【高中数学选修2-2】2.1.1合情推理
- 格式:ppt
- 大小:326.00 KB
- 文档页数:26
§2.1.1 合情推理学习目标1. 结合已学过的数学实例,了解归纳推理的含义;2. 能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.学习过程一、课前准备(预习教材P 70~ P77,找出疑惑之处) 在日常生活中我们常常遇到这样的现象:(1)看到天空乌云密布,燕子低飞,蚂蚁搬家,推断天要下雨; (2)八月十五云遮月,来年正月十五雪打灯.以上例子可以得出推理是 的思维过程.二、新课导学探究任务一:考察下列示例中的推理问题:因为三角形的内角和是180(32)︒⨯-,四边形的内角和是180(42)︒⨯-,五边形的内角和是180(52)︒⨯-……所以n 边形的内角和是新知1:从以上事例可一发现: 叫做合情推理。
归纳推理和类比推理是数学中常用的合情推理。
探究任务二:问题1:在学习等差数列时,我们是怎么样推导首项为1a ,公差为d 的等差数列{a n }的通项公式的?新知 2 归纳推理就是根据一些事物的 ,推出该类事物的 的推理归纳是 的过程 例子:哥德巴赫猜想:观察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7, 16=13+3, 18=11+7, 20=13+7, ……,50=13+37, ……, 100=3+97,猜想: .归纳推理的一般步骤1 。
2 。
※ 典型例题例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n 项和S n 的归纳过程。
例2设2()41,f n n n n N +=++∈计算(1),(2),(3,)...(10)f f f f 的值,同时作出归纳推理,并用n=40验证猜想是否正确。
练1. 观察圆周上n 个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?三、总结提升※ 学习小结 1.归纳推理的定义. 2. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质; ②从已知的相同性质中推出一个明确表述的一般性命题(猜想). ※ 当堂检测(时量:5分钟 满分:10分)计分: 1.下列关于归纳推理的说法错误的是( ). A.归纳推理是由一般到一般的一种推理过程 B.归纳推理是一种由特殊到一般的推理过程 C.归纳推理得出的结论具有或然性,不一定正确 D.归纳推理具有由具体到抽象的认识功能2. 已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( ).A.4()22x f x =+B.2()1f x x =+C.1()1f x x =+D.2()21f x x =+3.111()1()23f n n N n +=+++⋅⋅⋅+∈,经计算得357(2),(4)2,(8),(16)3,(32)222f f f f f =>>>>猜测当2n ≥时,有__________________________.4 已知1+2=3,1+2+3=6,1+2+3+4=10,……1+2+3+……+n=(1)2n n +,观察下列立方和: 13,13+23,13+23+33,13+23+33+43,…… 试归纳出上述求和的一般公式。
2.1 合情推理与演绎推理2.1.1合情推理学习目标:1.了解合情推理的含义.(易混点)2.理解归纳推理和类比推理的含义,并能利用归纳和类比推理进行简单的推理.(重点、难点)[自 主 预 习·探 新 知]1.归纳推理与类比推理[提示]归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然性的,而是或然性的,结论不一定正确.类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.2.合情推理[基础自测]1.思考辨析(1)利用合情推理得出的结论都是正确的.()(2)类比推理得到的结论可以作为定理应用.()(3)由个别到一般的推理为归纳推理.()[答案](1) ×(2)×(3)√2.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.该过程体现了()A.归纳推理B.类比推理C.没有推理D.以上说法都不对B[推理是根据一个或几个已知的判断来确定一个新的判断的思维过程,上述过程是推理,由性质类比可知是类比推理.]3.等差数列{a n}中有2a n=a n-1+a n+1(n≥2,且n∈N*),类比以上结论,在等比数列{b n}中类似的结论是________.[解析]类比等差数列,可以类比出结论b2n=b n-1b n+1(n≥2,且n∈N*).[答案]b2n=b n-1b n+1(n≥2,且n∈N*)4.如图2-1-1所示,由若干个点组成形如三角形的图形,每条边(包括两个端点)有n(n>1,n∈N*)个点,每个图形总的点数记为a n,则a6=________,a n =________(n>1,n∈N*).图2-1-1[解析]依据图形特点,可知第5个图形中三角形各边上各有6个点,因此a6=3×6-3=15.由n=2,3,4,5,6的图形特点归纳得a n=3n-3(n>1,n∈N*).[答案]153n-3[合作探究·攻重难](1)12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为________. (2)已知:f (x )=x1-x,设f 1(x )=f (x ),f n (x )=f n -1(f n -1(x ))(n >1,且n ∈N *),则f 3(x )的表达式为________,猜想f n (x )(n ∈N *)的表达式为________.(3)已知数列{a n }的前n 项和为S n ,a 1=3,满足S n =6-2a n +1(n ∈N *). ①求a 2,a 3,a 4的值; ②猜想a n 的表达式. [解析] (1)12=1, 12-22=-(1+2), 12-22+32=1+2+3,12-22+32-42=-(1+2+3+4), …12-22+32-42+…+(-1)n +1n 2 =(-1)n +1(1+2+…+n ) =(-1)n +1n (n +1)2.(2)∵f (x )=x 1-x ,∴f 1(x )=x 1-x. 又∵f n (x )=f n -1(f n -1(x )),∴f 2(x )=f 1(f 1(x ))=x1-x 1-x 1-x=x1-2x ,f 3(x )=f 2(f 2(x ))=x 1-2x1-2×x 1-2x =x 1-4x, f 4(x )=f 3(f 3(x ))=x 1-4x1-4×x 1-4x =x 1-8x, f 5(x )=f 4(f 4(x ))=x 1-8x1-8×x 1-8x=x 1-16x, 根据前几项可以猜想f n (x )=x1-2n -1x.[答案] (1)12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2(2)f 3(x )=x 1-4x f n (x )=x1-2n -1x(3)①因为a 1=3,且S n =6-2a n +1(n ∈N *), 所以S 1=6-2a 2=a 1=3,解得a 2=32, 又S 2=6-2a 3=a 1+a 2=3+32,解得a 3=34, 又S 3=6-2a 4=a 1+a 2+a 3=3+32+34, 解得a 4=38.②由①知a 1=3=320,a 2=32=321,a 3=34=322, a 4=38=323,…,猜想a n =32n -1(n ∈N *).[规律方法]进行数、式中的归纳推理的一般规律1.已知等式或不等式进行归纳推理的方法(1)要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律; (2)要特别注意所给几个等式(或不等式)中结构形式的特征;(3)提炼出等式(或不等式)的综合特点;(4)运用归纳推理得出一般结论2.数列中的归纳推理在数列问题中,常常用到归纳推理猜测数列的通项公式或前n 项和(1)通过已知条件求出数列的前几项或前n 项和;(2)根据数列中的前几项或前n 项和与对应序号之间的关系求解;(3)运用归纳推理写出数列的通项公式或前n 项和公式. [跟踪训练]1.数列5,9,17,33,x ,…中的x 等于________.[解析] 因为4+1=5, 8+1=9, 16+1=17,32+1=33猜测x =64+1=65. [答案] 65 2.观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2;⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3;⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝ ⎛⎭⎪⎫sin 8π9-2=43×4×5;…… 照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=________. [解析] 通过观察已给出等式的特点,可知等式右边的43是个固定数,43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,43后面第二个数是第一个数的下一个自然数,所以,所求结果为43×n ×(n +1),即43n (n +1).[答案] 43n (n +1)图案,则第n个图案中有黑色地面砖的块数是________.图2-1-2(2)根据图2-1-3中线段的排列规则,试猜想第8个图形中线段的条数为________.①②③④图2-1-3[解析](1)观察图案知,从第一个图案起,每个图案中黑色地面砖的个数组成首项为6,公差为5的等差数列,从而第n个图案中黑色地面砖的个数为6+(n-1)×5=5n+1.(2)图形①到④中线段的条数分别为1,5,13,29,因为1=22-3,5=23-3,13=24-3,29=25-3,因此可猜想第8个图形中线段的条数应为29-3=509.[答案](1)5n+1(2)509[规律方法]归纳推理在图形中的应用策略通过一组平面或空间图形的变化规律,研究其一般性结论,通常需形状问题数字化,展现数学之间的规律、特征,然后进行归纳推理.解答该类问题的一般策略是:[跟踪训练]3.如图2-1-4,由火柴棒拼成的一列图形中,第n个图形中由n个正方形组成:图2-1-4通过观察可以发现:第5个图形中,火柴棒有________根;第n个图形中,火柴棒有________根.[解析]数一数可知各图形中火柴的根数依次为:4,7,10,13,…,可见后一个图形比前一个图形多3根火柴,它们构成等差数列,故第五个图形中有火柴棒16根,第n个图形中有火柴棒(3n+1)根.[答案]163n+1[探究问题]三角形与四面体有下列相似性质:(1)三角形是平面内由直线段围成的最简单的封闭图形;四面体是空间中由三角形围成的最简单的封闭图形.(2)三角形可以看作是由一条线段所在直线外一点与这条线段的两个端点的连线所围成的图形;四面体可以看作是由三角形所在平面外一点与这个三角形三个顶点的连线所围成的图形.通过类比推理,根据三角形的性质推测空间四面体的性质,完成下列探究点:1.在三角形中,任意两边之和大于第三边,那么,在四面体中,各个面的面积之间有什么关系?提示:四面体中的任意三个面的面积之和大于第四个面的面积.2.三角形的面积等于底边与高乘积的12,那么在四面体中,如何表示四面体的体积?提示:四面体的体积等于底面积与高的积的13.(1)在等差数列{a n }中,对任意的正整数n ,有a 1+a 2+a 3+…+a 2n -1n=a n .类比这一性质,在正项等比数列{b n }中,有________.(2)在平面几何里有射影定理:设△ABC 的两边AB ⊥AC ,D 是A 点在BC 上的射影,则AB 2=BD ·BC .拓展到空间,在四面体A -BCD 中,DA ⊥平面ABC ,点O 是A 在平面BCD 内的射影,类比平面三角形射影定理,写出对△ABC 、△BOC 、△BDC 三者面积之间关系,并给予必要证明.[思路探究] (1)类比等差数列及等比数列的性质求解.(2)将直角三角形的一条直角边长类比到有一侧棱AD 与一侧面ABC 垂直的四棱锥的侧面ABC 的面积,将此直角边AB 在斜边上的射影及斜边的长,类比到△ABC 在底面的射影△OBC 及底面△BCD 的面积可得S 2△ABC =S △OBC ·S △DBC . [解析] (1)由a 1+a 2+…+a 2n -1类比成b 1·b 2·b 3…b 2n -1,除以n ,即商类比成开n 次方,即在正项等比数列{b n }中,有n b 1·b 2·b 3…b 2n -1=b n .[答案]nb 1·b 2·b 3…b 2n -1=b n(2)△ABC 、△BOC 、△BDC 三者面积之间关系为S 2△ABC =S △OBC ·S △DBC . 证明如下:如图,设直线OD 与BC 相交于点E , ∵AD ⊥平面ABE , ∴AD ⊥AE ,AD ⊥BC , 又∵AO ⊥平面BCD , ∴AO ⊥DE ,AO ⊥BC . ∵AD ∩AO =A , ∴BC ⊥平面AED , ∴BC ⊥AE ,BC ⊥DE . ∴S △ABC =12BC ·AE ,S △BOC =12BC ·OE, S △BCD =12BC ·DE .在Rt △ADE 中,由射影定理知AE 2=OE ·DE ,∴S 2△ABC =S △BOC ·S △BCD . 母题探究:1.(变条件)把本例(2)中的射影定理的表示换为“a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边”.类比上述定理,写出对空间四面体(如图2-1-5所示)性质的猜想.图2-1-5[解] 如图所示,在四面体P -ABC 中,S 1,S 2,S 3,S 分别表示△P AB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示平面P AB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为S =S 1·cos α+S 2·cos β+S 3·cos γ.2.(变条件)把本例(2)条件换为“在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于点D ,有1AD 2=1AB 2+1AC 2成立”.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明猜想是否正确及理由.[解] 猜想:类比AB ⊥AC ,AD ⊥BC ,可以猜想四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD .则1AE 2=1AB 2+1AC 2+1AD 2.下面证明上述猜想成立.如图所示,连接BE ,并延长交CD 于点F ,连接AF .∵AB ⊥AC ,AB ⊥AD , AC ∩AD =A , ∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF . 在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AF 2.在Rt △ACD 中,AF ⊥CD ,∴1AF2=1AC2+1AD2.∴1AE2=1AB2+1AC2+1AD2,故猜想正确.[规律方法]类比推理的一般步骤[当堂达标·固双基]1.已知扇形的弧长为l,半径为r,类比三角形的面积公式S=底×高2,可知扇形面积公式为()A.r22B.l22C.lr2D.无法确定C[扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S=lr 2.]2.观察图形规律,在其右下角的空格内画上合适的图形为()图2-1-611 A.B.△C.D.○A [观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两阴影一空白,即得结果. ]3.等差数列{a n }中,a n >0,公差d >0,则有a 4·a 6>a 3·a 7,类比上述性质,在等比数列{b n }中,若b n >0,q >1,写出b 5,b 7,b 4,b 8的一个不等关系________.[解析] 将乘积与和对应,再注意下标的对应,有b 4+b 8>b 5+b 7.[答案] b 4+b 8>b 5+b 74.观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第四个等式为________.[解析] 由前三个式子可得出如下规律:每个式子等号的左边是从1开始的连续正整数的立方和,且个数依次加1,等号的右边是从1开始的连续正整数和的完全平方,个数也依次加1,因此,第四个等式为13+23+33+43+53=(1+2+3+4+5)2.[答案] 13+23+33+43+53=(1+2+3+4+5)25.在Rt △ABC 中,若∠C =90°,则cos 2A +cos 2B =1,在空间中,给出四面体性质的猜想.[解] 如图,在Rt △ABC 中,cos 2A +cos 2B =⎝ ⎛⎭⎪⎫b c 2+⎝ ⎛⎭⎪⎫a c 2=a 2+b 2c 2=1. 于是把结论类比到四面体P - A ′B ′C ′中,我们猜想,三棱锥P -A ′B ′C ′中,若三个侧面P A ′B ′,PB ′C ′,PC ′A ′两两互相垂直,且分别与底面所成的角为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.。
人教版新课标A版选修2-2数学2.1合情推理与演绎推理同步练习A卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)下列命题中正确的是()A . 类比推理是一般到特殊的推理B . 演绎推理的结论一定是正确的C . 合情推理的结论一定是正确的D . 演绎推理在前提和推理形式都正确的前提下,得到的结论一定是正确的2. (2分)下图是某光缆的结构图,其中数字为某段的最大信息量,则从M到N的最大信息量为()A . 6B . 7C . 12D . 213. (2分) (2016高二上·衡阳期中) 在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:①对任意a∈R,a*0=a;②对任意a,b∈R,a*b=ab+(a*0)+(b*0).则函数f(x)=(ex)* 的最小值为()A . 2B . 3C . 6D . 84. (2分)我们知道,在边长为a的正三角形内任一点到三边的距离之和为定值a,类比上述结论,在棱长为a的正四面体内任一点到其四个面的距离之和为定值,此定值为()A . aB . aC . aD . a5. (2分)观察下列各式:,则的末四位数为()A . 3125B . 5624C . 0625D . 81256. (2分)北京市为了缓解交通压力实行机动车辆限行政策,每辆机动车周一到周五都要限行一天,周末不限行.某公司有A、B、C、D、E五辆车,保证每天至少有四辆车可以上路行驶.已知:E车周四限行,B车昨天限行,从今天算起,A、C两车连续四天都能上路行驶,E车明天可以上路.由此可知,下列推测一定正确的是()A . 今天是周六B . 今天是周四C . A车周三限行D . C车周五限行7. (2分)根据下边给出的数塔猜测1234569+8=()19+2=11129+3=1111239+4=111112349+5=11111A . 1111110B . 1111111C . 1111112D . 11111138. (2分) (2016高二下·钦州期末) “因为偶函数的图象关于y轴对称,而函数f(x)=x2+x是偶函数,所以f(x)=x2+x的图象关于y轴对称”,在上述演绎推理中,所得结论错误的原因是()A . 大前提错误B . 小前提错误C . 推理形式错误D . 大前提与推理形式都错误9. (2分)下面说法正确的有()(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关。
§2.1 合情推理与演绎推理【知识要点】1.合情推理(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.特点:是由部分到整体、由个别到一般的推理.实验、观察→概括、推广→猜测一般性结论(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.特点:类比推理是由特殊到特殊的推理.观察、比较→联想、类推→猜想新结论2.演绎推理模式:三段论①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.特点:演绎推理是由一般到特殊的推理.【试一试】1.数列2,5,11,20,x,47,…中的x等于()A.28B.32 C.33 D.272. 在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.3.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理() A.结论正确B.大前提不正确C.小前提不正确D.全不正确4.给出下列三个类比结论.①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n.②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β.③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数是()A.0 B.1 C.2 D.35.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于() A.28 B.76 C.123 D.1996.观察下列不等式:1+122<3 2,1+122+132<53,1+122+132+142<74,……照此规律,第五个...不等式为________.考点一 类比推理例1.给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”;②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”;④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”.其中类比结论正确的个数为( )A .1B .2C .3D .4变式.在平面几何里,有“若△ABC 的三边长分别为a ,b ,c 内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,“若四面体 ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为____________”.考点二 归纳推理例2.观察下列等式12=1 12-22=-3 12-22+32=6 12-22+32-42=-10……照此规律,第n 个等式可为________.变式.下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n 个图形中小正方形的个数是________.考点三 演绎推理例3.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n , 正方形数 N (n,4)=n 2,五边形数 N (n,5)=n 2-n ,六边形数 N (n,6)=2n 2-n ,……可以推测N (n ,k )的表达式,由此计算N (10,24)=______.例4.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列; (2)S n +1=4a n .【巩固训练】1.命题“有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因A .使用了归纳推理B .使用了类比推理C .使用了“三段论”,但大前提错误D .使用了“三段论”,但小前提错误2.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足 f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )3.若大前提是:任何实数的平方都大于0,小前提是:a ∈R ,结论是:a 2>0,那么这个演绎推理出错在( )A .大前提B .小前提C .推理过程D .没有出错4.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”;③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”;⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a ·c b ·c =a b”. 以上的式子中,类比得到的结论正确的个数是( )A .1B .2C .3D .45.已知△ABC 中,∠A =30°,∠B =60°,求证:a <b .证明:∵∠A =30°,∠B =60°,∴∠A <∠B ._∴a <b ,其中,画线部分是演绎推理的( )A .大前提B .小前提C .结论D .三段论 6.对大于或等于2的正整数的幂运算有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7,…;23=3+5,33=7+9+11,43=13+15+17+19,….根据上述分解规律,若m 2=1+3+5+…+11,p 3的分解中最小的正整数是21,则m +p =( )A .9B .10C .11D .12 7.若数列{a n }是等差数列,则数列{b n }⎝⎛⎭⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c n nB .d n =c 1·c 2·…·c n nC .d n =n c n 1+c n 2+…+c n n nD .d n =n c 1·c 2·…·c n 8.下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b 2=1(a >b >0)的面积S =πab9.对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2011次操作后得到的数是( )A .25B .250C .55D .13310.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a 0a 1a 2,a i ∈{0,1}(i =0,1,2),传输信息为h 0a 0a 1a 2h 1,其中h 0=a 0⊕a 1,h 1=h 0⊕a 2,⊕运算规则为0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.例如原信息为111,则传输信息为01111,信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( )A .11 010B .01 100C .10 111D .00 01111.将石子摆成如图的梯形形状,称数列5,9,14,20,…为“梯形数列”.根据图形的构成,此数列的第2 012项与5的差,即a 2012-5=( )A .1 009×2 011B .1 009×2 010C .1 009×2 009D .1 010×2 01112.已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +a x n ≥n +1(n ∈N *),则a =________. 13.在平面内有n (n ∈N *,n ≥3)条直线,其中任何两条不平行,任何三条不过同一点,若这n 条直线把平面分成f (n )个平面区域,则f (5)的值是________,f (n )的表达式是________.14.在圆中有结论:如图所示,“AB 是圆O 的直径,直线AC ,BD 是圆O 过A ,B 的切线,P 是圆O 上任意一点,CD 是过P 的切线,则有PO 2=PC ·PD ”.类比到椭圆:“AB 是椭圆的长轴,直线AC ,BD 是椭圆过A ,B 的切线,P 是椭圆上任意一点,CD 是过P 的切线,则有____________.”15.在数列{a n }中,a 1=1,a 2=2,a n =(-1)n ·2a n -2(n ≥3,n ∈N *),其前n 项和为S n .(1)a 2n +1关于n 的表达式为________;(2)观察S 1,S 2,S 3,S 4,…S n ,在数列{S n }的前100项中相等的项有________对.。
[学生用书P101(单独成册)][A 基础达标]1.给出下列三个类比结论:①类比a x ·a y =a x +y ,则有a x ÷a y =a x -y ;②类比log a (xy )=log a x +log a y ,则有sin(α+β)=sin αsin β; ③类比(a +b )+c =a +(b +c ),则有(xy )z =x (yz ). 其中结论正确的个数是( ) A .0 B .1 C .2D .3解析:选C.根据指数的运算法则知a x ÷a y =a x -y ,①正确;根据三角函数的运算法则知sin(α+β)≠sin αsin β,②不正确;根据乘法结合律知(xy )z =x (yz ),③正确.2.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图所示).则第七个三角形数是( )A .27B .28C .29D .30解析:选B.把1,3,6,10,15,21,…,依次记为a 1,a 2,…,则可以得到a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,a 6-a 5=6,所以a 7-a 6=7,即a 7=a 6+7=28.3.我们知道,在平面内,点(x 0,y 0)到直线Ax +By +C =0的距离公式为d =|Ax 0+By 0+C |A 2+B 2,通过类比的方法,可求得在空间中,点(2,4,1)到平面x +2y +3z +3=0的距离为( )A .3B .5 C.8147D .3 5解析:选C.类比点(x 0,y 0)到直线Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2,可知在空间中,点(2,4,1)到平面x +2y +3z +3=0的距离为|2+8+3+3|1+4+9=8147.4.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是( )A .n +(n +1)+(n +2)+…+(3n -2)=n 2B .n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2C .n +(n +1)+(n +2)+…+(3n -1)=n 2D .n +(n +1)+(n +2)+…+(3n -1)=(2n -1)2解析:选B.可以发现,第一个式子的第一个数是1,第二个式子的第一个数是2,…,故第n 个式子的第一个数是n ;第一个式子中有1个数相加,第二个式子中有3个数相加,…,故第n 个式子中有(2n -1)个数相加;第一个式子的结果是1的平方,第二个式子的结果是3的平方,故第n 个式子应该是2n -1的平方,故可以得到n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.5.将石子摆成如图所示的梯形形状,称具有“梯形”结构的石子数构成的数列5,9,14,20,…为“梯形数列”,记为数列{a n }.根据“梯形”的构成,可知a 624=( )A .166 247B .196 248C .196 249D .196 250解析:选D.观察图形可知a 1=5,a 2=9,a 3=14, 则a n -a n -1=n +2(n ≥2,n ∈N *), 由累加法得a n -a 1=4+5+6+…+n +2, 则a n =(n +1)(n +4)2,n ≥2.故a 624=(624+1)×(624+4)2=625×314=196 250.6.我们知道周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是________________.解析:平面图形与立体图形的类比:周长→表面积,正方形→正方体,面积→体积,矩形→长方体,圆→球.答案:表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大7.根据图中5个图形及相应点的个数的变化规律,试猜测第n 个图中有________个点.解析:观察图形的变化规律可得,图(2)从中心点向两边各增加1个点,图(3)从中心点向三边各增加2个点,图(4)从中心点向四边各增加3个点,如此,第n 个图从中心点向n 边各增加(n -1)个点,易得答案为1+n ·(n -1)=n 2-n +1.答案:n 2-n +18.将全体正整数排成一个三角形数阵(如图):按照以上排列的规律,第n (n ≥3,n ∈N *)行从左向右的第3个数为________. 解析:前(n -1)行共有正整数1+2+…+(n -1)=n 2-n2(个),因此第n 行第3个数是全体正整数中的第⎝⎛⎭⎫n 2-n 2+3个,即为n 2-n +62. 答案:n 2-n +629.如图,O 是△ABC 内任一点,D ,E ,F 分别为三边的中点. (1)证明:OD →+OE →+OF →=OA →+OB →+OC →;(2)你能由第(1)问中的结论推广到n 边形吗?请用文字语言说明. 解:(1)证明:因为D ,E ,F 分别为△ABC 三边的中点, 所以OD →=12(OA →+OB →),OE →=12(OB →+OC →),OF →=12(OA →+OC →),所以OD →+OE →+OF →=OA →+OB →+OC →.(2)推广到n 边形的结论:n 边形内任意一点到n 边形中各边中点所形成的向量的和等于该点到此n 边形各顶点所形成的向量的和.10.如图所示为m 行m +1列的士兵方阵(m ∈N *,m ≥2).(1)写出一个数列,用它表示当m 分别是2,3,4,5,…时,方阵中士兵的人数;(2)若把(1)中的数列记为{a n },归纳该数列的通项公式; (3)求a 10,并说明a 10表示的实际意义; (4)已知a n =9 900,问a n 是数列的第几项?解:(1)当m =2时,表示一个2行3列的士兵方阵,共有6人,依次可以得到当m =3,4,5,…时的士兵人数分别为12,20,30,…,故所求数列为6,12,20,30,….(2)因为a 1=2×3,a 2=3×4,a 3=4×5,…,所以猜想a n =(n +1)(n +2),n ∈N *. (3)a 10=11×12=132,a 10表示11行12列的士兵方阵的人数为132.(4)令(n +1)(n +2)=9 900,解得n =98,即a n 是数列的第98项,此时方阵为99行100列.[B 能力提升]11.如图,椭圆的中心在坐标原点,F 为其左焦点,当FB →⊥AB →时,椭圆的离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”可得“黄金双曲线”的离心率为( )A.5+12B .5-12C.5-1D.5+1解析:选A.设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).F (-c ,0),B (0,b ),A (a ,0),则FB→=(c ,b ),AB →=(-a ,b ).因为FB →⊥AB →,所以FB →·AB →=-ac +b 2=0.又b 2=c 2-a 2,所以c 2-ac -a 2=0,即e 2-e -1=0,解得e =1±52.又e >1,所以e =1+52.故选A.12.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,即此数列的第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推,设S n 是此数列的前n 项的和,则S 2 017=( )A .264-26B .263-26C .264-25D .263-25解析:选A.将数列分组,第一组有一项20;第二组有两项20,21;第n 组有n 项,前63组共有63×642=2 016项,所以S 2 017=20+(20+21)+…+(20+21+…+262)+20=(21-1)+(22-1)+…+(263-1)+20,(2+22+…+263)-63×1+1=2×(1-263)1-2-62=264-64=264-26,故选A.13.观察下面两式:(1)tan 10°·tan 20°+tan 20°·tan 60°+tan 60°·tan 10°=1; (2)tan 5°·tan 10°+tan 10°·tan 75°+tan 75°·tan 5°=1.分析上面两式的共同特点,写出反映一般规律的等式,并证明你的结论. 解:猜想,如果α+β+γ=π2,α,β,γ都不为π2,则tan αtan β+tan β tan γ+tan γtan α=1.证明如下:因为α+β+γ=π2,所以α+β=π2-γ,所以tan(α+β)=tan ⎝⎛⎭⎫π2-γ=1tan γ, 所以tan αtan β+tan β tan γ+tan γtan α =tan αtan β+(tan α+tan β)tan γ=tan αtan β+tan(α+β)(1-tan αtan β)tan γ =tan αtan β+(1-tan αtan β)1tan γtan γ =tan αtan β+1-tan αtan β=1.14.(选做题)已知点的序列A n (x n ,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点.(1)写出x n 与x n -1,x n -2的关系式;(2)设a n =x n +1-x n ,计算a 1,a 2,a 3的值,由此推测数列{a n }的通项公式并加以证明. 解:(1)x n =12(x n -1+x n -2)(n ≥3).(2)a 1=x 2-x 1=a -0=a ,a 2=x 3-x 2=12(x 2+x 1)-x 2=x 1-x 22=-a2,a 3=x 4-x 3=12(x 3+x 2)-x 3=x 2-x 32=a 4,由此推测a n =⎝⎛⎭⎫-12n -1a (n ∈N *).证明如下:因为a n +1a n =x n +2-x n +1x n +1-x n =12(x n +1+x n )-x n +1x n +1-x n =x n -x n +12(x n +1-x n )=-12(常数),又a 1=a ,所以{a n }是以a 为首项,-12为公比的等比数列,故a n =a 1·⎝⎛⎭⎫-12n -1=⎝⎛⎭⎫-12n -1a (n ∈N *).由Ruize收集整理。