吸光光度法的特点如下:(1)灵敏者度⾼可⽤于测定微量组分的含量,测定下限可达10-5~10-6mol·L-1。
若被测组分在测定前先进⾏分离和富集,实验的灵敏度还可以提⾼。
(2)准确度较⾼⽐⾊法的相对误差为5%~20%,分光光度法的相对误差为2%~5%。
吸光光度法的准确度虽然不如滴定分析法⾼,但对微量组分的测定,已完全能满⾜要求。
(3)简便快速吸光光度法所使⽤的仪器设备简单,价格便宜,⼀般实验室都能具备。
仪器的操作简单,易于掌握。
(4)应⽤范围⼴⼏乎所有的⽆机离⼦和有机化合物都可直接或间接的⽤分光光度法进⾏测定。
⽬前分光光度法在实验室中是⼀种常规的分析⽅法。
本章主要介绍其中的⽬视⽐⾊法和可见光分光光度法。
第⼆节基本原理⼀、光的本质与溶液的颜⾊光是⼀种电磁波,通常⽤频率或在真空中的波长来描述。
不同波长(或频率)的光,能量不同。
波长短的光能量⼤,波长较长的光能量⼩。
如按波长⼤⼩顺序排列即得表11-1所⽰的电磁波谱。
表11-1 电磁波谱区域波长范围跃迁类型光谱类型x射线10-3~10(nm)内层电⼦跃迁x射线吸收、发射、衍射,荧光光谱、光电⼦能谱远紫外10~200(nm)价电⼦和⾮键电⼦跃迁远紫外吸收光谱,光电⼦能谱紫外200~400(nm)紫外-可见吸收和发射光谱可见光400~750(nm)近红外0.75~2.5(µm)分⼦振动近红外吸收光谱红外 2.5~1000(µm)分⼦振动红外吸收光谱微波0.1~100(cm)分⼦转动、电⼦⾃旋微波光谱,电⼦顺磁共振⼈的⾁眼可按颜⾊分辨在可见光区域内不同波长的光,在可见光区各种有⾊光与波长范围如表11-2所⽰。