农药在土壤中的迁移转化
- 格式:ppt
- 大小:854.50 KB
- 文档页数:12
农药在土壤中的迁移农药是坏境中的更要污染物。
进入土壤的农药町以发生各种迁移转化过程。
当农药的水溶性较强时,很容易从土壤表层迁移进入土壤卜•层,真至最终进入地卜•水。
此外,还可能被植物吸收,在植物体内残留。
因此,农药污染己口益被人们所重视。
研究农药在不同土壤中的迁移行为可以为预测或评价农药对环境的危害程度提供科学依据。
农药在土壤中的迁移与农药本身的物理化学性质有关,也与土壤的性质有着密切的关系。
对农药在土壤中迁移能力的研究,•般是将室内模拟与田间实测相结合。
在室内预评价实脸中,常用的方法仃土柱淋溶法和土壤薄层层析法。
用土壤薄层层析法研究农药在土壤中的迁移行为是一种快速简单的方法。
一、实验目的1.了解农药在土壤中迁移的影响因素。
2.拿握研究农药在土壤中迁移能力的试验方法和技术。
二、实验原理土壤薄层层析法(STLC)是以自然土壤为吸附剂,以水为展开剂,与-•般薄层层析法一样,通过点样、展开、干燥后分别测量薄板每段的含药量,以农药的分布情况來观察农药的移动性能,并以比移值(RQ作为衡量农药在土壤中迁移能力的指标。
本实验采用土壤薄层层析和分段提取分析相结合的方法,对两种农药单卬脐(DMA)利涕灭威(aldicard)在土壤中的迁移能力进行硏究。
在以水为展开剂时,农药在土壤薄板上的展开呈带状分布,其在土壤薄板上迁移的R f 值等于农药在薄板上的平均移动距离(石)与溶剂前沿(乙)的比值,即:SJLiZinij式中:n——土壤薄板分割段数;J一一第1段到原点的平均距离,cm;mi ---- 第1段农药的含最,(Ago为简便计算,也可用农药含最最高区段的中心作为该农药的斑点中心(乙)來计算,即:该农药从斑点中心到原点的距离町按卜式计算Zf = Vt 丄 *式中:J一一从农药斑点中心到原点的距离,它代表化合物的迁移距离,cm ; t一一迁移时间,h ;迁移速率,cm/h丄/2。
三、仪器与试剂1.仪器(1)液相色谱仪:带有紫外检测器。
农药残留在土壤和水中的迁移和转化机制近年来,农业生产的规模不断扩大,为了保证农作物的产量和品质,农民们采用了越来越多的农药。
然而,在农作物生长过程中,部分农药残留在土壤和水中,对环境和人类健康造成了潜在的威胁。
农药在土壤中的迁移和转化机制土壤是化学反应的活性媒介,农药残留进入土壤后可能被转化、吸附、降解等过程影响迁移和归宿。
其中最主要的影响因素是土壤理化性质、农药性质和环境条件。
以下分别就这几个因素进行了一定的阐述。
土壤理化性质土壤的理化性质包括土壤类型、pH值、电导率、有机质含量等。
这些性质影响着土壤中的微生物、土壤酶和微量元素状况,从而决定了农药在土壤中的迁移和降解。
土壤类型对农药的吸附和降解有很大的影响。
一般而言,粘土质土壤比砂土含有更多的负电性离子交换活性位点,因此具有更高的吸附能力。
而对水分和空气的流动较为通畅的沙质土壤则往往会减少农药的吸附。
因此,在粘土质土壤中,农药的残留寿命相对较长,而在沙质土壤中,农药的迁移速度相对较快。
pH值对土壤中的微生物有着极大的影响。
在不同的pH条件下,土壤中的微生物酶的活性会有所不同,因此影响了土壤中农药的迁移和降解。
一个例子是,氧化状态较低的土壤标准pH在6.2左右,而氧化状态较高(氧化性更强)的土壤则会具有较高的pH值。
对于许多有机磷类农药,它们在较高pH值条件下会降解得比较快,而吸附也相对较少。
有机质含量对土壤中的降解过程也具有明显的影响。
在富含有机质的土壤中,由于微生物活性较高,农药的降解速度也会加快。
此外,富含有机质的土壤中有机碳含量较高,而这种有机碳对于一些酯类农药的稳定性有着一定影响。
农药性质农药的封闭性和水溶性直接决定了它的吸附性。
例如,有些农药由于分子体积小,极性分布均匀,故而不易吸附;而有些农药在分子结构上存在极性差异,部分极性较高的部分易被固定在土壤颗粒表面。
此外,化学稳定性强的农药会更难被土壤中的微生物降解分解。
环境条件环境条件是影响农药在土壤中迁移和降解的另一个重要因素。
收稿日期:2009-12-04作者简介:代凤玲(1971-),女,工程师,从事环境监测工作土壤中农药的迁移转化规律及其影响农药在土壤中残留、降解的环境因素代凤玲 闫慧琴(内蒙古鄂尔多斯市环境监测站,东胜 017000)摘要:农药在土壤中的残留是对农业环境造成污染的一大根源。
本文介绍了农药在土壤中降解转化的主要途径及机理,包括微生物降解、水解和光解,分析了土壤中不同环境因素(有机质、湿度、温度、p H 值、根系分泌物和粒径等)对农药降解和转化过程的影响,展望了今后的研究方向,旨在为进一步治理和修复土壤的农药污染提供依据。
关键词:农药;土壤环境;迁移转化生物降解;农药残留;影响因素中图分类号:X 592文献标识码:A 文章编号:1007-0370(2009)06-0181-04ENV I RONMENTAL FACTOR THAT THE M I GRAT I ON OFPESTICI DE TRANSFORM S THE LA W AND I NFLUENCES PESTICI DE TO REMA I N I N THE S O IL ,DDEGRADE I N THE S O ILDA I Feng li n g YAN H u i q i n(E r dos city E nvironm entalM onitoring S tation of Inner M ongolia,D ong Sheng 017000)Abstr ac:t T he pesti c i de resi dues i n the so il are causi ng a g reat o ri g in o f po lluti on to the ag ricu lt u ra l env i ron m ent ,.T his tex t has i n -troduced pestic i de and deg raded m a i n route and m echanis m transfor m ed i n t he so i,l inc l udi ng the little b i odeg radati on ,hydro lysis and pho to -d i ssoc i ation ,have ana lyzed d ifferen t env iron m enta l fac t o rs i n t he so il(O rganic m atter ,hu m i d it y ,temperature ,p H,roo ts secretion and a f oo t -path ,etc).D eg rade and transform t he influence o f t he course on pesti c i de ,has l ooked forward t o t he research d irection i n t he fut u re ,a i m at o ffer i ng basis for f urther contro lli ng and repair i ng the po ll ution by pesti c i des o f the so i.lKey wor ds :Pesticide ;So il env iron m ent;M ove and transfo r m b i odeg radati on ;R esidues of pestic i des ;Infl uence factor 农药在土壤中的残留是导致农药对农业环境造成污染的一大根源。
农药在农田生态系统中的迁移、转化及生物有效性农药在农田生态系统中的迁移、转化及生物有效性农药是农业生产中常用的一种化学物质,用于保护农作物免受虫害、杂草和病菌的侵害。
然而,农药的使用也会带来一系列的环境问题,其中最重要的一个问题是农药在农田生态系统中的迁移、转化及生物有效性。
农药的迁移是指农药在环境中的移动和传播过程。
根据农药的性质和环境条件的不同,农药可以通过空气、土壤、水和生物体等途径迁移。
例如,农药可以通过空气中的颗粒物和雾滴降落到土壤和水体中,也可以通过渗透、流动和蒸发等方式迁移。
农药的迁移速度和距离受到多种因素的影响,包括土壤类型、降水量、温度和风向等。
此外,农药还可以被微生物、土壤颗粒和植物根系等过程吸附和降解,从而减少其迁移的程度和速度。
农药的转化是指农药在环境中经过生物降解和化学反应等过程转变为其他物质的过程。
农药的转化可以通过微生物、土壤颗粒和植物根系等方式进行。
微生物是农田土壤中的重要转化因子,它们可以分解和转化大多数农药。
微生物通过酶的作用将农药分解为无害的物质,例如,农药中的有机磷化合物可以被微生物降解为无机磷酸盐。
此外,土壤颗粒和植物根系也可以吸附和降解农药,从而减少其对环境的危害。
农药的生物有效性是指农药对目标生物的毒杀效果。
农药的生物有效性是农药使用效果的关键因素,也是评价农药安全性和效果的重要指标。
农药的生物有效性受到多种因素影响,包括农药的种类、剂量、应用时间和作物类型等。
例如,某些农药只对特定的昆虫或杂草有效,而对其他生物无毒;农药的剂量过低则可能无法达到有效杀虫的效果,而剂量过高则可能对非靶标生物产生不良影响。
因此,在使用农药时需要根据实际情况选择适当的种类、剂量和应用时间,以兼顾农药的生物有效性和安全性。
综上所述,农药在农田生态系统中的迁移、转化及生物有效性是一个复杂且重要的问题。
了解农药在环境中的迁移和转化过程可以帮助我们更好地评估和管理农药的环境风险,而了解农药的生物有效性则可以指导我们更好地使用农药,提高农作物的产量和质量。
环境学概论题目及部分答案一、名词解释1、环境:是指影响人类生存和发展的各种天然的和人工改造的自然因素的总体,包括大气、水、海洋、土地、矿藏、森林、草原、野生生物、自然遗迹、人文遗迹、自然保护区、风景名胜区、城市和乡村等。
”2、环境问题:是指由于人类活动作用于周围环境所引起的环境质量变化,以及这种变化对人类的生产、生活和健康造成的影响。
包括原生环境问题和次生环境问题。
次生环境问题包括环境污染和生态破坏3、水体污染:因某种物质的介入,而导致其化学、物理、生物或放射性等方面的特征的改变4、生物化学需氧量(BOD):表示在好气条件下,水中的有机污染物经微生物分解所需的氧量(单位体积的污水所消耗的氧量毫克/升)5、化学需氧量(COD):在规定条件下,使水样中能被氧化的物质氧化所需耗用化学氧化剂的量。
目前常用的氧化剂主要是重铬酸钾或高锰酸钾。
6、大气污染:是指由于人类活动或自然过程使得某些物质进入大气,呈现出足够的浓度,达到了足够的时间,并因此危害了人体的舒适、健康和人们的福利,甚至危害了生态环境。
7、光化学烟雾:在阳光照射下,大气中的氮氧化物、碳氢化合物和氧化剂之间发生一系列光化学反应而生成的蓝色烟雾8、水体富营养化:N、P富集,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,鱼类及其他生物大量死亡的现象,水质恶化的现象9、土壤净化:指土壤本身通过吸附、分解、迁移、转化,而使土壤污染的浓度降低而消失的过程10、固体废物:亦称废物,一般指人类在生产、加工、流通、消费以及生活等过程提取目的组分之后,废弃去的固态或泥浆状物质。
11、生物多样性:就是地球上所有的生物——植物、动物、微生物及其所构成的综合体,它包括遗传多样性、物种多样性、生态多样性、景观多样性12、酸雨:pH低于5.6的降水,包括雨、雪、霜、雾雹与露等各种降水形式。
13、温室效应:随着大气中CO2浓度的增加,促使入射能量和散逸能量之间的平衡遭到破坏,造成地球表面的能量平衡发生变化,引起地球表面温度上升14、危险废物又称为有毒有害废物,这类废物泛指除放射性废物以外,具有毒性、易燃性、反应性、腐蚀性、爆炸性、传染性因而可能对人类的生活环境产生危害的废物。
化学农药在土壤中的迁移与转化/chinapengkun前言直接向土壤或植物表面喷撒农药,是使用农药最常见的一种方式,也是造成土壤污染的重要原因。
研究表明,一般农田土壤均受不到不同程度的污染。
化学农药在使用过程中,只有一部分附着于植物体上。
对不同作物,采用不同的施用方式喷撒农药,除被植物体吸收外,大约有20%一50%左右进入土壤直接进入土壤的农药,大部分可被吸附,残留于土壤中的农药,由于生物的作用,经历着转化和降解过程,形成具有不同稳定性的中间产物,或最终成为无机物。
1 土壤对化学农药的吸附作用土壤吸附化学农药的机理有以下两种途径:1.1 物理吸附土壤胶体扩散层的阳离子通过”水桥“吸附极性农药分子。
1.2 物理化学吸附是土壤对农药的主要吸附作用。
土壤胶体的物理化学吸附能力大小顺序为:有机胶体>蛭石>蒙胶石>伊利石>绿泥石>高岭石。
由于农药种类极多,性质各不相同,对土壤吸附有很大影响。
一般农药的分子越大,越易被土壤吸附。
农药在水中的溶解度强弱也对吸附有影响,如DDT 在水中溶解度很小,在土壤中吸附力则很强;而一些有机磷农药,在水中的溶解度很大,吸附能力则很弱。
大量资料表明,非常易挥发的农药,及不易挥发的农药(有机氯),都可以从土壤、水及植物表面大量蒸发。
对于低水溶性和特久性的化学农药来说,蒸发是它们进入大气的重要途径。
通过蒸发作用而迁移的农药量比径流迁移和作物吸收等方面都要大。
化学农药在土壤中的蒸发决定于农药本身的溶解度、蒸汽压和接近地表空气层的扩散速度以及土壤温度、湿度和质地。
如砂土,由于吸附能力小于壤土,故农药的蒸发损失较壤土为大,土温增高,也能促进农药的蒸发。
农药的蒸发与土壤含水量有密切关系。
土壤干燥时,农药不扩散,主要被土体表面所吸附,随着土壤水分的增加,由于水的极性大于有机物农药,因此水占据了土壤矿物质表面;把农药从土壤表面置走,使农药的挥发性大大增加。
当土壤含水量达4~7o时,扩散最快。
农药DDT在土壤中迁移转化研究摘要:农药给农业以及相关产业带来了经济效益与社会效应,为人类的生活带来了物质资源。
随着我国经济的发展,特别是生活水平日益提高的今天,环境友好农药的需求越来越大。
本课题在湖南省国土资源厅科技项目的支持下,我们开展了农药DDT在土壤的污染以及转移研究,希望能够通过该研究成果引导政府和农药生产商高度重视环境友好农药的研发与生产,提高人们的生活质量。
关键词:农药DDT 土壤迁移DDT(2,2-二氯苯基-1,1,1-三氯乙烷)是由欧特马·勤德勒于1874年首次合成,米勒1939年发现了这种化合物具有杀虫剂的效果。
该产品几乎对所有的昆虫都非常有效。
二次世界大战期间,DDT的使用范围迅速得到了扩大,而且在通过消灭蚊子实现对疟疾、痢疾等疾病的预防方面大显身手,挽救了很多生命,而且还通过杀灭害虫带来了农作物的增产(图1)。
1962年,美国科学家蕾切尔·卡逊(Rachel Carson)在其著作《寂静的春天》中怀疑,DDT进入食物链,是导致一些食肉和食鱼的鸟接近灭绝的主要原因。
因此从20世纪70年代后滴滴涕逐渐被世界各国明令禁止生产和使用。
尽管已经禁止使用,但是还是有一些领域一直在使用该农药。
目前在发展中国家,特别是在非洲国家,每年大约有一亿多的疟疾新发病例,大约有100多万人死于疟疾,而且其中大多数是儿童。
疟疾目前还是发展中国家最主要的病因与死因,这除了与疟原虫对氯奎宁等治疗药物产生抗药性外,也与目前还没有找到一种经济有效对环境危害又小能代替DDT的杀虫剂有关。
基于此,世界卫生组织于2002年宣布,重新启用DDT用于控制蚊子的繁殖以及预防疟疾,登革热,黄热病等在世界范围的卷土重来。
因此,了解农药在土壤中的迁移转化规律,土壤对有毒化学农药的净化能力,对于预测其变化趋势,控制土壤和环境农药污染都具有重大意义。
为了弄清DDT在使用后,残余在土壤中如何被迁移和转化,我们开展了系列研究。
农药在土壤中的迁移转化过程农药进入土壤后会进行一系列复杂的物理\化学和生物过程,包括土壤吸附和解吸附\挥发\化学和生物降解\植物吸收\地表径流损失或者淋溶等(图1)[3],其中土壤吸附-解吸附和降解是两个最主要的过程。
土壤农残的迁移转化过程取决于农药本身的性质(如溶解性)\土壤理化性质(如微生物活性\有机质含量)和环境条件(如温度\降雨)的影响,土壤农残的行为和归趋取决于多种过程的综合作用。
1 吸附作用农药的吸附作用是指在离子键\氢键\电荷转移\共价键\范德华力\配体交换\疏水吸附和分配\电荷-偶极和偶极-偶极等作用力的共同作用下,农药吸附到土壤颗粒表面的过程[21],如阳离子农药百草枯和敌草隆可以与黏土矿物形成离子键而被强烈吸附,同时还能通过电荷转移和范德华力增强吸附。
农药吸附特性由吸附常数(kd)和有机碳标准化分配系数(koc)表示[22],kd表示土壤对农药的吸附能力,值越大则吸附能力越强。
农药自身的分子结构和理化特性均影响其在土壤中的吸附性[21]。
土壤理化性质包括有机质含量\黏土成分\PH\土壤的颗粒度等,这些指标均影响土壤的吸附作用,其中有机质是最大影响因素。
土壤有机质对有机农药有增溶和溶解作用,而且土壤有机质的腐殖酸结构中具有能与有机农药结合的特殊位点,其对有机农药还具有表面吸附作用,因此有机质含量越高吸附性能越高[23,24],研究发现吸附常数(kd)值与土壤有机质含量呈正相关[25]。
土壤PH对农药吸附性的影响与土壤成分和农药性质有关,土壤PH会影响弱酸\弱碱性物质的吸附,但是对非离子型化合物的吸附性影响较小[26]。
2 降解作用农药的降解又可分为生物降解和非生物降解2种方式。
在光\热及化学因子作用下发生的降解现象为非生物降解,非生物降解主要受土壤PH\湿度和温度的影响,而生物体作用下的降解过程属生物降解[26],生物降解是土壤农残的主要降解方式,一般表层土壤的生物降解速率更高。
土壤中农药的迁移一、土壤中农药的迁移农药在土壤中的迁移主要是通过蔓延(自身作用)和质体流淌(外力作用)两个过程。
在这两个过程中,农药的迁移运动可以蒸气的和非蒸气的形式举行。
1.蔓延蔓延是因为热能引起分子的不规章运动而使物质分子发生转移的过程。
分子由浓度高的地方向浓度低的地方迁移运动。
影响农药在土壤中蔓延的因素主要有以下几个方面。
(1)土壤水分含量农药在土壤中的蔓延存在气态和非气态两种蔓延形式。
在水分含量为400~20%之间气态蔓延占50%以上;当水分含量超过30%以上,主要为非气态蔓延,在干燥土壤中没有发生蔓延。
蔓延随水分含量增强而变幻,在水分含量为4%时,无论总蔓延或非气态蔓延都是最大的;小于4%,随水分含量增大,两种蔓延都增大;大于4%,总蔓延则随水分含量增大而削减;非气态蔓延,在4%~16%之间,随水分含量增强而削减;大于16%,则随水分含量增强而增大。
(2)土壤的吸附能力土壤的吸附使农药的蔓延系数降低,蔓延系数与土壤表面积呈负相关。
(3)土壤的紧实度提高土壤的紧实度就是降低土壤的孔隙率,农药在土壤中的蔓延系数随之降低。
(4)温度温度增高的总效应是蔓延系数增大。
(5)气流速度增强气流促进土壤表面水分含量降低,可以使农药蒸气更快地离开土壤表面,同时使农药蒸气向土壤表面运动的速度加快。
(6)农药种类不同农药的蔓延行为不同。
2.质体流淌质体流淌是由水或土壤微粒或是两者共同作用所引起的物质流淌,所以流淌的发生是因为外力作用的结果。
影响农药在土壤中质体流淌的因素主要有以下几个方面:①农药与土壤之间的吸附(最重要的因素);②土壤有机质的含量。
土壤有机质含量增强,农药在土壤中渗透深度减小,另外,增强土壤中黏土矿物的含量,也可削减农药的渗透深度;③土壤黏土矿物的含量;④农药的种类;⑤土壤自身的净化和流淌能力。
二、、非离子型农药与土壤有机质的作用 1.非离子型有机物在土壤一水体系的分配作用 (1)吸附作用有机物的离子或基团从自由水向土壤矿物的亚表面层蔓延,离子或基团以表面反应第1页共2页。
化学农药在土壤中的降解过程化学农药在土壤中的降解过程是指农药在土壤环境中逐渐分解、转化和消失的过程。
农药在土壤中的降解过程受到多种因素的影响,包括土壤性质、环境条件、农药特性等。
了解农药在土壤中的降解过程对于合理使用和环境保护具有重要意义。
农药在土壤中的降解主要通过生物降解、化学降解和物理降解等方式进行。
生物降解是指利用土壤中的微生物,通过一系列的生物化学反应将农药分解为无害的物质。
土壤中存在着丰富的微生物群落,这些微生物能够利用农药作为碳源或能源,通过代谢反应将其分解为水、二氧化碳和无害的化合物。
不同类型的农药对微生物的生物降解能力有不同的影响。
一些农药易于被微生物分解,而另一些则需要较长时间才能被降解完全。
化学降解是指农药在土壤中发生化学反应,通过分子间的相互作用而降解。
这些化学反应可以是氧化、水解、光解等过程。
土壤中的氧化还原环境、pH值、温度等因素都会影响农药的化学降解速率。
一些农药在碱性环境下易于水解,而在酸性环境下则较难降解。
物理降解是指农药在土壤中受到物理因素的作用而发生降解。
例如,农药可能被土壤颗粒吸附,从而减少其活性和毒性。
此外,农药还可能通过光照、温度等因素的作用而发生降解。
除了这些主要的降解方式外,还有其他一些因素也会影响农药在土壤中的降解过程。
例如,土壤中的有机质含量、土壤湿度、土壤通气性等都会对农药的降解速率产生影响。
有机质含量较高的土壤通常具有较好的微生物活性,从而加速了农药的降解过程。
此外,农药的特性也会对其在土壤中的降解过程产生影响。
不同类型的农药具有不同的毒性和稳定性,因此其在土壤中的降解速率也会有所差异。
一些高效广谱的农药可能会对土壤中的微生物产生抑制作用,从而减缓了其降解速率。
总体而言,农药在土壤中的降解过程是一个复杂而多样的过程。
了解农药在土壤中的降解过程有助于我们更好地控制和管理农药使用,减少对环境的污染。
同时,也有助于研发更环保、低毒性的农药产品,以促进可持续农业发展。