国际数学奥林匹克中的198个不等式问题
- 格式:doc
- 大小:17.50 MB
- 文档页数:48
20209几个含有二次根式的三元不等式宿晓阳(四川省成都实验外国语学校,四川成都611731)众所周知,不等式在数学中有重要的地位,无论是国际数学奥林匹克竞赛(IMO)、世界各国(地区)数学奥林匹克竞赛,还是国内各大高校自主招生数学考试,与不等式有关的试题频频出现,原因是不等式有各种难度,具有较强的挑战性,不仅可以很好地区分考生的水平,还可以反映考生的数学功底和创新水平.本文将给出几个新颖的含有二次根式的三元不等式,供参考与欣赏,同时为我们的英才教育提供一点新鲜血液.命题1设%、y、z是正实数,则TT-B2(4,B,C)7T-C2TT~A2于是有in扌+2zsin=.竺+竺+Zm2xsin£+2ysix y z2B2a—)(其中。
、…和be再由三角形恒等式.4sin——=2s分别为的三边和半周长),设s-a=x,s一b=y,s一c=z,贝V+y)(x+z)*汽z+%)*z2(x+y)7(y+z)(y+x)』(z+%)(z+y)......................................................................①证明:关于443(7的嵌入不等式为x2+y2+z22yzcos A+2z%cos B+2xycos C. ...............................................................................②于是有2z.Asin——=2yz*zxx y(%+y)(x+z)+子M2yzxyz+(%+y)(%+z) (%+y)(y+z)+2xxy(x+z)(y+z)•(说明:由于②式可变形为(X-ycosC-zcos B)2+(ysin C-zsin故②式成立)作代换同理乃+竺+竺x y zyz+(%+y)(%+z)2xZX(%+y)(y+z)+Oxy(X+z)(y+z)•两个不等式相加,得式cos纭+sin2(p=1或sec'(p-tan2^=1实施三角换元,其目的是变二元函数为一元三角函数•例3的三角换元之前把3/+/看成虽然换元后仍含有两个变量R和卩,但它们是“分离”的,可以看作两个独立变量进行处理•消去交叉项本文也提供了几种常用技巧,希望能给读者带来帮助.参考文献:[1]蒋宝童•用三角代换妙解几道征解题[J].中学数学教学,2017(4):76-79.20209yz zx xy 、—+ — + — (y+z)x y zyz(% + y) (% + z)+ (z + 兀)zx(% + y) (y + z)+ (% + y)xy(x + z) (y + z)在上述不等式中作代换:%, y, z)并化简,即得证式①.命题2设”、y 、z 是正实数,则%2(y + z) y 2(z + %)y + z M [/^5/2(72 + z 2) + z% 丿2 ( , + %2 )+ xy^2(x 2 + y 2) ]2. ............⑤由⑤式知,欲证④式,先试证2—(% 4- y + z) (%2 + y 2 + z 2)+y (% + y) (% + z) 丿(y + Z )(y + %)z 2(% + y)+• — yz + zx + xy.+ %) (z + y)同理可得2,丿(y +z)(y +兀) 兀 + yz 2( % + y) z y 2y Z4-———y + z 2, Z Xy ______________ M +------,丿(z +%)(z +y) J + z z + 兀y 2(z + %)将此三式相加,即不等式③成立.注:由①和③式,我们得到一个有趣的不等式链:设沢y 、z 是正实数,则2 , 2 , 2 _/(了 +Z )x + y + z 3——+V (x + y) (% + z)z 2(% + y)y 2(z + %)______________ H --- ' 八 M y (y + z) (y + x) y (z + x) (z + y)光y + yz + ZX.命题3设沢y 、z 是正实数,则1 1 1x y z③证明:先证(y + V (x + y)(z + %) M 2yz + zx + xy,(z + x) v(^ + y)(y + z ) + 2zx + xy ,(% +y) v(y +z)(z + %) yz + zx + 2xy.事实上,由二元柯西不等式,有a /(兀 + y) (z + 兀)M 兀 +,(y + z) M 2^yz ,于是有(y + z) /(x + y) (z + %)M (y + z) (% + %/yz)=(y + z) + z% + M 2yz + zx + xy.2(% + y + z) (%*2 + y 2 + z 2) M 3[yz^/2(y 2 + z 2) + z %\/2(22 + %2) + xy^/2(x 2 + y 2)]・...............................................................................④证明:由柯西不等式,有[yz(y+z) + z%(z + %) + %y(% + y)]・z{y 2 + z 2 ) * 2zx (z + x 2) * 2xy(x 2 + y 2)x + yZ + X 2同理可证明另外两式.因为x 2(y + z) _ %2(y + z)丿(% +/)(% +z)JJx + y) (% + z)(% + y)(兀 + z)%2( 2yz + z% + xy')(% + y) (x + z)x 2z(x + y) + x 2y(x + z)(x + y) (% + z)yz(y +z) + zx(z + %) + xy(x + y)2yz(y 2 + z 2)2zx (z 2 + x 2)M+y + zy + x* 2%y(% + y)................% + y⑥2又由不等式? M 2a -6(6 > 0),有(壬(% + y + z) (/ + y 2 + z 2)yz(y +z)z%(z+%) 4- %y(% + y)29-36欽学歙学2020年第9期M —(x + y + z) (x 2 + y2 + z 2 )_yz(y + z)zx(z + x) + xy(x + y)................................................................................⑦由上述不等式知欲证⑥式,试先证⑦式右边工⑥式右边...............⑧将⑥式右边的每一项拆为两项,如2yz(y 2 + z 2) / , 、,yz{y - z)2--------- =yz(y + z) + -------y + z -------------------------------y + z于是⑧式等价于4(% + y + z) (x 2 +y2 +z?) - 6[yz(y + z) + zx (z + %) + xy{x + y)]M 3Z X yz(y - 2)2 ^zx(z - %)2 %y(x - y)2 y + z z + %x + y ⑨⑨式左边=2[ (y 3 +z 3 -y 2z - yz 2) + (z 3 +%3 _z x _zx ) + (x 3 + y 3 -x 2y + xy 2) ] = 2[ (y - 2)(y 2 - z 2) + (z- x) (z 2 - %2) + (% _ y) (x 2 - y 2 )]二 2[(y+z)(y —z)2 + (^+%)(2 -x)2 +(% + y) - y)2],代入⑨式,化简得zF +y + z2z 2 + 2x 2 + z% z 、2 -------------------(z - %) +Z + Xlx 1 + 2y 2 + xy+ ________________________________^(y 2 +z 2)(y+z)(z 2 +x 2)(z+%)c 2 2Zz %+ ~ - —5/(22 +x 2)(z+%)(%2 +y 2)(A ;+y)N —(% + y+ z) + 2( y/xy + Vyz + y/zx ).x + y(% - y)2 M 0.此不等式显然成立,即⑥式成立,于是④式得证.命题4设咒、y 、z 是正实数,则M 73.⑩证明:先证:/ y 2 + Z > 石(y2 + z?) J 4x 2 + y 2 + z 2 2( x 2 + y 2 + z 2) '....................................⑪粧(z 1 + x 2)2(x 2 + y 2 + z 2)> 近(/ +贰)2(x 2 + y 1 +,)事实上,⑪式等价于2(x 2 + y? + z 2) M a /3 (y 2 + z 2) (4x 2 + y 2 + z 2)........................................⑫由二元均值不等式,有2(子 +卡 +,) = 32+/)+(4/ 仪+旳2M J 3 J 寸 +/)(4/ + y2 +/).即⑫式成立•所以⑪式成立.同理可证明另外两式.于是上述三式相加,即得⑩式.注:命题4强于不等式:设兀、y 、z 是正实数,则yz+M 76.+命题5设sy 、z 是正实数,则2 2________x _________+________y ________y(X 2 + /)(X + y) y (/ + Z 2) (y + z)2j+ /〒’ 二- 工〒(衣+ +広)・a /(z + x 2) (z + %) 2...................................⑬证明:⑬式两边平方,等价于不等式x 4 y 4-------------------------+-------------------------(x 2 + y 2)(x + y) (/ + z 2)(y + z)z 4+ -----9----------;----------------------(z +%)(z + x)c 2 22x y+ —■J (x 2 + y 2)(x + y) (y 2 + Z 2) (y + z)2y 2z 2⑭2020年第9期9-37由排序不等式,有7(x *2 + /) (% + y) (y 2 + z 2) (y + z)(/ +/)(^ + y) (y 2 +z 2)(y +z)2 2 ZX(22 +%2)(z+%)'于是知,欲证明⑭式,即先试证44y -----------?------------+------------丫_______(< + /) (x + y) (/ +,) (y + z)z i 小( x 2y 2+ -7-----;--------------+ 2 I — ---------------------(Z 2 +%2)(Z + %) \(/+y)(%+y)y 2z 2 z 2x 2+------------------------ +-----------------------(y 2 + z 2) (y + z) (z 2 + %2) (z + %)M 土[(兀 + y+ z) + 2( y/xy + + J~zx )]...............................................................................⑮+ z 2) (y + 2) (z 2 + x 2) (z + x)a /(z 2 +x 2)(^+x )(x 2 +y 2)(x +y)2 2 2 2% yy zy 16%2/2(/ + y 2)(x + y)16z 2%2(z 2 + x 2) (z + %)4(/+y4)(%2 + y 2) (X + y) J 4(/+/) 1(/ +,) (y + z)'4(/+/)(z 2 + %2) (z + x)」16y 2z 2(/ + z?) (y + z)[兀 + y + 4 y/xy • [y + z + 4 J~yz[z + % + 4 y/zx⑯欲证明⑯式,即证明16x 2y 2o . M%+y + 4 -/xy 一W+y2)(%+y)4(%4 + y 4)(%2 + /)(% + y)'16%2y 2 + 4(%4 + y 4) M (% + y + 4\/xy ) (^2 +/)(% + y)..................................⑰设% + y = a, y/xy = b,则⑰式为3a 4 一 4a 3b 一 14a 2b 2 + Sab 3 + 2464 > 0,即(a - 26)2( 3a 2 + Sab + 6b 2) M 0.此式显然成立,即⑰式成立,故⑬式得证.注:命题5类似于1988年Walther Janous在加拿大数学杂志Curx 提岀的如下问题:又易知y入 )_______________________J乙(/ + /)(% + y) (y 2 +,) (y + z)(z 2 + x 2) (% + x)所以⑮式等价于设兀、y 、z 是正数求证:•兀 + —y/x + y ~Jy + z此题曾被选为2014年印度尼西亚国家集 训队选拔考试题.(上接第9-7页)[9] 朱立明,胡洪强,马云鹏.数学核 心素养的理解与生成路径——以高中数学 课程为例[J].数学教育学报,2018, 27(1 ) : 42 -46.[10] 徐彦辉•论数学计算及其教学[J].数学教育学报,2011,20(2): 19-22.[11] 喻平•数学核心素养的培养:知识 分类视角[J]•教育理论与实践,2018,38( 17): 3 — 6.[12] 张奠宙,马文杰•简评“数学核心素养”[J].教育科学研究,2018(9):62-66.。
高中数学奥赛讲义:竞赛中常用的重要不等式第一篇:高中数学奥赛讲义:竞赛中常用的重要不等式高中数学奥赛讲义:竞赛中常用的重要不等式【内容综述】本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用【要点讲解】目录§1 柯西不等式§2 排序不等式§3 切比雪夫不等式★ ★ ★§1。
柯西不等式定理1 对任意实数组恒有不等式“积和方不大于方和积”,即等式当且仅当本不等式称为柯西不等式。
时成立。
思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。
证明1∴右-左=当且仅当思路2 注意到证明2当当定值时,等式成立。
时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。
时等式成立;时,注意到=1故当且仅当且(两次放缩等式成立条件要一致)即同号且常数,亦即思路3 根据柯西不等式结构,也可利用构造二次函数来证明。
证明3 构造函数由于。
恒非负,故其判别式即有等式当且仅当若常数时成立。
柯西不等式显然成立。
例1 证明均值不等式链:调和平均数≤算术平均数≤均方平均数。
证设本题即是欲证:本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法(1)先证注意到此即由柯西不等式,易知②成立,从而①真欲证①,即需证②①(11)再证欲证③,只需证, ③而④即要证④⑤(注意由柯西不等式,知⑤成立.(Ⅰ)(Ⅱ)中等式成立的条件都是)即各正数彼此相等.说明:若再利用熟知的关系(★)(其中,结合代换,即当且仅当式链时,等式成立,说明★的证明参见下节排序不证式或数学归纳法,这样就得到一个更完美的均值不等其中等式成产条件都是§2.排序不等式定理2设有两组实数,.满足则(例序积和)(乱序积和)(须序积和)其中是实数组时成立。
一个排列,等式当且仅当或说明本不等式称排序不等式,俗称例序积和乱序积和须序积和。
证法一.逐步调整法首先注意到数组也是有限个数的集合,从而也只有有限个不同值,故其中必有最大值和最小值(极端性原理)。
初等不等式证明一、基本不等式及应用基本不等式是指已被人们证明了的较为常用的不等式,它常被当作定理,用于证明其他一些不等式.基本不等式在许多不等式专著中都作过介绍.这里给出几个常用的基本不等式. 1. 平均值不等式设12,,,n a a a ⋅⋅⋅是n 个正实数,记12111n nn H a a a =++⋅⋅⋅+,n G =12n n a a a A n ++⋅⋅⋅+=,n Q =, 分别称n n n n H G A Q 、、、为这n 个正数的调和平均、几何平均、算术平均和平方平均,则有n n n n H G A Q ≤≤≤, 当且仅当12n a a a ==⋅⋅⋅=时取等号.2. 柯西(Cauchy )不等式 设,(1,2,,)i i a b R i n ∈=⋅⋅⋅,则 222111()()()nn ni i i i i i i a b a b ===≤∑∑∑,当数组12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅不全为零时,当且仅当(1,2,,,0)i i b a i n λλ==⋅⋅⋅≠时取等号.3. 排序不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤,则 有1211n n n a b a b a b -++⋅⋅⋅+ (反序和) 1212n i i n i a b a b a b ≤++⋅⋅⋅+ (乱序和) 1122n n a b a b a b ≤++⋅⋅⋅+ (同序和)当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时取等号.4. 琴生(Jensen )不等式设连续函数()f x 的定义域为(,)a b ,如果对于(,)a b 内的任意两个数12,x x ,都有1212()()()22x x f x f x f ++≤, 则称()f x 为(,)a b 上的凸函数.若上式不等式反号,则称()f x 为(,)a b 上的凹函数.若()f x 为(,)a b 上的凸函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≤++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.若为(,)a b 上的凹函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有 12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≥++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.5. 贝努利(Bernoulli )不等式 设1x >-,若0α<,或1α>-,则 (1)1x x αα+≥+. 若01α<<,则(1)1x x αα+≤+.当且仅当0x =时,以上两式均取等号. 6. 赫尔德(H ǒlder )不等式设,,,(1,2,,)i i i a b l R i n +⋅⋅⋅∈=⋅⋅⋅,又,,,R αβλ+⋅⋅⋅∈,且1αβλ++⋅⋅⋅+=,则有1111()()()nn n nii i i i i i i i i ab l a b l αβλαβλ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑,.当且仅当111(1,2,,)kkknnni i ii i i a b l k n a b l=====⋅⋅⋅==⋅⋅⋅∑∑∑时取等号.特别当1nαβλ==⋅⋅⋅==时,有 11111[()]()()()nn n nnn i iii i i i i i i a b l a b l ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑.7. 切比雪夫(Chebyshev)不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≥≥⋅⋅⋅≥,则有111111()()n n ni i i i i i i a b a b n n n ===≥∑∑∑.若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≥≥⋅⋅⋅≥,或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≤≤⋅⋅⋅≤, 则有111111()()n n ni i i i i i i a b a b n n n ===≤∑∑∑.当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时以上两式均取等号.8. 加权幂平均不等式设,(1,2,,)i i a p R i n +∈=⋅⋅⋅,,r s R ∈,且r s <,则111111nnrsrsi i i i i i nn i i i i p a p a p p ====⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪≤⎪⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑, 当且仅当12n a a a ==⋅⋅⋅=时取等号. 9. 其他(1)设,,,,,x y z R αβγ∈,且(21)k αβγπ++=+(k Z ∈),则 i ) 2221cos cos cos ()2yz zx xy x y z αβγ++≤++ 当且仅当sin sin sin yz zx xy αβγ==时取等号.ii ) 22221sin sin sin ()4yz zx xy x y z αβγ++≤++, 当且仅当sin 2sin 2sin 2yz zx xy αβγ==时取等号. (2) 设,,1,2,,,ij x R i j n ∈=⋅⋅⋅则1n i =≥,当且仅当123::::i i i ni x x x x λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(3)设,,,,i i i i x y z l R -⋅⋅⋅∈,22220i i i i x y z l ---⋅⋅⋅-≥,1,2,3,,i n =⋅⋅⋅,则1ni =≤当且仅当::::i i i i x y z l λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(4)两个有用定理定理1 设,,u v R λ+∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,x =,y =i ) 23()61(xy xy xy +---(1)(2)3283()61(x xy xy xy ≤≤+-+-ii )23()61(xy xy xy +---(3)(4)3283()61(y xy xy xy ≤≤+-+-.当且仅当,,u v λ中有两个数相等且不小于第三个数时,(1)、(4)两式取等号;当且仅当,,u v λ中有两个数相等,且不大于第三个数时,(2)、(3)两式取等号.推论1 同定理1条件,有(5)(6)324(1)4(1)164129()219595xy xy xy x xy xy xy xy ---+≤≤++---;(7)(8)324(1)4(1)164129()219595xy xy xy y xy xy xy xy ---+≤≤++---当且仅当u v λ==时,(5)、(6)、(7)、(8)四式取等号.推论2 同定理1条件,有x ≤≤3(11)(12)12728972x y x x-+++≤≤,当且仅当u v λ==时,(9)、(10)、(11)、(12)四式均取等号.定理2 设,,u v R λ∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,w =(10w s ≤≤),则32322323(13)(14)11111111332(2)()(2)()3227272727s s w w s w s w s w s w s s w w s ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于113s 时,(13)式取等号;当且仅当,,u v λ中有两个数相等,且不大于113s 时,(14)式取等号. 推论3 同定理2条件,特别当11s =时,有232223(15)(16)132(12)(1)(12)(1)132********w w w w w w w w uv λ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于13时,(15)式取等号;当且仅当,,u v λ中有两个数相等,且不大于13时,(16)式取等号. 注:在应用定理2与其推论3时,要特别注意120w -≤的情况,有时要对120w -≤和120w -≥分别加以讨论,尤其在0u λν≥时的情况.(一) 算术几何平均值不等式应用例子 例1 已知 ,1,2,i a R i +∈=…,n, 且11nii a==∑,求证()()()()3122311*********n n n n a a a a a a a a n -++⋅⋅⋅++≥+++++ (1) 当且仅当 121n a a a n==⋅⋅⋅==时,(1)式取等号.例2 (20XX 年全国十八所奥赛协作体学校试题)设 ,,,a b c R +∈且 1bc ca ab ++=,求证1abc≤ (2) 提示 由1bc =≥∑知,可证更强式(3)⇔3 (※)例3 (2005,第17届亚太地区数学奥林匹克)设 ,,,x y z R +∈且 8xyz =,则243≥(4) 当且仅当2x y z ===时,(4)式取等号.注:由本题证明中可知,若将条件改为12yz zx xy ++≥,结论也成立.例4 (自创题,2006.12.17) 设,,a b c R +∈,则> (5)例 5 (自创题,1988.10.13)设同一平面上两个凸四边形的边长分别为,,,a b c d 和,,,a b c d '''',面积分别为∆和'∆,那么aa bb cc dd ''''+++≥ (6) 当且仅当这两个凸四边形都内接于圆(不一定要同一个圆),且 ()()()s a s a s b ''--=-⋅()()()()()s b s c s c s d s d ''''''-=--=--时,(6)式取等号. 这里1()2s a b c d =+++,1()2s a b c d '''''=+++.附: 凸四边形ABCD 四边长分别为AB a =,BC b =,CD c =,DA d =,当且仅当此四边形ABCD 内接于圆时,其面积最大,最大值为max ()ABCD S =(7)例6 (自创题,2006.12.26)设,,,a b c d R -∈,则32222()4[()()()()]a a c d b d a c a b d b c ≥+++++++∑ (8)当且仅当a c =,b d =时,(8)式取等号.例7 设,,x y z R -∈,求证 25()81x xyz x ≥⋅∑∑ (9)当且仅当x y z ==时,(9)式取等号.(二) 柯西不等式应用例子 例1 设,i i x y R ∈,1,2,,i n =⋅⋅⋅,且10nii x=≥∑,10ni i y =≥∑,10i j i j nx x ≤<≤≥∑,10i j i j ny y ≤<≤≥∑,1ni i x x ==∑,则1()niii x x y=-≥∑ (1)yxdc baDCBA当且仅当1212n nx x x y y y ==⋅⋅⋅= 时,(1)式取等号. 在(1)式中,当3n =时,被人们称之为“母不等式”.即以下 命题1:设123123,,,,,x x x y y y R ∈,且10x≥∑,10y ≥∑,120x x ≥∑,120y y ≥∑,则231()xx y +≥∑ (2)当且仅当312123x x x y y y ==时,(2)式取等号. 命题1应用如下:1.(匹多不等式)ABC ∆与'''A B C ∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2222()16ab c a ''-++≥∆∆∑ (3) 当且仅当ABCA B C '''∆∆时,(3)式取等号. 提示:取222x a b c =-++,2222x a b c ''''=-++等,并应用三角形面积公式.2.(程灵提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()a b c a '-++≥∑ (4)当且仅当ABC ∆与'''A B C ∆均为正三角形时,(4)式取等号.提示:在(2)中取1x a b c '''=-++,1y a b c =-++等,并应用到22bc a-∑∑≥.3.(安振平提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2()()16a b c a b c a ''-++-≥∆∆∑ (5)当且仅当222()()()a b c a a b c b a b c c a b c '''==-++-++-时,(5)式取等号.提示:在(2)中取2221x a b c '''=-++,1()()y a b c a b c =-++-等.4.(自创题,1983.05.07)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()()()16a a b c a b c a b c '''''''-++-++-≥∆∆∑ (6)当且仅当ABCA B C '''∆∆时,(6)式取等号.提示:在(2)中取1()()x a b c a b c =-++-,1()()y a b c a b c ''''''=-++-等. 以上(3)式与(6)式有相同的取等号条件,试讨论他们左边式子的大小.5. 设ABC ∆三边长为,,BC a CA b AB c ===,面积为∆,P 为ABC ∆内部或边界上一点,从P 分别向三边BC 、CA 、AB 所在直线作垂线,垂足分别为D 、E 、F ,记1PD r =,2PE r =,3PF r =,则223242r r bc a∆≤-∑∑∑. (7) 提示:12342()()ar a b c r r ∆==-+++∑∑≥≥.我们还可以由(2)式得到或证明更多不等式.又如第六章,“三角几何不等式”中的例6、例22等.注:类似上述方法,应用赫尔德不等式,有 命题 设x ,,i i i y z R -∈,1,2,3i =,则123123123111222333()()()()x x x y y y z z z x y z x y z x y z ++++++-++≥.(8)例2 (自创题,1988,0.4.20)设,,,,x y z w R λ∈,且0,0xy zw >>,2λ≤,则≤(9)=时,(9)式取等号.注:(9)式可参阅由吴康主编的《奥赛金牌之路》(高中数学)“第一章 §6 三角不等式”(P81—P90),本节系杨学枝所写.利用同上证法可得以下命题(自创题):设,,,x y z w R +∈,(21)k αβγθπ+++=+ ()k z ∈,则sin sin sin sin x y z w αβγθ+++≤(10)当且仅当,cos cos cos cos x y z w αβγθ=== 时,(9)式取等号.(10)式为笔者首创,可参见同上吴康主编的《奥赛金牌之路》(高中数学)P82. 本命题在《中等数学》杂志社组织的数学竞赛命题评奖中,获一等奖.本命题也可参见《中等数学》,1989年第二期,杨学枝文:《对一个三角不等式的再探讨》.例3 a ,i i b R ∈,1,2,,i n =⋅⋅⋅,则1112nnni i i i i i i a b a b n ===≥∑∑∑. (11) 注:(11)式是一个值得关注的不等式,如取3n =时,可证20XX 年中国国家队培训题:,,,,,a b c x y z R ∈,满足()()3a b c x y z ++++=,222222()()4a b c x y z ++++=,求证0ax by cz ++≥.例4 设a,,b c R +∈,且3a b c ++=,则2232a ab ≥+∑. (12)例5 (20XX 年.IMO.46)已知x,y,z ∈R +,且 1xyz ≥,求证525220x x x y z-≥++∑ (13)例6 (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(14)例7 a,b,c 为正数,证明22224()a b c a b a b c b c a a b c-++≥+++++, (15) 当且仅当a c b >>,且a b c a c a b c b==---,即a c b >>且3322b c b c +=时,(15)式取等号.例8 (20XX 年国家集训队测试题)设,,,x y z R -∈且1x y z ++=,求证+≤ (16)例9 (自创题,1987.07.20) 设 ,,,x y z w R +∈,则 ()2918x x x xy xz xw yz yw zw +⋅≥+++++∑∑∑ (17)当且仅当 x y z w === 时,(17)式取等号.注:(17)式可推广为:设 ,1,2,,i x R i n +∈=⋅⋅⋅,则111n ni i i i x x ==⋅≥∑∑()()2212112n i i i ji j jn x n n x x =≤<≤⎛⎫- ⎪⎝⎭--∑∑ (18) 当且仅当12n x x x ==⋅⋅⋅=时,(18)式取等号.若记11ni i s x ==∑,21i j i j ns x x ≤<≤=∑,12n n s x x x =⋅⋅⋅,111n n s s x -=∑,则(18)式可写成如下形式:22212121(2)(1)n n n s s s n n s s n s s -+-≥-.例10 (陈计,2008.08.29提供)对正数,,,a b c d 及0k ≥,有 41a b c d b kd c ka d kb a kc k+++≥+++++. (19)例11 (自创题,2010.11,09)设,,x y z R +∈,求证322x x xy y ≥++∑ (20) 当且仅当1x y z ===时(20)式取等号.注:猜想 设,,x y z R +∈,有322x x xy y ≥++∑322x x xy y≥++∑.例12 设,,,..a b c x y z 非负,且a b c x y z ++=++,则()()()3()ax a x by b y cz c z abc xyz +++++≥+. (21)例13 (第50届IMO 金牌得主林博提出的猜想)设,,0a b c ≥,求证2a ≤∑∑. (22)例14(自创题,2001.02.02)设,,x y z R +∈,且4yz zx xy xyz +++≤,则x y z yz zx xy ++≥++. (23) 注:1.用类似方法,可证以下命题 设,,p q r R -∈,,,x y z R ∈,且14p q r pqr +++≤,则222px qy rz yz zx xy ++≥++. (24) 2. 第48届国际数学奥林匹克中国国家集训队有一道测试题(20XX 年3月)与其相似.题目 设正实数,,u v w满足4u v w ++=,求证u v w ++. (25)x =y =z =,则原命题等价于:,,x y z R +∈,且4yz zx xy xyz +++=,则x y z yz zx xy ++≥++ ① 式证明可见《数学奥林匹克不等式研究》第八章章练习题64中i ).例15(第48届IMO 中国国家集训队测试题)设正数12,,,n a a a ⋅⋅⋅,满足12a a +1n a +⋅⋅⋅+=,求证1212231222223311()()1n n a a a na a a a a a a a a a a a n ++⋅⋅⋅+++⋅⋅⋅+≥++++ (26)例16 已知221,a b kab +-= 221c d kcd +-=,,,,,a b c d k R ∈,且 2k <,求证ac bd -≤(27)当且仅当()()()()22a b c d k k a b c d ---=+++,即bc ad k ac bd +=+时,(27)式取等号.例17. (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(28)3. 其他基本不等式应用例子 例1 设,,x y z R -∈,则4+≤(1)()2x y z ≤++,例2 (自创题,2010.07.03) 若,,a b c 为满足1a b c ++=的正数,19λ≥,则 31()()()(3)3a b c b c a λλλλ+++≥+, (3)推广式,即有以下命题 若12,,,n a a a ⋅⋅⋅为满足11ni i a ==∑的正数,21n λ≥,则 122311()()()()n n a a a n a a a nλλλλ++⋅⋅⋅+≥+, (4) 当且仅当121n a a a n==⋅⋅⋅==时,(4)式取等号.例3 (自创题,2010.07.03)若,,a b c 为满足1abc ≥的正数,23λ≥,则)a b c ≤++, (5)当且仅当1a b c ===时,(5)式取等号.推广式以下命题 若12,,,n a a a ⋅⋅⋅为满足121n a a a ⋅⋅⋅≥的正数,11nλ≥-,则11nni i i a ==≤, (6)当且仅当121n a a a ==⋅⋅⋅==时,(6)式取等号.例4(《不等式研究网站》,“竞赛不等式”专栏,20XX 年1月6日,陈胜利老师提出) 设,,0a b c >,且1abc =,求证2112()3a a ≥+-∑ (7)例5 (王雍熙,2011.08.22提供)设,,a b c R -∈,且2a a ≥∑∑,则31aabc bc +≥+∑∑. (8)本题可推广,见以下例6.例6(自创题,2011.08.22)设i a R -∈,1,2,,i n =⋅⋅⋅,2n ≥,记i a (1,2,,i n =⋅⋅⋅)中每k (1,2,,k n =⋅⋅⋅),个乘积之和为k s ,m 为不大于n 的正整数,且211n ni ii i a a==≥∑∑,则11352411+s 1nn n n ii n n s n s n as s s s n sn --=-⎧⎧++≥+++⋅⋅⋅+⎨⎨⎩⎩∑(为奇数)(为奇数)(为偶数)(为偶数), (9)二、其他方法证明不等式例子例1 (自创题,2006.08.25)设,,x y z R -∈,且2222x y z xyz +++1≤,则 142xyz yz +≥∑, (1)当且仅当12x y z ===,或,,x y z中一个为零,另外二个均等于2时,(1)式取等号.例2(20XX 年全国高中数学联赛A 卷加试题3)给定整数2n >,设正实数12,,,n a a a ⋅⋅⋅满足1,1,2,,k a k n ≤=⋅⋅⋅,记12,1,2,,kk a a a A k n k++⋅⋅⋅+==⋅⋅⋅.求证: 1112nnk k k k n a A ==--<∑∑. (2)例 3 已知123123a a a b b b ++=++,122331122331a a a a a a a a a a a a ++=++,若123123min{,,}min{,,}a a a b b b ≤,求证: 123123max{,,}max{,,}a a a b b b ≤.注. 本例可推广.例4 (自创题,2007.12.28)设,,a b c R +∈,且1bc =∑,则21142a bc ≥-+∑, (3)当且仅当a b c ===时取等号.例5 (宋庆老师在《中学数学研究》(广东),20XX 年第1期,文“两个优美的无理不等式”中提出的猜想) 若,,0a b c >,满足1a b c ===,则≥(4)例6 .(20XX 年,Serbian 数学奥林匹克试题) 已知,,a b c 是正数,且1a b c ++=,证明127131bc a a≤++∑. (5)例7(陈计,2008.05.04提供)设,,a b c R ∈,n N ∈,则 2[()()]4[()][()]n n n b c b c b c bc b c +-≥--∑∑∑. (6)例8 (自创题,2008.05.07)设,,a b c R -∈,求使22222233()()()(2)()b c bc c a ca a b ab abc a b c λλλλ++++++≥+++ 成立的最大正数λ的值.例9 (自创题,2008.08.30)设1122,,,a b a b R ∈,且222221122a b a b m -=-=,则2212211122211221122()()()()()4()()a b a b m a b a b a b a b m a b a b ++-+++≥++-++, (7) 当且仅当22211a b m -=,12a a =,12b b =时,(7)式取等号.例10 (江苏高三学生顾振同学2010.08.06提供)设,,x y z R -∈,且2221x y z ++=,则411x yzx xyz≤--∑∑∑ , (8)当且仅当3x y z ===,或,,x y z中,有一个为零,其余两个都等于2时,(8)式取等号.例11 (自创题,2005.12.04)设,,a b c R +∈,且1a b c ++=,则3)5)1080abc abc bc -+≥∑ (9)当且仅当13a b c ===,或,,a b c中有一个等于33-,另外两个都等于6时,(9)式取等号.例12(自创题,2007.09.18)设,,a b c R +∈,且1a b c ++=,则271481abc a-≤∑ (10)当且仅当13a b c ===,或,,a b c 中一个等于23,其余两个都等于16时,(10)式取等号.例13 (美国,Pham Kim Hung )设,,a b c 是三角形三边长,则222a b a b a≥+∑∑∑, (11) 当且仅当ABC ∆为正三角形时,(11)式取等号.例14 “奥数之家”2010.03.31,“476934847”提出: 设,,a b c R +∈,则22222()3a b c a c b c a a b c -++≥+++. (12)例15 假设P 、Q 、R 分别是ABC 的三边BC 、CA 、AB 上三点,且满足13AQ AR BR BP CP CQ +=+=+=,则12PQ QR RP ++≥(13)注:1. 关于本题,有其深刻的背景,可参阅杨之所著《初等数学研究的问题和课题》P297~298;或参阅《数学通讯》1991年第2期“问题征解”栏目杨学枝解答及编者评语;或参阅《中学数学教学参考》(陕西),1992年第6期,杨学枝文《一个几何不等式的再加强》;或参阅《数学通讯》1996年第10期,杨学枝文《从一道命题谈起》:也可以参阅杨学枝主编《不等式研究》(西藏人民出版社,2000年6月出版)一书中杨路教授写的“序”;还可以参阅杨学枝著《数学奥林匹克不等式研究》(哈尔滨工业大学出版社,20XX 年8月出版)一书中杨路教授写的“序”;还可以参见《UNIV, BEOGRAD. PUBL. ELEKTKOTEHN.FAKser. Mat.4(1993).25~27.陈计与杨学枝文:《ON A ZIRAKZADEH INEQUALITY RELATED TO TWO TRIANGLES INSCRIBED ONE IN THE OTHER 》.2. 由以上所得重要不等式1()()(cos cos cos )3QR RP PQ a b c a b c A B C ++≥++-++++(14) 可得较(13)式更强的不等式33339()()8QR RP PQ BC CA AB ++≥++ (15)3. 《福建中学数学》,1996年第4期.杨学枝文:《对一道猜想题的证明》中,用与(13)式的类似证法,给出了2221()4RP PQ PQ QR QR RP BC CA AB ⋅+⋅+⋅≥++ (16)其中,,P Q R 分别为,,BC CA AB 边上的周界中点.。
历届美国数学奥林匹克试题集美国数学奥林匹克(简称USAMO)历史悠久,始于1938年,它是一场美国学生数学挑战赛,旨在识别最杰出的高中数学学者。
下面就是历届美国数学奥林匹克的试题集:一、1938-1962年USAMO试题1、1938年:给出一个三角形的三边,求面积;2、1939年:讨论旋转半径与直径之比的一般性质;3、1940年:定义无限小的超越数,根据某假设,求这个超越数的值;4、1941年:讨论圆柱体表面积与体积的关系;5、1942年:求取3个不相交的、边长为a、b、c的三角形三角形内部与边长有关的值;6、1943年:用三角函数分析,求取某数字列中元素的平均值;7、1944年:根据若干条件求取某个矩形的面积;8、1945年:用三角函数分析求解一个双曲线曲线积分;9、1946年:讨论如何用三角函数求取某区域的面积;10、1947年:讨论以二次函数求取某直线的最大值;11、1948年:用函数渐近方程求取平面上的点的垂直距离;12、1949年:证明某系统的某凸多面体的面积;13、1950年:论及某曲线的长度;14、1951年:用泰勒级数求取某函数值;15、1952年:设计一个实验,用来测量椭圆面积;16、1953年:证明某函数满足一定性质;17、1954年:论及某非凸多面体的三角形边界;18、1955年:用代数方法求取某系统的某函数的分式;19、1956年:求解拉格朗日错误现象的数学模型;20、1957年:书写一个数学程序,用来迭代某函数;21、1958年:论及一元二次方程组的一般性质;22、1959年:求取某函数对某范围的极限;23、1960年:证明某二维函数的最大值与最小值;24、1961年:分析和讨论某系统的特定性质;25、1962年:用数学语言解释某物理系统的相关性质。
二、1963-1984年USAMO试题1、1963年:讨论一元二次方程的不定实根的情况;2、1964年:求取某带因变量的积分;3、1965年:设计一个实验来测量阶乘的值;4、1966年:利用欧拉公式讨论某椭圆的性质;5、1967年:根据(lLp)型的数列求取相应的递推式;6、1968年:用拉格朗日不等式求取某函数的极值点;7、1969年:说明某曲线的曲率、弧长、弧径之间的关系;8、1970年:给出一组数据,求取其中元素的平均数;9、1971年:证明某四次方程的全等式;10、1972年:用数学语言描述某系统的动作;11、1973年:分析牛顿迭代公式在求取函数局部极值时的作用;12、1974年:测算某函数的最大值;13、1975年:给出若干条件,根据某函数的极限求取最大值。
A4 整除A4-001 证明:当且仅当指数n不能被4整除时,1n+2n+3n+4n能被5整除.【题说】1901年匈牙利数学奥林匹克题1.【证】容易验证14≡24≡34≡44 (mod 5)假设n=4k+r,k是整数,r=0,1,2,3.则S n=1n+2n+3n+4n≡1r+2r+3r+4r(mod 5)由此推出,当r=0时,S n≡4,而当r=1,2,3时,S n≡0(mod 5).因此,当且仅当n不能被4整除时,S n能被5整除.A4-002 证明:从n个给定的自然数中,总可以挑选出若干个数(至少一个,也可能是全体),它们的和能被n整除.【题说】1948年匈牙利数学奥林匹克题3.【证】设a1,a2,…,a n是给定的n个数.考察和序列:a1,a1+a2,a1+a2+a3,…,a1+a2+…+a n.如果所有的和数被n除时余数都不相同,那么必有一个和数被n除时余数为0.此时本题的断言成立.如果在n个和数中,有两个余数相同(被n除时),那么从被加项较多的和数中减去被加项较少的和数,所得的差能被n整除.此时本题的断言也成立.A4-003 1.设n为正整数,证明132n-1是168的倍数.2.问:具有那种性质的自然数n,能使1+2+3+…+n整除1·2·3…·n.【题说】1956年上海市赛高三复赛题1.【解】1.132n-1=(132)n-1,能被132-1,即168整除.2.问题即何时为整数.(1)若n+1为奇质数,则(n+1)2(n-1)!(2)若n+1=2,则(n+1)|2(n-1)!(3)若n+1为合数,则n+1=ab其中a≥b>1.在b=2时,a=n+1-a≤n-1,所以a|(n-1)!,(n+1)|2(n-1)!在b>2时,2a≤n+1-a<n-1,所以2ab|(n-1)!更有(n+1)|2(n-1)!综上所述,当n≠p-1(p为奇质数)时,1+2+…+n整除1·2…·n.A4-004 证明:如果三个连续自然数的中间一个是自然数的立方,那么它们的乘积能被504整除.【题说】 1957年~1958年波兰数学奥林匹克三试题1.【证】设三个连续自然数的乘积为n=(a3-1)a3(a3+1).(1)a≡1,2,-3(mod 7)时,7|a3-1.a≡-1,-2,3(mod 7)时,7|a3+1.a≡0(mod 7)时,7|a3.因此7|n.(2)当a为偶数时,a3被8整除;而当a为奇数时,a3-1与a3+1是两个相邻偶数,其中一个被4整除,因此积被8整除.(3)a≡1,-2,4(mod 9)时,9|a3-1.a≡-1,2,-4(mod 9)时,9|a3+1.a≡0,±3(mod 9)时,9|a3.因此9|n.由于7、8、9互素,所以n被504=7×8×9整除.A4-005 设x、y、z是任意两两不等的整数,证明(x-y)5+(y-z)5+(z-x)5能被5(y -z)(z-x)(x-y)整除.【题说】1962年全俄数学奥林匹克十年级题3.【证】令x-y=u,y-z=v,则z-x=-(u+v).(x-y)5+(y-z)5+(z-x)5=u5+v5-(u+v)5=5uv(n+v)(u2+uv+v2)而 5(y-z)(z-x)(x-y)=-5uv(u+v).因此,结论成立,而且除后所得商式为u2+uv+v2=x2+y2+z2-2xy-2yz-2xz.【别证】也可利用因式定理,分别考虑原式含有因式(x-y),(y-z),(z-x)以及5.A4-006 已知自然数a与b互质,证明:a+b与a2+b2的最大公约数为1或2.【题说】1963年全俄数学奥林匹克八年级题4.【证】设(a+b,a2+b2)=d,则d可以整除(a+b)2-(a2+b2)=2ab但由于a、b互质,a的质因数不整除a+b,所以d与a互质,同理d与b互质.因此d=1或2.A4-007 (a)求出所有正整数n使2n-1能被7整除.(b)证明:没有正整数n能使2n+1被7整除.【题说】第六届(1964年)国际数学奥林匹克题1.本题由捷克斯洛伐克提供.解的关键是找出2n被7除所得的余数的规律.【证】(a)设m是正整数,则23m=(23)m=(7+1)m=7k+1(k是正整数)从而 23m+1=2·23m=2(7k+1)=7k1+223m+2=4·23m=4(7k+1)=7k2+4所以当n=3m时,2n-17k;当n=3m+1时,2n-1=7k1+1;当n=3m+2时,2n-1=7k2+3.因此,当且仅当n是3的倍数时,2n-1能被7整除.(b)由(a)可知,2n+1被7除,余数只可能是2、3、5.因此,2n+1总不能被7整除.A4-008 设k、m和n为正整数,m+k+1是比n+1大的一个质数,记C s=s(s+1).证明:乘积(C m+1-C k)(C m+2-C k)…(C m+n-C k)能被乘积C1·C2·…·C n整除.【题说】第九届(1967年)国际数学奥林匹克题3.本题由英国提供.【证】C p-C q=p(p+1)-q(q+1)=p2-q2+p-q=(p-q)(p+q+1)所以(C m+1-C k)(C m+2-C k)…(C m+n-C k)=(m-k+1)(m-k+2)…(m-k+n)·(m+k+2)(m+k+3)·…·(m+k+n+1)C1C2…C n=n!(n+1)!因此只需证=A·B是整数.由于n个连续整数之积能被n!整除,故A是整数.是整数.因为m+k+1是大于n+1的质数,所以m+k+1与(n+1)!互素,从而(m+k+2)(m+k+3)…(m+k+n+1)能被(n+1)!整除,于是B也是整数,命题得证.A4-009 设a、b、m、n是自然数且a与b互素,又a>1,证明:如果a m+b m能被a n+b n整除,那么m能被n整除.【题说】第六届(1972年)全苏数学奥林匹克十年级题1.【证】由于a k+b k=a k-n(a n+b n)-b n(a k-n-b k-n)a l-b l=a l-n(a n+b n)-b n(a l-n+b l-n)所以(i)如果a k+b k能被a n+b n整除,那么a k-n-b k-n也能被a n+b n整除.(ii)如果a l-b l能被a n+b n整除,那么a l-n+b l-n也能被a n+b n整除.设m=qn+r,0≤r<n,由(i)、(ii)知a r+(-1)q b r能被a n+b n整除,但0≤|a r+(-1)q b r|<a n+b n,故r=0(同时q是奇数).亦即n|m.A4-010 设m,n为任意的非负整数,证明:是整数(约定0!=1).【题说】第十四届(1972年)国际数学奥林匹克题3.本题由英国提供.易证 f(m+1,n)=4f(m,n)-f(m,n+1)(1)n)为整数,则由(1),f(m+1,n)是整数.因此,对一切非负整数m、n,f(m,n)是整数.A4-011 证明对任意的自然数n,和数不能被5整除.【题说】第十六届(1974年)国际数学奥林匹克题3.本题由罗马尼亚提供.又两式相乘得因为72n+1=7×49n≡2×(-1)n(mod 5)A4-012 设p和q均为自然数,使得证明:数p可被1979整除.【题说】第二十一届(1979年)国际数学奥林匹克题1.本题由原联邦德国提供.将等式两边同乘以1319!,得其中N是自然数.由此可见1979整除1319!×p.因为1979是素数,显然不能整除1319!,所以1979整除p.A4-013 一个六位数能被37整除,它的六个数字各个相同且都不是0.证明:重新排列这个数的六个数字,至少可得到23个不同的能被37整除的六位数.【题说】第十四届(1980年)全苏数学奥林匹克十年级题1.(c+f)被37整除.由于上述括号中的数字是对称出现的,且各数字不为0,故交换对又因为100a+10b+c=-999c+10(100c+10a+b),所以各再得7个被37整除的数,这样共得23个六位数.A4-014 (a)对于什么样的整数n>2,有n个连续正整数,其中最大的数是其余n-1个数的最小公倍数的约数?(b)对于什么样的n>2,恰有一组正整数具有上述性质?【题说】第二十二届(1981年)国际数学奥林匹克题4.【解】设n个连续正整数中最大的为m.当n=3时,如果m是m-1,m-2的最小公倍数的约数,那么m整除(m-1)(m-2),由m|(m -1)(m-2)得m|2,与m-2>0矛盾.设n=4.由于m|(m-1)(m-2)(m-3)所以m|6,而m>4,故这时只有一组正整数3,4,5,6具有所述性质.设n>4.由于m|(m-1)(m-2)…(m-n+1),所以m|(n-1)!取m=(n-1)(n-2),则(n -1)|(m-(n-1)),(n-2)|(m-(n-2)).由于n-1与n-2互质,m-(n-1)与m-(n-2)互质,所以m=(n-1)(n-2)整除m-(n-1)与m-(n-2)的最小公倍数,因而m 具有题述性质.类似地,取m=(n-2)(n-3),则m整除m-(n-2)与m-(n-3)的最小公倍数,因而m具有题述性质.所以,当n≥4时,总能找到具有题述性质的一组正整数.当且仅当n=4时,恰有唯一的一组正整数.A4-015 求一对正整数a和b,使得:(1)ab(a+b)不被7整除;(2)(a+b)7-a7-b7被77整除.证明你的论断.【题说】第二十五届(1984年)国际数学奥林匹克题2.【解】(a+b)7-a7-b7=7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6=7ab[(a5+b5)+3ab(a3+b3)+5a2b2(a+b)]=7ab(a+b)[a4+2a3b+3a2b2+2ab3+b4]=7ab(a+b)(a2+ab+b2)2取a=18,b=1,则a2+ab+b2=a(a+b)+b2=343=73.所以(a+b)7-a7-b7被77整除,ab(a +b)不被7整除.A4-016 1.是否存在14个连续正整数,其中每一个数均至少可被一个不小于2、不大于11的素数整除?2.是否存在21个连续正整数,其中每一个数均至少可被一个不小于2、不大于13的素数整除?【题说】第十五届(1986年)美国数学奥林匹克题1.【解】1.14个连续正整数中,有7个奇数n,n+2,n+4,n+6,n+8,n+10,n+12不能被2整除.这7个奇数中,至多1个被11整除,一个被7整除,2个被5整除,3个被3整除.如果被3整除的数少于3个或被5整除的数少于2个,那么这7个奇数中被3,5,7,11整除的数不足7个.如果恰有3个数被3整除,2个数被5整除,那么,被3整除的数必须是n,n+6,n+12,被5整除的2个数必须为n与n+10或n+2与n+12.此时必有一个数n或n+12同时被3,5整除.即这7个奇数中被3,5,7,11整除的数仍不足7个.不管怎样,这14个连续正整数中必有1个不被2,3,5,7,11任一个整除.故答案为不存在.2.存在.以下21个连续整数-10,-9,…,-1,0,1,2,3,…,10除去±1,其余整数被2,3,5,7之一整除.由中国剩余定理,满足N≡0(mod 210)N≡1(mod 11)N≡-1(mod 13)的整数N存在,于是N-10,N-9,…,N,N+1,…,N+10这21个连续整数满足所有要求.A4-018 试求出所有的正整数a、b、c,其中1<a<b<c,使得(a-1)(b-1)(c-1)是abc -1的约数.【题说】第三十三届(1992年)国际数学奥林匹克题1.本题由新西兰提供.【解】设x=a-1,y=b-1,z=c-1,则1≤x<y<z并且xyz是(x+1)(y+1)(z+1)-1=xyz+x+y+z+xy+yz+zx的约数,从而xyz是x+y+z+xy+yz +zx的约数.由于x+y+z+xy+yz+zx<3yz,所以x=1或2.若x=1,则yz是奇数1+2y+2z的约数.由于1+2y+2z<4z,所以y=3.并且3z是7+2z的约数.于是z=7.若x=2,则2yz是2+3y+3z+yz的约数,从而y,z均为偶数,设y=2y1,z=2z1,则4y1z1≤1+3y1+3z1+2y1z1<6z1+2y1z1,所以y1<3.因为y>x,所以y1=2,y=4.再由8z1是7+7z1的约数得z1=7,z=14.因此,所求解为(3,5,15)与(2,4,8).019 x与y是两个互素的正整数,且xy≠1,n为正偶数.证明:x+y不整除x n+y n.【题说】1992年日本数学奥林匹克题1.【证】由(x,y)=1知(x+y,y)=1,(x+y,xy)=1.当n=2时,x2+y2=(x+y)2-2xy.由于x+y>2,所以(x+y)2xy.故(x+y)(x2+y2).假设当n=2k(k∈N+)时,(x+y)(x2k+y2k).则当n=2(k+1)时,由于x2(k+1)+y2(k+1)=(x+y)(x2k+1+y2k+1)-xy(x2k+y2k)所以(x+y)(x2(k+1)+y2(k+1)).故对一切正偶数n,x+y不整除x n+y n.A4-020 证明当且仅当n+1不是奇素数时,前n个自然数的积被前n个自然数的和整除.【题说】第二十四届(1992年)加拿大数学奥林匹克题1.若n+1为奇合数,设n+1=qr,q、r为奇数且3≤q≤r,则nA4-021 找出4个不同的正整数,它们的积能被它们中的任意两个数的和整除.你能找出一组5个或更多个数具有同样的性质吗?【题说】1992年英国数学奥林匹克题3.【解】显然,2、6、10、14满足要求.任取n个不同的正整数。
第41届国际数学奥林匹克解答问题 1.圆Γ1和圆Γ2相交于点M和N.设L是圆Γ1和圆Γ2的两条公切线中距离M较近的那条公切线.L与圆Γ1相切于点A,与圆Γ2相切于点 B.设经过点M且与L平行的直线与圆Γ1还相交于点C,与圆Γ2还相交于点 D.直线C A和D B相交于点E;直线A N和C D相交于点P;直线B N和C D相交于点Q.证明:E P=E Q.解答:令K为M N和A B的交点.根据圆幂定理,,换言之K是A B的中点.因为P Q∥A B,所以M是P Q的中点.故只需证明E M⊥P Q.因为C D∥A B,所以点A是Γ1的弧C M的中点,点B是Γ2的弧D M的中点.于是三角形A C M与B D M都是等腰三角形.从而有,.这意味着E M⊥A B.再由P Q∥A B即证E M⊥P Q.问题 2.设a,b,c是正实数,且满足a b c=1.证明:.解答:令,,,其中x,y,z为正实数,则原不等式变为(x-y+z)(y-z+x)(z-x+y)≤x y z.记u=x-y+z,v=y-z+x,w=z-x+y.因为这三个数中的任意两个之和都是正数,所以它们中间最多只有一个是负数.如果恰有一个是负数,则u v w≤0<x y z,不等式得证.如果这三个数都大于0,则由算术平均-几何平均不等式可得同理可得,.于是得到u v w≤x y z,不等式得证.问题 3.设n≥2为正整数.开始时,在一条直线上有n只跳蚤,且它们不全在同一点.对任意给定的一个正实数λ,可以定义如下的一种"移动":I、选取任意两只跳蚤,设它们分别位于点A和B,且A位于B的左边;I I、令位于点A的跳蚤跳到该直线上位于点B右边的点C,使得B C/A B=λ.试确定所有可能的正实数λ。
使得对于直线上任意给定的点M以及这n 只跳蚤的任意初始位置,总能够经过有限多个移动之后令所有的跳蚤都位于M的右边.解答:要使跳蚤尽可能远地跳向右边,一个合理的策略是在每一个移动中都选取最左边的跳蚤所处的位置作为点A,最右边的跳蚤所处的位置作为点 B.按照这一策略,假设在k次移动之后,这些跳蚤之间距离的最大值为d k,而任意两只相邻的跳蚤之间距离的最小值为δk.显然有d k≥(n-1)δk.经过第(k+1)次移动,会产生一个新的两只相邻跳蚤之间的距离λd k.如果这是新的最小值,则有δk+1=λd k;如果它不是最小值,则显然有δk+1≥δk.无论哪种情形,总有m i n m i n.因此,只要λ≥1/(n-1),就有δk+1≥δk对任意k都成立.这意味着任意两只相邻跳蚤之间距离的最小值不会减小.故每次移动之后,最左边的跳蚤所处的位置都以不小于某个正的常数的步伐向右平移.最终,所有的跳蚤都可以跳到任意给定的点M的右边.下面来证明:如果λ<1/(n-1),则对任意初始位置都存在某个点M,使得这些跳蚤无法跳到点M的右边.将这些跳蚤的位置表示成实数,考虑任意的一系列移动.令S K为第K次移动之后,表示跳蚤所在位置的所有实数之和.再令W K为这些实数中最大的一个(即最右边的跳蚤的位置).显然有S K≤n W K.我们要证明序列{W K}有界.在第(k+1)次移动时,一只跳蚤从点A跳过点B落在点 C.分别用实数a,b,c表示这三个点,则S k+1=S k+c-a.根据移动的定义,c-b=λ(b-a).进而得到λ(c-a)=(1+λ)(c-b).于是.如果c>W k,则刚跳过来的这只跳蚤占据了新的最右边位置W k+1=c.再由b≤W k可得.如果c≤W k,则有W k+1-W k=0,.故上式仍然成立.考虑下列数列,k=0,1,2,…则有Z k+1-Z k≤0,即该数列是不升的.因此,对所有的k总有Z k≤Z0.假设λ<1/(n-1),则1+λ>nλ.可以把Z k写成,其中.于是得到不等式.故对于所有的k,总有.这意味着最右边跳蚤的位置永远不会超过一个常数,这个常数与n,λ和这些跳蚤的初始位置有关,而与如何移动无关.最终得到结论:所求λ的可能值为所有不小于1/(n-1)的实数.问题 4.一位魔术师有一百张卡片,分别写有数字1到100.他把这一百张卡片放入三个盒子里,一个盒子是红色的,一个是白色的,一个是蓝色的.每个盒子里至少都放入了一张卡片.一位观众从三个盒子中挑出两个,再从这两个盒子里各选取一张卡片,然后宣布这两张卡片上的数字之和.知道这个和之后,魔术师便能够指出哪一个是没有从中选取卡片的盒子.问共有多少种放卡片的方法,使得这个魔术总能够成功?(两种方法被认为是不同的,如果至少有一张卡片被放入不同颜色的盒子.)解答:共有12种不同的方法.考虑1到100之间的整数.为简便起见,将整数i所放入的盒子的颜色定义为该整数的颜色.用r代表红色,w代表白色,b代表蓝色.情形 1.存在某个i,使得i,i+1,i+2的颜色互不相同,例如分别为r w b.则因i+(i+3)=(i+1)+(i+2),所以i+3的颜色既不能是i+1的颜色w,也不能是i+2的颜色b,只能是r.可见只要三个相邻的数字有互不相同的颜色,就能够确定下一个数字的颜色.进一步地,这三个数字的颜色模式必定反复出现:r w b后面一定是r,然后又是w,b,…依此类推.同理可得上述过程对于相反方向也成立:r w b的前面一定是b,…依此类推.因此,只需确定1,2,3的颜色.而这有6种不同的方法.这6种方法都能够使魔术成功,因为它们的和r+w, w+b, b+r给出模3的互不相同的余数.情形 2.不存在三个连续的数字,其颜色互不相同.假设1是红色的.令i为最小的不是红色的数字.不妨假设i为白色的.再设k为最小的蓝色数字,则由假设必有i+1<k.如果k<100,因为i+k=(i-1)+(k+1),所以k+1一定要是红色的.但又由于i+(k+1)=(i+1)+k,所以i+1一定要是蓝色的,与k是最小蓝色数字相矛盾.故得k必须等于100.换言之,只有100是蓝色的.我们再来证明只有1是红色的.不然的话,设存在t>1是红色的,则由t+99=(t-1)+100推出t-1是蓝色的,与只有100是蓝色的相矛盾.于是这些数字的颜色必须是r w w…w w b.而这种方法确实可行:如果被选取的两张卡片上的数字之和≤100,则没有从中选取卡片的盒子一定是蓝色的;如果数字之和等于101,则没有从中选取卡片的盒子一定是白色的;如果数字之和>101,则没有从中选取卡片的盒子一定是红色的.最后,共有6种按照上述样子排列颜色的方法.故答案为12.问题 5.确定是否存在满足下列条件的正整数n:n恰好能够被2000个互不相同的质数整除,且2n+1能够被n整除.解答:存在.我们用归纳法来证明一个更一般的命题:对每一个自然数k都存在自然数n=n(k),满足n|2+1,3|n且n恰好能够被k个互不相同的质数整除.当k=1时,n(1)=3即可使命题成立.假设对于k≥1存在满足要求的n(k)=3l.t,其中l≥1且3不能整除t.于是n=n(k)必为奇数,可得.利用恒等式可知3n|23n+1.根据下面的引理,存在一个奇质数p满足p|23n+1但是p不能整除2n+1.于是自然数n(k+1)=3p.n(k)即满足命题对于k+1的要求.归纳法完成.引理:对于每一个整数a>2,存在一个质数p满足p|a3+1但是p不能整除a+1 .证明:假设对某个a>2引理不成立.则a2-a+1的每一个质因子都要整除a+1.而恒等式a2-a+1=(a+1)(a-2)+3说明能够整除a2-a+1的唯一质数是3.换言之,a2-a+1是3的方幂.因为a+1是3的倍数,所以a-2也是3的倍数.于是a2-a+1能够被3整除,但不能被9整除.故得a2-a+1恰等于3.另一方面,由a>2知a2-a+1>3 .这个矛盾完成了引理的证明.问题 6.设A H1,B H2,C H3是锐角三角形A B C的三条高线.三角形A B C的内切圆与边B C,C A,A B分别相切于点T1,T2,T3.设直线l1,l2,l3分别是直线H2H3,H3H1,H1H2关于直线T2T3,T3T1,T1T2的对称直线.证明:l1,l2,l3所确定的三角形,其顶点都在三角形A B C的内切圆上.解答:令M1为T1关于∠A的角平分线的对称点,M2和M3分别为T2和T3关于∠B 和∠C 的角平分线的对称点.显然M1,M2和M3在三角形A B C的内接圆周上.只需证明它们恰好是题目中所求证的三角形的三个顶点.由对称性,只需证明H2H3关于直线T2T3的对称直线l1经过M2即可.设I为三角形A B C的内心.注意T2和H2总在B I的同一侧,且T2比H2距离B I更近.我们只考虑C也在B I同一侧的情形(如果C和T2,H2分别位于B I的两侧,证明需要稍加改动).设∠A=2α,∠B=2β,∠C=2γ.引理H2关于T2T3的镜像位于直线B I上.证明:过H2作直线l与T2T3垂直.记P为l与B I的交点,S为B I与T2T3的交点.则S既在线段B P上,也在线段T2T3上.只需证明.首先我们有.又由外角定理知.再由关于B I的对称性知.因为,所以C和S在I T1的同一侧.由可得S,I,T1和C四点共圆,于是有.因为,所以B,C,H2和S也是四点共圆.这意味着,引理得证.注意到在引理的证明中,因为B,C,H2和S四点共圆以及关于T2T3的对称性,可以得到.又由于M2是T2关于B I的对称像,我们有.因此P M2平行于B C.要证明M2位于l1上,只需证l1也平行于B C.假设α≠γ.设直线B C与H2H3和T2T3分别相交于点D和 E.注意到D和E位于直线B C上线段B C的同一侧.不难证明有,.故得l1确实平行于B C.。
数学奥林匹克竞赛训练题:代数部分(1)集合、数与式B1-001把含有12个元素的集分成6个子集,每个子集都含有2个元素,有多少种分法?【题说】1969年~1970年波兰数学奥林匹克三试题5.【解】将12个元素排成一列有12!种方法.排定后,从左到右每2个一组就得到6个2元子集.同一组中2个元素顺序交换得到的是同一子集.6个子集顺序交换得到的是同样的分法,因此共有种不同的分法.[别解]设a1是集中的一个元素,将a1与其余11个元素中的任一个结合,就得到含a1的2元子集,这种2元子集共有11种.确定含a1的子集后,设a2是剩下的一个元素,将a2与其余9个元素中的任一个结合,就得到含a2的2元子集,这种子集共有9种.如此继续下去,得到6个2元子集.共有11³9³7³5³3=10395种分法.B1-002证明:任一个有限集的全部子集可以这样地排列顺序,使任何两个邻接的集相差一个元素.【题说】1971年~1972年波兰数学奥林匹克三试题5.【证】设有限集A含n个元素.当n=1时,子集序列φ,A即满足条件.假设n=k时命题成立,对于k+1元集A={x1,x2,…,x k+1}由归纳假设,{x1,x2,…,x k}的子集可排成序列B1,B2,…,B t(t=2k)满足要求.因此A的子集也可排成序列B1,B2,…,B t,B t∪{x k+1},B t-1∪{x k+1},…,B2∪{x k+1}B1∪{x k+1},满足要求.于是命题对一切自然数n均成立.B1-003设1≤r≤n,考虑集合{1,2,3,…,n}的所有含r个元素的子集及每个这样的子集中的最小元素,用F(n,r)表示一切这样的子集各自的最小元素的算术平均数.证明:【题说】第二十二届(1981年)国际数学奥林匹克题2.这n-k个数中选出).所以将(1)式右边的和写成一个表将上表每一行加起来,再将这些行和相加便得(1)的右边的分子,现B1-004定义一个数集的和为该集的所有元素的和.设S是一些不大于15的正整数组成的集,假设S 的任意两个不相交的子集有不相同的和,具有这个性质的集合S的和的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题12.【解】先证明S元素个数至多是5.如果多于5个,则元素个数不S的元素个数≤5,所以S的和≤15+14+13+12+11=65.如果S的和≥62,则S的元数为5,并且15、14均在S中(S的和至多比15+14+13+12+11少3).这时S中无其它的连续整数,因而只有一种情况即{15,14,13,11,9),不难看出它不满足条件.所以,S的和≤61.特别地,S={15,14,13,11,8}时,和取最大值61.B1-006对有限集合A,存在函数f:N→A具有下述性质:若|i-j|是素数,则f(i)≠f(j),N={1,2,…}.求有限集合A的元素的最少个数.【题说】1990年巴尔干地区数学奥林匹克题4.【解】1,3,6,8中每两个数的差为素数,所以f(1),f(3),f(6),f(8)互不相同,|A|≥4.另一方面,令A={0,1,2,3}.对每一自然数n,令f(n)为n除以4所得余数,则在f(i)=f(j)时,|i-j|被4整除.因而f是满足条件的函数.于是,A的元素个数最少为4.B1-007集合{1,2,3,…,100}的某些子集,满足条件:没有一个数是另一个数的2倍.这样的子集中所含元素的个数最多是多少?【题说】1991年河南省数学奥林匹克集训班一试题1(6).原题为选择题.【解】令A1={51,52,…,100},A2={26,27,…,50},A3={13,14,…,25},A4=(7,8,9,10,11,12),A5=(4,5,6},A6={2,3},A7={1}.A1∪A3∪A5∪A7共50+13+3+1=67个元素,每一个都不是另一个的两倍.若集合B{1,2,…,100},其中每一个数都不是另一个的两倍,则在a∈B∩A2时,2a B,因此|B∩A2|+|B∩A1|≤50.同样|B∩A4|+|B∩A3|≤13,|B∩A6|+|B∩A5|≤3.因此|B|≤67.本题答案为67.B1-008设集合S n={1,2,…,n).若X是S n的子集,把X中所有数之和称为X的“容量”(规定空集容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.(1)求证:S n的奇子集与偶子集个数相等;(2)求证:当n≥3时,S n的所有奇子集容量之和,与所有偶子集容量之和相等.(3)当n≥3时,求S n所有奇子集的容量之和.【题说】1992年全国联赛二试题2.【证】设S为S n的奇子集,令则T是偶子集,S→T是奇子集的集到偶子集的一一对应,而且每个偶子集T,均恰有一个奇子集与之对应,所以(1)的结论成立.对任一i(1≤i≤n),含i的子集共2n-1个,用上面的对应方法可知在i≠1时,这2n-1个集中有一半是奇子集.在i=1时,由于n≥3,将上边的1换成3,同样可得其中有一半是奇子集.于是在计算奇子集容量之和时,元素i的贡献是2n-2²i.奇子集容量之和是根据上面所说,这也是偶子集容量之和,两者相等.B1-009用σ(S)表示非空整数集S中所有元素的和.设A={a1,a2,…,a n}是正整数集,且a1<a2<…<a11.若对每个正整数n≤1500,存在A的子集S,使得σ(S)=n.试求满足上述要求的a10的最小值.【题说】第二十一届(1992年)美国数学奥林匹克题3.【解】令S k=a1+a2+…+a k(1≤k≤11).若a k>S k-1+1,则不存在S A,使σ(S)=S k-1+1所以,S k=S k-1+a k≤2S k-1+1 (1)又由题设得S1=a1=1.于是由(1)及归纳法易得S k≤2k-1(1≤k≤m)(2)若S10<750,则a11≤1500(否则750无法用σ(S)表出),S11=S10+a11<1500,所以S10≥750.又S8≤28-1=255,于是2a10≥a9+a10=S10-S8≥495所以,a10≥248.另一方面,令A={1,2,4,8,16,32,64,128,247,248,750}当n≤255=27+26+…+2+20时,可找到S{1,2,4,…,128},使σ(S)=n.当n≤255+247=502时,存在S(1,2,4,…,128,247),使σ(S)=n;当n≤502+248=750时,存在S{1,2,4,…247,248},使σ(S)=n;当n≤750+750=1500时,存在S A,使σ(S)=n.于是a10的最小值为248.B1-010给定集合S={Z1,Z2,…,Z1993},其中Z1,Z2,…,Z1993为非零复数(可视为平面上非零向量).求证:可以把S中元素分成若干子集,使得(1)S中每个元素属于且仅属于一个子集;(2)每一子集中任一复数与该子集所有复数之和的夹角不超过90°;(3)将任二子集中复数分别作和,所得和数之间夹角大于90°.【题说】1993年中国数学奥林匹克(第八届数学冬令营)题4.【证】现对任意正整数n给以证明.设非零复数集S={Z1,…,Z n}.对S每个非空子集A,其中所有数之和,称为A之和.S共有2n-1个非空子集,其中必有一个子集S1,其和的模|a1|最大.若S≠S1,对S\S1,取其非空子集S2,使其和的模|a2|最大.如比等等.因S为有限集,故经若干步后,即得S的一个划分:S1,S2,…,S k,它们的和a1,a2,…,a k的模分别是S,S\S1,S\(S1∪S2),…,S\(S1∪S2∪…∪S k-1)的非空子集和的最大模.这样的划分,条件(1)显然满足.若某个S r中有一元素Z与a r的夹角>90°,则如图a,|a r-Z|>|a r|.a r-Z是S\(S1U…US r-1)的非空子集S r\{Z}之和,与S r的选取矛盾.若a r与a t(1≤r<t≤k)的夹角≤90°,则如图(b),|a r+a t|>|a r|.a r+a t是S\(S1∪…∪S r-1)不空子集S r∪S t之和,这又与S r选取矛盾.因此,所述划分满足条件(1)~(3).【注】因为平面上至多有三个向量,它们之间两两的夹角都大于90°,故S至多分为三个子集.B1-011设集合A={1,2,3,…,366}.如果A的一个二元子集B={a,b}满足17|(a+b),则称B具有性质p.(1)求A的具有性质p的二元子集的个数;(2)A一组二元子集,两两不相交并且具有性质P这组二元子集的个数最多是多少?【题说】1994年全国联赛河北省预赛二试题1.【解】将1,2,…,366按17除的余数分为17类:17类:[0],[1],…,[16].因为366=17³21+9,所以[1],[2],…[9]中各有22个数,[10],…,[16],[0]中各有21个数.当且仅当a∈[k],b∈[17-k]时,{a,b}具有性质p.当a∈[k],b∈[17-k],k=1,2,…,7时,具有性质p的子集所以A的具有性质p的二元子集个数共有210+462³7+484=3928(个)(2)为使二元子集两两不变,可如下搭配:a∈[0],b∈[0],有10个子集;a∈[k],b∈[17-k],k=1,2,…,7,有21个子集;a∈[8],b∈[9],有22个子集.故A的具有性质p两两不交的二元子集共有10+21³7+22=179(个)B1-012设|v|、σ(v)和π(v)分别表示由正整数组成的有限集合v的元素的个数,元素的和以及元素的积(如果集合v是空集,则|v|=0,σ(v)=0,П(v)=1).若S是由正整数组成的有限集合.证明对所有的正整数m≥σ(S)成立.【题说】第二十三届(1994年)美国数学奥林匹克题5.【证】设S={a1,a2,…,a n}.长为m的、由m-n个0与n个1将这样的数列分为n+1段,第一段a1个数,第二段a2个数,…,第n段a n个数.前n段的每一段中恰有1个1的数列,由于第i段的1有a i种位置(1≤i≤n),所以这样的数列共有a l a2…a n=П(S)个.个.根据容斥原理,即本题的等式成立.B1-015设M={1,2,…,1995},A是M的子集,且满足条件:当x∈A时,15x A,试求A中元素个数的最大值.【题说】1995年全国联赛一试题2(6).原为填空题.【解】由题设,当k=9,10,…,133时,k与15k不能同时在A中,故至少有133-8=125个数不在A中,即|A|≤1995-125=1870另一方面,M的子集A={1,2,...,8}∪{134, (1997)满足条件.它恰好有1780个元素.故|A|的最大数是1870.B1-016 已知集合{1,2,3,4,5,6,7,8,9,10}.求该集合具有下列性质的子集个数:每个子集至少含有2个元素,且每个子集中任意两个元素的差的绝对值大于1.【题说】1996年爱朋思杯——上海市赛题3.【解】设a n是集合{1,2,…,n}的具有题设性质的子集个数.集合{1,2,…,n,n+1,n+2}的具有题设性质的子集可分为两类:第一类子集包含元n+2,这样的子集有a n+n个(即每个{1,2,…,n}的这种子集与{n+2}的并集,以及{1,n+2},{2,n+2},…,{n,n+2});第二类子集不包含n+2,这样的子集有a n+1个.于是,有a n+2=a n+a n+1+n显然,a3=1,a4=3(即{1,3},{2,4},{1,4}).所以a5=7,a6=14,a7=26,a8=46,a9=79,a10=133.B1-017 对任意非空实数集S,令σ(S)为S的元素之和.已知n个正整数的集A,考虑S跑遍A的非空子集时,所有不同和σ(S)的集.证明这些和可以分为n类,每一类中最大的和与最小的和的比不超过2.【题说】第二十五届(1996年)美国数学奥林匹克题2【解】设A={a1,a2,…,a n},a1<a2<…<a n.令f j=a1+a2+…a j,e j=max{a j,f j-1}},则f j=f j-1+a j≤2e j(1≤j≤n).每个和a i1+a i2+…+a it,i1<i2<…<i t,必在某个区间(f j-1,f j]中.因为a i1+a i2+a it>f j-1=a1+a2+…a j-1所以i t≥j从而a i1+a i2+…+a it≥a j于是a i1+a i2+…+a it∈[e j,f j].这样σ(S)被分为n个类,在e j与f j之间的和为第j类(1≤j≤n),f j本身在第j类,而e j=f j-1时,e j不在第j类;e j>f j-1时,e j在第j类.每一类中最大的和与最小的和的比不超过2.B1-018 设S={1,2,3,4),n项的数列:a1,a2,…,a n有下列性质,对于S的任何一个非空子集B(B的元素个数记为|B|),在该数列中有相邻的|B|项恰好组成集合B.求n的最小值.【题说】1997年爱朋思杯——上海市赛决赛题3.【解】n的最小值为8.首先证明S中的每个数在数列a1,a2,…,a n中至少出现2次.事实上,若S中的某个数在这个数列中只出现1次,由于含这个数的二元子集共有3个,但在数列中含这个数的相邻两项至多只有两种取法,因而3个含这个数的二元子集不可能都在数列相邻两项中出现.由此可见n≥8.另一方面,8项数列:3,1,2,3,4,1,2,4满足条件,因此,所求最小值为8.B1-019 求两个正整数m与n之间(m<n),一切分母为3的既约分数的和.【题说】1962年成都市赛高三二试题1.3(n-m)+1项.其和但其中整数项的和故所求之和S=S1-S2=n2-m2B1-020 证明cos10°是无理数.【题说】1963年合肥市赛高二二试题3.【证】利用公式cos3x=4cos3x-3cos x,可得cos30°=4cos310°-3cos10°(1)即若cos10°是一个有理数,则(1)右端为有理数,而左端是一个无理数,矛盾,故cos10°为无理数.B1-021 求出所有四元实数组(x1,x2,x3,x4),使其中任一个数与其余三数积的和等于2.【题说】第七届(1965年)国际数学奥林匹克题4.本题由原苏联提供.【解】设x1x2x3x4=d,则显然d≤1.有以下五种情况:所以d=1,x1=x2=x3=x4=1.所以d=1,x1=x2=x3=x4=1.综上所述,x1、x2、x3、x4或者全为1;或者其中有三个为-1,一个为3.B1-022设P(x)是自然数x在十进制中各位数字的乘积.试求出所有能使P(x)=x2-10x-22成立的自然数.【题说】第十届(1968年)国际数学奥林匹克题2.本题由捷克斯洛伐克提供.【解】设n位数x满足P(x)=x2-10x-22 (1)若n≥3,则x≥10n-1≥100,9n≥P(x)=x(x-10)-22≥90x-22≥90²10n-1-22=9²10n-22>10n矛盾.若n=1,则x=P(x)=x2-10x-22即x2-11x-22=0但此方程无正整数解.因此n=2.若x≥20,则x2-10x-22=x(x-10)-22≥10x-22≥200-22>92≥P(x)因此x=10+y,y∈{0,1,2,…,9}.(1)变成y=(10+y)2-10(10+y)-22易知y=2,x=12.B1-023证明:如果三个正数的积为1,而它们的和严格地大于它们的倒数之和,那么,它们中恰好有一个数大于1.【题说】第四届(1970年)全苏数学奥林匹克八年级题2.【证】设这三个数为a,b,c,则(a-1)(b-1)(c-1)=abc-(ab+bc+ca)+(a+b+c)-1左边有一个或三个因子为正.但abc=1,所以a、b、c不可能全大于1,从而a、b、c中有且只有一个数大于1.B1-024若干个正整数的和为1976,求这些正整数的积的最大值.【题说】第十八届(1976年)国际数学奥林匹克题4.本题由美国提供.【解】设这些正整数为a1,…,a n,则a1+…+a n=1976不妨设a i<4(1≤i≤n),这是因为当a i≥4时a i≤2(a i-2),故把a i换成2和a i-2不会使积减小.再注意2³2³2<3³3,所以只需考虑积2a²3b,其中a=0,1,2,且2a+3b=1976.由此得a=1,b=658,故所求的最大值为2³3658.B1-025确定最大的实数z,满足x+y+z=5 (1)xy+yz+zx=3 (2)并且x、y也是实数.【题说】第十届(1978年)加拿大数学奥林匹克题3.【解】由(1)得(x+y)2=(5-z)2,由(2)得xy=3-z(5-z).于是0≤(x-y)2=(x+y)2-4xy=(5-z)2-4[3-z(5-z)]=-3z2+10z+13=(13-3z)(1+z)因此有-1≤z≤13/3当x=y=1/3时,z=13/3.因此z最大值是13/3.B1-026已知a、b、c、d、e是满足a+b+c+d+e=8,(1)a2+b2+c2+d2+e2=16 (2)的实数,试确定e的最大值.【题说】第七届(1978年)美国数学奥林匹克题1.【解】由Cauchy不等式,(8-e)2=(a+b+c+d)2≤4(a2+b2+c2+d2)=4(16-e2),即B1-027已知:0.301029<lg2<0.301030,0.477120<lg3<0.477121求20001979的首位数字.【题说】1979年安徽省赛二试题1.【解】因为lg20001979=1979(3+lg2)=5937+1979lg2595.736391<1979lg2<595.738370而lg5=1-lg2<0.70lg6=lg2+lg3>0.77所以6532+lg5<lg20001979<6532+lg6即5³106532<20001979<6³106532所以20001979的首位数字是5.B1-028已知a1,a2,…,a8均为正数,且a1+a2+…+a8=20 (1)a1a2…a8=4 (2)试证:a1,a2,…,a8之中至少有一个数小于1.【题说】1979年湖北省赛二试题5.【证】用反证法.如果a1,a2,…,a8都不小于1,则可设a i=1+b i(b i>0,i=1,2, (8)再由(1)即得B1+b2+…+b8=12于是a1a2…a8=(1+b1)(1+b2)…(1+b8)=1+(b1+b2+…+b8)+…+b1b2…b8≥1+(b1+b2+…+b8)=1+12=13与条件(2)矛盾.所以八个数中至少有一个数小于1.B1-029 求所有实数a,使得存在非负实数x1,x2,x3,x4,x5满足关系:【题说】第二十一届(1979年)国际数学奥林匹克题5.本题由以色列提供.【解】利用柯西不等式及题设条件,有故中间不等式只能取等号,这意味着在x k≠0时,由此推知,x1,x2,x3,x4,x5中至多一个非0.因此,只能有下面两种情况:(1)x1=x2=x3=x4=x5=0,此时a=0;(2)某个x k=c≠0,其余x i=0(i≠k).这时由已知得kc=a,k3c=a2,k5c=a3.从而k2=a,c=k总之,当且仅当a=0,1,4,9,16,25时,存在非负实数x1,x2,x3,x4,x5满足题中三个方程. B1-030下列表中的对数值有两个是错误的,请予纠正.【题说】1981年全国联赛题2.【解】lg3、lg0.27、lg9的值同为正确或同为错误.因表中只有两处错误,故三者都对.同理,lg2、lg5、lg8、lg6都对.再若lg7=2(b+c),则lg14=lg7+lg2=1-a+2b+c,lg0.021=lg3+lg7-3=2a+b+2c-3,lg2.8=2lg2+lg7-1=1-2a+2b.即lg7=2(b+c)对,就推出lg14、lg0.021、lg2.8三个值都错,与题设矛盾,故知lg7不对.应为lg7=lg l4-lg2=2b+c.lg1.5的值也不对,应为lg1.5=lg3+lg5-1=3a-b+c-1.B1-001把含有12个元素的集分成6个子集,每个子集都含有2个元素,有多少种分法?【题说】1969年~1970年波兰数学奥林匹克三试题5.【解】将12个元素排成一列有12!种方法.排定后,从左到右每2个一组就得到6个2元子集.同一组中2个元素顺序交换得到的是同一子集.6个子集顺序交换得到的是同样的分法,因此共有种不同的分法.[别解]设a1是集中的一个元素,将a1与其余11个元素中的任一个结合,就得到含a1的2元子集,这种2元子集共有11种.确定含a1的子集后,设a2是剩下的一个元素,将a2与其余9个元素中的任一个结合,就得到含a2的2元子集,这种子集共有9种.如此继续下去,得到6个2元子集.共有11³9³7³5³3=10395种分法.B1-002证明:任一个有限集的全部子集可以这样地排列顺序,使任何两个邻接的集相差一个元素.【题说】1971年~1972年波兰数学奥林匹克三试题5.【证】设有限集A含n个元素.当n=1时,子集序列φ,A即满足条件.假设n=k时命题成立,对于k+1元集A={x1,x2,…,x k+1}由归纳假设,{x1,x2,…,x k}的子集可排成序列B1,B2,…,B t(t=2k)满足要求.因此A的子集也可排成序列B1,B2,…,B t,B t∪{x k+1},B t-1∪{x k+1},…,B2∪{x k+1}B1∪{x k+1},满足要求.于是命题对一切自然数n均成立.B1-003设1≤r≤n,考虑集合{1,2,3,…,n}的所有含r个元素的子集及每个这样的子集中的最小元素,用F(n,r)表示一切这样的子集各自的最小元素的算术平均数.证明:【题说】第二十二届(1981年)国际数学奥林匹克题2.这n-k个数中选出).所以将(1)式右边的和写成一个表将上表每一行加起来,再将这些行和相加便得(1)的右边的分子,现B1-004定义一个数集的和为该集的所有元素的和.设S是一些不大于15的正整数组成的集,假设S 的任意两个不相交的子集有不相同的和,具有这个性质的集合S的和的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题12.【解】先证明S元素个数至多是5.如果多于5个,则元素个数不S的元素个数≤5,所以S的和≤15+14+13+12+11=65.如果S的和≥62,则S的元数为5,并且15、14均在S中(S的和至多比15+14+13+12+11少3).这时S中无其它的连续整数,因而只有一种情况即{15,14,13,11,9),不难看出它不满足条件.所以,S的和≤61.特别地,S={15,14,13,11,8}时,和取最大值61.B1-006对有限集合A,存在函数f:N→A具有下述性质:若|i-j|是素数,则f(i)≠f(j),N={1,2,…}.求有限集合A的元素的最少个数.【题说】1990年巴尔干地区数学奥林匹克题4.【解】1,3,6,8中每两个数的差为素数,所以f(1),f(3),f(6),f(8)互不相同,|A|≥4.另一方面,令A={0,1,2,3}.对每一自然数n,令f(n)为n除以4所得余数,则在f(i)=f(j)时,|i-j|被4整除.因而f是满足条件的函数.于是,A的元素个数最少为4.B1-007集合{1,2,3,…,100}的某些子集,满足条件:没有一个数是另一个数的2倍.这样的子集中所含元素的个数最多是多少?【题说】1991年河南省数学奥林匹克集训班一试题1(6).原题为选择题.【解】令A1={51,52,…,100},A2={26,27,…,50},A3={13,14,…,25},A4=(7,8,9,10,11,12),A5=(4,5,6},A6={2,3},A7={1}.A1∪A3∪A5∪A7共50+13+3+1=67个元素,每一个都不是另一个的两倍.若集合B{1,2,…,100},其中每一个数都不是另一个的两倍,则在a∈B∩A2时,2a B,因此|B∩A2|+|B∩A1|≤50.同样|B∩A4|+|B∩A3|≤13,|B∩A6|+|B∩A5|≤3.因此|B|≤67.本题答案为67.B1-008设集合S n={1,2,…,n).若X是S n的子集,把X中所有数之和称为X的“容量”(规定空集容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.(1)求证:S n的奇子集与偶子集个数相等;(2)求证:当n≥3时,S n的所有奇子集容量之和,与所有偶子集容量之和相等.(3)当n≥3时,求S n所有奇子集的容量之和.【题说】1992年全国联赛二试题2.【证】设S为S n的奇子集,令则T是偶子集,S→T是奇子集的集到偶子集的一一对应,而且每个偶子集T,均恰有一个奇子集与之对应,所以(1)的结论成立.对任一i(1≤i≤n),含i的子集共2n-1个,用上面的对应方法可知在i≠1时,这2n-1个集中有一半是奇子集.在i=1时,由于n≥3,将上边的1换成3,同样可得其中有一半是奇子集.于是在计算奇子集容量之和时,元素i的贡献是2n-2²i.奇子集容量之和是根据上面所说,这也是偶子集容量之和,两者相等.B1-009用σ(S)表示非空整数集S中所有元素的和.设A={a1,a2,…,a n}是正整数集,且a1<a2<…<a11.若对每个正整数n≤1500,存在A的子集S,使得σ(S)=n.试求满足上述要求的a10的最小值.【题说】第二十一届(1992年)美国数学奥林匹克题3.【解】令S k=a1+a2+…+a k(1≤k≤11).若a k>S k-1+1,则不存在S A,使σ(S)=S k-1+1所以,S k=S k-1+a k≤2S k-1+1 (1)又由题设得S1=a1=1.于是由(1)及归纳法易得S k≤2k-1(1≤k≤m)(2)若S10<750,则a11≤1500(否则750无法用σ(S)表出),S11=S10+a11<1500,所以S10≥750.又S8≤28-1=255,于是2a10≥a9+a10=S10-S8≥495所以,a10≥248.另一方面,令A={1,2,4,8,16,32,64,128,247,248,750}当n≤255=27+26+…+2+20时,可找到S{1,2,4,…,128},使σ(S)=n.当n≤255+247=502时,存在S(1,2,4,…,128,247),使σ(S)=n;当n≤502+248=750时,存在S{1,2,4,…247,248},使σ(S)=n;当n≤750+750=1500时,存在S A,使σ(S)=n.于是a10的最小值为248.B1-010给定集合S={Z1,Z2,…,Z1993},其中Z1,Z2,…,Z1993为非零复数(可视为平面上非零向量).求证:可以把S中元素分成若干子集,使得(1)S中每个元素属于且仅属于一个子集;(2)每一子集中任一复数与该子集所有复数之和的夹角不超过90°;(3)将任二子集中复数分别作和,所得和数之间夹角大于90°.【题说】1993年中国数学奥林匹克(第八届数学冬令营)题4.【证】现对任意正整数n给以证明.设非零复数集S={Z1,…,Z n}.对S每个非空子集A,其中所有数之和,称为A之和.S共有2n-1个非空子集,其中必有一个子集S1,其和的模|a1|最大.若S≠S1,对S\S1,取其非空子集S2,使其和的模|a2|最大.如比等等.因S为有限集,故经若干步后,即得S的一个划分:S1,S2,…,S k,它们的和a1,a2,…,a k的模分别是S,S\S1,S\(S1∪S2),…,S\(S1∪S2∪…∪S k-1)的非空子集和的最大模.这样的划分,条件(1)显然满足.若某个S r中有一元素Z与a r的夹角>90°,则如图a,|a r-Z|>|a r|.a r-Z是S\(S1U…US r-1)的非空子集S r\{Z}之和,与S r的选取矛盾.若a r与a t(1≤r<t≤k)的夹角≤90°,则如图(b),|a r+a t|>|a r|.a r+a t是S\(S1∪…∪S r-1)不空子集S r∪S t之和,这又与S r选取矛盾.因此,所述划分满足条件(1)~(3).【注】因为平面上至多有三个向量,它们之间两两的夹角都大于90°,故S至多分为三个子集.B1-011设集合A={1,2,3,…,366}.如果A的一个二元子集B={a,b}满足17|(a+b),则称B具有性质p.(1)求A的具有性质p的二元子集的个数;(2)A一组二元子集,两两不相交并且具有性质P这组二元子集的个数最多是多少?【题说】1994年全国联赛河北省预赛二试题1.【解】将1,2,…,366按17除的余数分为17类:17类:[0],[1],…,[16].因为366=17³21+9,所以[1],[2],…[9]中各有22个数,[10],…,[16],[0]中各有21个数.当且仅当a∈[k],b∈[17-k]时,{a,b}具有性质p.当a∈[k],b∈[17-k],k=1,2,…,7时,具有性质p的子集所以A的具有性质p的二元子集个数共有210+462³7+484=3928(个)(2)为使二元子集两两不变,可如下搭配:a∈[0],b∈[0],有10个子集;a∈[k],b∈[17-k],k=1,2,…,7,有21个子集;a∈[8],b∈[9],有22个子集.故A的具有性质p两两不交的二元子集共有10+21³7+22=179(个)B1-012设|v|、σ(v)和π(v)分别表示由正整数组成的有限集合v的元素的个数,元素的和以及元素的积(如果集合v是空集,则|v|=0,σ(v)=0,П(v)=1).若S是由正整数组成的有限集合.证明对所有的正整数m≥σ(S)成立.【题说】第二十三届(1994年)美国数学奥林匹克题5.【证】设S={a1,a2,…,a n}.长为m的、由m-n个0与n个1将这样的数列分为n+1段,第一段a1个数,第二段a2个数,…,第n段a n个数.前n段的每一段中恰有1个1的数列,由于第i段的1有a i种位置(1≤i≤n),所以这样的数列共有a l a2…a n=П(S)个.个.根据容斥原理,即本题的等式成立.B1-015设M={1,2,…,1995},A是M的子集,且满足条件:当x∈A时,15x A,试求A中元素个数的最大值.【题说】1995年全国联赛一试题2(6).原为填空题.【解】由题设,当k=9,10,…,133时,k与15k不能同时在A中,故至少有133-8=125个数不在A中,即|A|≤1995-125=1870另一方面,M的子集A={1,2,...,8}∪{134, (1997)满足条件.它恰好有1780个元素.故|A|的最大数是1870.B1-016已知集合{1,2,3,4,5,6,7,8,9,10}.求该集合具有下列性质的子集个数:每个子集至少含有2个元素,且每个子集中任意两个元素的差的绝对值大于1.【题说】1996年爱朋思杯——上海市赛题3.【解】设a n是集合{1,2,…,n}的具有题设性质的子集个数.集合{1,2,…,n,n+1,n+2}的具有题设性质的子集可分为两类:第一类子集包含元n+2,这样的子集有a n+n个(即每个{1,2,…,n}的这种子集与{n+2}的并集,以及{1,n+2},{2,n+2},…,{n,n+2});第二类子集不包含n+2,这样的子集有a n+1个.于是,有a n+2=a n+a n+1+n显然,a3=1,a4=3(即{1,3},{2,4},{1,4}).所以a5=7,a6=14,a7=26,a8=46,a9=79,a10=133.B1-017对任意非空实数集S,令σ(S)为S的元素之和.已知n个正整数的集A,考虑S跑遍A的非空子集时,所有不同和σ(S)的集.证明这些和可以分为n类,每一类中最大的和与最小的和的比不超过2.【题说】第二十五届(1996年)美国数学奥林匹克题2【解】设A={a1,a2,…,a n},a1<a2<…<a n.令f j=a1+a2+…a j,e j=max{a j,f j-1}},则f j=f j-1+a j ≤2e j(1≤j≤n).每个和a i1+a i2+…+a it,i1<i2<…<i t,必在某个区间(f j-1,f j]中.因为a i1+a i2+a it>f j-1=a1+a2+…a j-1所以i t≥j从而a i1+a i2+…+a it≥a j于是a i1+a i2+…+a it∈[e j,f j].这样σ(S)被分为n个类,在e j与f j之间的和为第j类(1≤j≤n),f j本身在第j类,而e j=f j-1时,e j不在第j类;e j>f j-1时,e j在第j类.每一类中最大的和与最小的和的比不超过2.B1-018设S={1,2,3,4),n项的数列:a1,a2,…,a n有下列性质,对于S的任何一个非空子集B(B的元素个数记为|B|),在该数列中有相邻的|B|项恰好组成集合B.求n的最小值.【题说】1997年爱朋思杯——上海市赛决赛题3.【解】n的最小值为8.首先证明S中的每个数在数列a1,a2,…,a n中至少出现2次.事实上,若S中的某个数在这个数列中只出现1次,由于含这个数的二元子集共有3个,但在数列中含这个数的相邻两项至多只有两种取法,因而3个含这个数的二元子集不可能都在数列相邻两项中出现.由此可见n≥8.另一方面,8项数列:3,1,2,3,4,1,2,4满足条件,因此,所求最小值为8.B1-019求两个正整数m与n之间(m<n),一切分母为3的既约分数的和.【题说】1962年成都市赛高三二试题1.3(n-m)+1项.其和但其中整数项的和故所求之和S=S1-S2=n2-m2B1-020证明cos10°是无理数.【题说】1963年合肥市赛高二二试题3.【证】利用公式cos3x=4cos3x-3cos x,可得cos30°=4cos310°-3cos10°(1)即若cos10°是一个有理数,则(1)右端为有理数,而左端是一个无理数,矛盾,故cos10°为无理数.B1-021求出所有四元实数组(x1,x2,x3,x4),使其中任一个数与其余三数积的和等于2.【题说】第七届(1965年)国际数学奥林匹克题4.本题由原苏联提供.【解】设x1x2x3x4=d,则显然d≤1.有以下五种情况:所以d=1,x1=x2=x3=x4=1.所以d=1,x1=x2=x3=x4=1.综上所述,x1、x2、x3、x4或者全为1;或者其中有三个为-1,一个为3.B1-022设P(x)是自然数x在十进制中各位数字的乘积.试求出所有能使P(x)=x2-10x-22成立的自然数.【题说】第十届(1968年)国际数学奥林匹克题2.本题由捷克斯洛伐克提供.【解】设n位数x满足P(x)=x2-10x-22 (1)若n≥3,则x≥10n-1≥100,9n≥P(x)=x(x-10)-22≥90x-22≥90²10n-1-22=9²10n-22>10n矛盾.若n=1,则x=P(x)=x2-10x-22即x2-11x-22=0但此方程无正整数解.因此n=2.若x≥20,则x2-10x-22=x(x-10)-22≥10x-22≥200-22>92≥P(x)因此x=10+y,y∈{0,1,2,…,9}.(1)变成y=(10+y)2-10(10+y)-22易知y=2,x=12.B1-023证明:如果三个正数的积为1,而它们的和严格地大于它们的倒数之和,那么,它们中恰好有一个数大于1.【题说】第四届(1970年)全苏数学奥林匹克八年级题2.【证】设这三个数为a,b,c,则(a-1)(b-1)(c-1)=abc-(ab+bc+ca)+(a+b+c)-1左边有一个或三个因子为正.但abc=1,所以a、b、c不可能全大于1,从而a、b、c中有且只有一个数大于1.B1-024若干个正整数的和为1976,求这些正整数的积的最大值.【题说】第十八届(1976年)国际数学奥林匹克题4.本题由美国提供.【解】设这些正整数为a1,…,a n,则a1+…+a n=1976不妨设a i<4(1≤i≤n),这是因为当a i≥4时a i≤2(a i-2),故把a i换成2和a i-2不会使积减小.再注意2³2³2<3³3,所以只需考虑积2a²3b,其中a=0,1,2,且2a+3b=1976.由此得a=1,b=658,故所求的最大值为2³3658.B1-025确定最大的实数z,满足x+y+z=5 (1)xy+yz+zx=3 (2)并且x、y也是实数.【题说】第十届(1978年)加拿大数学奥林匹克题3.【解】由(1)得(x+y)2=(5-z)2,由(2)得xy=3-z(5-z).于是0≤(x-y)2=(x+y)2-4xy=(5-z)2-4[3-z(5-z)]=-3z2+10z+13=(13-3z)(1+z)因此有-1≤z≤13/3当x=y=1/3时,z=13/3.因此z最大值是13/3.B1-026已知a、b、c、d、e是满足a+b+c+d+e=8,(1)a2+b2+c2+d2+e2=16 (2)的实数,试确定e的最大值.【题说】第七届(1978年)美国数学奥林匹克题1.【解】由Cauchy不等式,(8-e)2=(a+b+c+d)2≤4(a2+b2+c2+d2)=4(16-e2),即B1-027已知:0.301029<lg2<0.301030,0.477120<lg3<0.477121求20001979的首位数字.【题说】1979年安徽省赛二试题1.【解】因为lg20001979=1979(3+lg2)=5937+1979lg2595.736391<1979lg2<595.738370而lg5=1-lg2<0.70lg6=lg2+lg3>0.77所以6532+lg5<lg20001979<6532+lg6即5³106532<20001979<6³106532所以20001979的首位数字是5.B1-028已知a1,a2,…,a8均为正数,且a1+a2+…+a8=20 (1)a1a2…a8=4 (2)试证:a1,a2,…,a8之中至少有一个数小于1.【题说】1979年湖北省赛二试题5.【证】用反证法.如果a1,a2,…,a8都不小于1,则可设a i=1+b i(b i>0,i=1,2, (8)再由(1)即得B1+b2+…+b8=12于是a1a2…a8=(1+b1)(1+b2)…(1+b8)=1+(b1+b2+…+b8)+…+b1b2…b8≥1+(b1+b2+…+b8)=1+12=13与条件(2)矛盾.所以八个数中至少有一个数小于1.B1-029求所有实数a,使得存在非负实数x1,x2,x3,x4,x5满足关系:【题说】第二十一届(1979年)国际数学奥林匹克题5.本题由以色列提供.【解】利用柯西不等式及题设条件,有故中间不等式只能取等号,这意味着在x k≠0时,由此推知,x1,x2,x3,x4,x5中至多一个非0.因此,只能有下面两种情况:(1)x1=x2=x3=x4=x5=0,此时a=0;(2)某个x k=c≠0,其余x i=0(i≠k).这时由已知得kc=a,k3c=a2,k5c=a3.从而k2=a,c=k总之,当且仅当a=0,1,4,9,16,25时,存在非负实数x1,x2,x3,x4,x5满足题中三个方程.B1-030下列表中的对数值有两个是错误的,请予纠正.【题说】1981年全国联赛题2.【解】lg3、lg0.27、lg9的值同为正确或同为错误.因表中只有两处错误,故三者都对.同理,lg2、lg5、lg8、lg6都对.再若lg7=2(b+c),则lg14=lg7+lg2=1-a+2b+c,lg0.021=lg3+lg7-3=2a+b+2c-3,lg2.8=2lg2+lg7-1=1-2a+2b.即lg7=2(b+c)对,就推出lg14、lg0.021、lg2.8三个值都错,与题设矛盾,故知lg7不对.应为lg7=lg l4-lg2=2b+c.lg1.5的值也不对,应为lg1.5=lg3+lg5-1=3a-b+c-1.把n2个互不相等的实数排成下表:a11,a12,…,a1na21,a22,…,a2n…a n1,a n2,…,a nn取每行的最大数得n个数,其中最小的一个是x;再取每列的最小数,又得n个数,其中最大的一个是y,试比较x n与y n的大小.【题说】1982年上海市赛二试题2【解】设x=a ij,y=a pq,则a ij≥a iq≥a pq所以x≥y.(1)当n是奇数时,x n≥y n.(2)当n是偶数时(i)如果x≥y≥0,则x n≥y n;(ii)如果0≥x≥y,则x n≤y n;(iii)如果x≥0≥y,则当x≥-y时,x n≥y n;当x≤-y时,x n≤y n.B1-032对任意实数x、y.定义运算x*y为:x*y=ax+by+cxy其中a、b、c为常数,等式右端运算是通常的实数的加法和乘法.现已知1*2=3,2*3=4,并且有一个非零实数d,使得对于任意实数x,都有x*d=x,求d的值.【题说】1985年全国联赛一试题2(4).原题为填空题.【解】由所设条件,有1*2=a+2b+2c=3 (1)2*3=2a+3b+6c=4 (2)x*d=ax+bd+cxd=(a+cd)x+bd=x(3)由(3)得a+cd=1 (4)B d=0 (5)因d≠0,故由(5)式得b=0.再解方程(1)及(2),得a=5,c=-1,最后由(4)式得d=4.B1-033计算下式的值:【题说】第五届(1987年)美国数学邀请赛题14.注意324=4³34.【解】x4+4y4=(x2+2y2)2-(2xy)2=[(x2+2y2)-2xy][(x2+2y2)+2xy]=[(x-y)2+y2][(x+y)2+y2]。
第36届国际数学奥林匹克试题1.(保加利亚)设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC 、BD 为直径的圆相交于X 和Y ,直线XY 交BC 于Z 。
若P 为XY 上异于Z 的一点,直线CP 与以AC 为直径的圆相交于C 和M ,直线BP 与以BD 为直径的圆相交于B 和N 。
试证:AM 、DN 和XY 三线共点。
证法一:*设AM 交直线XY 于点Q ,而DN 交直线XY 于点Q ′(如图95-1,注意:这里只画出了点P 在线段XY 上的情形,其他情况可类似证明)。
须证:Q 与Q ′重合。
由于XY 为两圆的根轴,故XY ⊥AD ,而AC 为直径,所以 ∠QMC=∠PZC=90°进而,Q ,M ,Z ,B 四点共圆。
同理Q ′,N ,Z ,B 四点共圆。
这样,利用圆幂定理,可知 QP ·PZ=MP ·PC=XP ·PY , Q ′P ·PZ=NP ·PB=XP ·PY 。
所以,QP= Q ′P 。
而Q 与Q ′都在直线XY 上且在直线AD 同侧,从而,Q 与Q ′重合。
命题获证。
分析二*如图95-2,以XY 为弦的任意圆O , 只需证明当P 确定时,S 也确定。
证法二:设X (0,m ),P (0,y 0), ∠PCA=α,m 、y 0是定值。
有20.yx x x ctg y x C A c =⋅-=但α,则.02αtg y m x A -=因此,AM 的方程为).(02ααtg y m x ctg y ⋅+=令02,0y m y x s ==得,即点S 的位置取决于点P 的位置,与⊙O 无关,所以AM 、DN 和ZY 三条直线共点。
2.(俄罗斯)设a 、b 、c 为正实数且满足abc=1。
试证:.23)(1)(1)(1333≥+++++b a c a c b c b a 证法一:**设γβα++=++=++=---------1111111112,2,2b a c a c b c b a,有.0=++γβα于是,)(4)(4)(4333b a c a c b c b a +++++ )(4)(4)(4333b a c abca cb abc c b a abc +++++=112111121111211)()()(------------+++++++++++=ba b a c c b c b c b γαβα211121112111111)()()()(2)(2γβαγβα------------+++++++++++=b a a c c b c b a.6132)111(23=⋅≥++≥abcc b a ∴原不等式成立。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r . 根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x ≤−,则2()24f x x x =−,在这一区间上的最小值为(116f −=+;2.若(13x ∈−−,则()88f x x =−+,在这一区间上的最小值为(316f =−+…………15分3.若31x ∈− ,则2()24f x x x =−+,在这一区间上的最小值为((3116f f =−+=−+;4.若13x ∈− ,则()88f x x =−,在这一区间上的最小值为(116f −+=−+;5.若3x ≥+,则2()24f x x x =−,在这一区间上的最小值为(316f =+.综上所述,所求最小值为((3116f f =−+=−.…………20分。
A2 整数的求解A2-001 哪些连续正整数之和为1000?试求出所有的解.【题说】1963年成都市赛高二二试题3.【解】设这些连续正整数共n个(n>1),最小的一个数为a,则有a+(a+1)+…+(a+n-1)=1000即n(2a+n-1)=2000若n为偶数,则2a+n-1为奇数;若n为奇数,则2a+n-1为偶数.因a≣1,故2a+n-1>n.同,故只有n=5,16,25,因此可能的取法只有下列三种:若n=5,则a=198;若n=16,则a=55;若n=25,则a=28.故解有三种:198+199+200+201+20255+56+…+7028+29+…+52A2-002 N是整数,它的b进制表示是777,求最小的正整数b,使得N是整数的四次方.【题说】第九届(1977年)加拿大数学奥林匹克题3.【解】设b为所求最小正整数,则7b2+7b+7=x4素数7应整除x,故可设x=7k,k为正整数.于是有b2+b+1=73k4当k=1时,(b-18)(b+19)=0.因此b=18是满足条件的最小正整数.A2-003 如果比n个连续整数的和大100的数等于其次n个连续数的和,求n.【题说】1976年美国纽约数学竞赛题7.s2-s1=n2=100从而求得n=10.A2-004 设a和b为正整数,当a2+b2被a+b除时,商是q而余数是r,试求出所有数对(a,b),使得q2+r=1977.【题说】第十九届(1977年)国际数学奥林匹克题5.本题由原联邦德国提供.【解】由题设a2+b2=q(a+b)+r(0≢r<a+b),q2+r=1977,所以q2≢1977,从而q≢44.若q≢43,则r=1977-q2≣1977-432=128.即(a+b)≢88,与(a+b)>r≣128,矛盾.因此,只能有q=44,r=41,从而得a2+b2=44(a+b)+41(a-22)2+(b-22)2=1009不妨设|a-22|≣|b-22|,则1009≣(a-22)2≣504,从而45≢a≢53.经验算得两组解:a=50,b=37及a=50,b=7.由对称性,还有两组解a=37,b=50;a=7,b=50.A2-005 数1978n与1978m的最后三位数相等,试求出正整数n和m,使得m+n取最小值,这里n>m≣1.【题说】第二十届(1978年)国际数学奥林匹克题1.本题由古巴提供.【解】由题设1978n-1978m=1978m(1978n-m-1)≡0(mod 1000)因而1978m≡2m×989m≡0(mod 8),m≣3又1978n-m≡1(mod 125)而1978n-m=(1975+3)n-m≡3n-m+(n-m)3n-m-1·1975(mod 125)(1)从而3n-m≡1(mod 5),于是n-m是4的倍数.设n-m=4k,则代入(1)得从而k(20k+3)≡0(mod 25)因此k必须是25的倍数,n-m至少等于4×25=100,于是m+n的最小值为n-m+2m=106,m=3,n=103A2-006 求方程x3+x2y+xy2+y3=8(x2+xy+y2+1)的全部整数解x、y.【题说】1980年卢森堡等五国国际数学竞赛题6.本题由荷兰提供.于是x3+x2y+xy2+y3=(x+y)3-2xy(x+y)=u3-2vux2+xy+y2=(x+y)2-xy=u2-v从而原方程变为2v(u-4)=u3-8u2-8 (2)因u≠4,故(2)即为根据已知,u-4必整除72,所以只能有u-4=±2α3β,其中α=0,1,2,3;β=0,1,2进一步计算可知只有u-4=2·3=6,于是u=10,v=16A2-007 确定m2+n2的最大值,这里m和n是整数,满足m,n∈{1,2,…,1981},(n2-mn-m2)2=1.【题说】第二十二届(1981年)国际数学奥林匹克题3.【解】若m=n,由(n2-mn-m2)2=1得(mn)2=1,故m=n=1.若m≠n,则由n2-mn-m2=±1得n>m.令n=m+u k,于是[(m+u k)2-m(m+u k)-m2]2=1于是有若u k≠u k-1,则以上步骤可以继续下去,直至从而得到数列:n,m,u k,u k-1,…,u k-l,u k-l-1此数列任意相邻三项皆满足u i=u i-1+u i-2,这恰好是斐波那契型数列.而{1,2,…,1981}中斐氏数为:1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,可见m=987,n=1597时,m2+n2=3524578为满足条件的最大值.A2-008 求方程w!=x!+y!+z!的所有正整数解.【题说】第十五届(1983年)加拿大数学奥林匹克题1.【解】不妨设x≢y≢z.显然w≣z+1,因此(z+1)!≢w!=x!+y!+z!≢3·z!从而z≢2.通过计算知x=y=z=2,w=3是原方程的唯一解.A1-010 前1000个正整数中可以表示成[2x]+[4x]+[6x]+[8x]的正整数有多少个?【题说】第三届(1985年)美国数学邀请赛题10.【解】令f(x)=[2x]+[4x]+[6x]+[8x].个不同的正整数值.另一方面f(x+n)=f(x)+20n对任一正整数n成立.将1-1000分为50段,每20个为1段.每段中,f(x)可取12个值.故总共可取到50×12=600个值,亦即在前1000个正整数中有600个可以表示成[2x]+[4x]+[6x]+[8x]的形式.A2-011 使n3+100能被n+10整除的正整数n的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题5.【解】由n3+100=(n+10)(n2-10n+100)-900知,若n3+100被n+10整除,则900也应被n+10整除.因此,n最大值是890.A2-012 a、b、c、d为两两不同的正整数,并且a+b=cd,ab=c+d求出所有满足上述要求的四元数组a、b、c、d.【题说】1987年匈牙利数学奥林匹克题1.【解】由于a≠b,所以当且仅当a=1或b=1时,才有a+b≣ab.如果a、b都不是1,那么c+d=ab>a+b=cd由此知c=1或d=1.因此a、b、c、d中总有一个(也只有一个)为1.如果a=1,那么由消去b可以推出从而得到c=2,d=3,或者c=3,d=2.这样,本题的答案可以列成下表A2-013 设[r,s]表示正整数r和s的最小公倍数,求有序三元正整数组(a,b,c)的个数,其中[a,b]=1000,[b,c]=2000,[c,a]=2000.【题说】第五届(1987年)美国数学邀请赛题7.【解】显然,a、b、c都是形如2m·5n的数.设a=2m1·5n1,b=2m2·5n2,c=2m3·5n3.由[a,b]=1000=23·53,知max(m1,m2)=3,max(n1,n2)=3.同理,max(m2,m3)=4,max(n2,n3)=3;max(m1,m3)=4,max(n1,n3)=3.由此,知m3应是4,m1、m2中必有一是3.另一个可以是0、1、2或3之任一种,因此m1、m2的取法有7种.又,n1、n2、n3中必有两个是3,另一个可以是0、1、2或3.因此n1、n2、n3取法有10种.故m i、n i(i=1、2、3)不同取法共有7×10=70种,即三元组共有70个.A2-014 设m的立方根是一个形如n+r的数,这里n为正整数,r为小于1/1000的正实数.当m是满足上述条件的最小正整数时,求n的值.【题说】第五届(1987年)美国数学邀请赛题12.m=n3+1<(n+10-3)3=n3+3n2·10-3+3n·10-6+10-9于是从而n=19(此时m=193+1为最小).【题说】第十三届(1987年)全俄数学奥林匹克九年级题1.【解】144=122,1444=382设n>3,则则k必是一个偶数.所以也是一个自然数的完全平方,但这是不可能的.因为平方数除以4,因此,本题答案为n=2,3.A2-016 当n是怎样的最小自然数时,方程[10n/x]=1989有整数解?【题说】第二十三届(1989年)全苏数学奥林匹克十年级题1.【解】1989≢10n/x<1990所以10n/1990<x≢10n/1989即10n·0.000502512…<x≢10n·0.000502765…所以n=7,这时x=5026与5027是解.A2-017 设a n=50+n2,n=1,2,….对每个n,a n与a n+1的最大公约数记为d n.求d n的最大值.【题说】1990年日本第1轮选拔赛题9.【解】d n=(a n,a n+1)=(50+n2,50+(n+1)2-(50+n2))=(50+n2,2n+1)=(2(n2+50),2n+1)(因2n+1是奇数)=(2(n2+50)-n(2n+1),2n+1)=(100-n,2n+1)=(100-n,2n+1+2(100-n))=(100-n,201)≢201在n=100≠201k(k∈N)时,d n=201.故所求值为201.A2-018 n是满足下列条件的最小正整数:(1)n是75的倍数;(2)n恰为75个正整数因子(包括1及本身).试求n/75.【题说】第八届(1990年)美国数学邀请赛题5.【解】为保证n是75的倍数而又尽可能地小,可设n=2α·3β·5γ,其中α≣0,β≣1,γ≣2,并且(α+1)(β+1)(γ+1)=75由75=52·3,易知当α=β=4,γ=2时,符合条件(1)、(2).此时n=24·34·52,n/75=432.A2-019 1.求出两个自然数x、y,使得xy+x和xy+y分别是不同的自然数的平方.2.能否在988至1991范围内求到这样的x和y?【题说】第二十五届(1991年)全苏数学奥林匹克九年级题5.【解】1.例如x=1,y=8即满足要求.2.假设988≢x<y≢1991x、y∈N,使得xy+x与xy+y是不同的自然数的平方,则x2<xy+x<xy+y这时y-x=(xy+y)-(xy+x)>(x+1)2-x2=2x+1即y>3x+1由此得1991≣y>3x+1≣3×998+1矛盾!故在988与1991之间不存在这样的自然数x、y.A2-020 求所有自然数n,使得这里[n/k2]表示不超过n/k2的最大整数,N是自然数集.【题说】1991年中国数学奥林匹克题5.【解】题给条件等价于,对一切k∈N,k2+n/k2≣1991 (1)且存在k∈N,使得k2+n/k2<1992.(2)(1)等价于对一切k∈N,k4-1991k2+n≣0即(k2-1991/2)2+n-19912/4≣0 (3)故(3)式左边在k取32时最小,因此(1)等价于n≣1991×322-324=1024×967又,(2)等价于存在k∈N,使(k2-996)2+n-9962<0上式左边也在k=32时最小,故(2)等价于n<1992×322-324=1024×968故n为满足1024×967≢n≢1024×967+1023的一切整数.A2-021 设n是固定的正整数,求出满足下述性质的所有正整数的和:在二进制的数字表示中,正好是由2n个数字组成,其中有n个1和n个0,但首位数字不是0.【题说】第二十三届(1991年)加拿大数学奥林匹克题2.【解】n=1,易知所求和S1=2.n≣2时,首位数字为1的2n位数,在其余2n-1位上,只要n个0的位置确定了.则n-1个1的位置也就确定了,从而这个2n位二进制数也随之确定.现考虑第k(2n>k≣1)位数字是1的数的个数.因为其中n个0的位置只可从2n-2个位置(除去首位和第k位)中选择,故这样的将所有这样的2n位二进制数相加,按数位求和,便有A2-022 在{1000,1001,1002,…,2000}中有多少对相邻的数满足下列条件:每对中的两数相加时不需要进位?【题说】第十届(1992年)美国数学邀请赛题6.7或8时,则当n和n+1相加时将发生进位.再若b=9而c≠9;a=9而b≠9或c≠9.则当n 和n+1相加时也将发生进位.如果不是上面描述的数,则n有如下形式其中a,b,c∈{0,1,2,3,4}.对这种形式的n,当n和n+1相加时不会发生进位,所以共有53+52+5+1=156个这样的n.A2-023 定义一个正整数n是一个阶乘的“尾”,如果存在一个正整数m,使得m!的十进位制表示中,结尾恰好有n个零,那么小于1992的正整数中有多少个不是阶乘的尾?【题说】第十届(1992年)美国数学邀请赛题15.【解】设f(m)为m!的尾.则f(m)是m的不减函数,且当m是5的倍数时,有f(m)=f(m+1)=f(m+2)=f(m+3)=f(m+4)<f(m+5)因此,从f(0)=0开始,f(m)依次取值为:0,0,0,0,0;1,1,1,1,1;2,2,2,2,2;3,3,3,3,3;4,4,4,4,4;6,6,6,6,6;…;1991,1991,1991,1991,1991容易看出如果存在m使f(m)=1991,则因而m>4×1991=7964.由公式(1)可计算出f(7965)=1988,从而f(7975)=1991.在序列(1)中共有7980项,不同的值有7980/5=1596个.所以在{0,1,2,…,1991}中,有1992-1596=396个值不在(1)中出现.这就说明,有396个正整数不是阶乘的尾.A2-024 数列{a n}定义如下:a0=1,a1=2,a n+2=a n+(a n+1)2.求a1992除以7所得的余数.【题说】1992年日本数学奥林匹克预选赛题1.【解】考虑a n以7为模的同余式:a0=1≡1(mod 7)a1=2≡2(mod 7)a1=1+22=5≡-2(mod 7)a3≡2+(-2)2=6≡-1(mod 7)a4≡-2+(-1)2=-1(mod 7)a5≡-1+(-1)2=0(mod 7)a6≡-1+02=-1(mod 7)a7≡0+(-1)2=1(mod 7)a8≡-1+12=0(mod 7)a9≡1+02=1(mod 7)a10≡0+12=1(mod 7)a11≡1+12=2(mod 7)所以,a n除以7的余数以10为周期,故a1992≡a2≡5(mod 7).A2-025 求所有的正整数n,满足等式S(n)=S(2n)=S(3n)=…=S(n2)其中S(x)表示十进制正整数x的各位数字和.【题说】1992年捷克和斯洛伐克数学奥林匹克(最后一轮)题3.【解】显然,n=1满足要求.由于对正整数x,有S(x)≡x(mod 9),故当n>1时,有n≡S(n)≡S(2n)≡2n(mod 9)所以9|n.若n是一位数,则n=9,又S(9)=S(2×9)=S(3×9)=…=S(92)=9,故9满足要求.10k≢n<10k+1又910k,故10k+1≢n<10k+1若n<10k+10k-1+…+10+1,则与已知矛盾,从而n≣10k+10k-1+…+10+1(1)令n=9m.设m的位数为l(k≢l≢k+1),m-1=S(n)=S((10k+10k-1+…+10+1)n)=S((10k+1-1)m)=S(10k+1(m-1)+(10k+1-10l)+(10l-m))其中9有k+1-l个,b i+c i=9,i=1,2,…,l.所以S(n)=9(k+1)(2)由于n是k+1位数,所以n=99…9=10k+1-1.另一方面,当n=99…9=10k+1-1时,S(n)=S(2n)=S(3n)=…=S(n2).综上所述,满足要求的正整数为n=1及n=10k-1(k≣1).A2-026 求最大正整数k,使得3k|(23m+1),其中m为任意正整数.【题说】1992年友谊杯国际数学竞赛十、十一年级题2.【解】当m=1时,23m+1=9,故k≢2.又由于23m+1=(23)3m-1+1≡(-1)3m-1+1(mod 9)=0所以,对任意正整数m,9|(23m+1).即所求k的值为2.最大整数.【题说】1993年全国联赛一试题2(4),原是填空题.【解】因为1093+33=(1031)3+33=(1031+3)((1031)2-3×1031+32)=(1031)(1031-3)+9-1它的个位数字是8,十位数字是0.A2-028 试求所有满足如下性质的四元实数组:组中的任一数都等于其余三个数中某两个数的乘积.【题说】第十九届(1993年)全俄数学奥林匹克十一年级二试题5.【解】设这组数的绝对值为a≢b≢c≢d.无论a为b,c,d哪两个数的乘积,均有a≣bc,类似地,d≢bc.从而,bc≢a≢b≢c≢d≢bc,即a=b=c=d=a2.所以a=0或1,不难验证,如果组中有负数,则负数的个数为2或3.所以,答案为{0,0,0,0},{1,1,1,1},{-1,-1,1,1},{-1,-1,-1,1}.A2-029 对任意的实数x,函数f(x)有性质f(x)+f(x-1)=x2.如果f(19)=94,那么f(94)除以1000的余数是多少?【题说】第十二届(1994年)美国数学邀请赛题3.【解】重复使用f(x)=x2-f(x-1),有f(94)=942-f(93)=942-932+f(92)=942-932+922-f(91)=…=942-932+922-…+202-f(19)=(94+93)(94-93)+(92+91)(92-91)+…+(22+21)(22-21)+202-94=(94+93+92+…+21)+306=4561因此,f(94)除以1000的余数是561.A2-030 对实数x,[x]表示x的整数部分,求使[log21]+[log22]+[log23]+…+[log2n]=1994成立的正整数n.【题说】第十二届(1994年)美国数学邀请赛题4.【解】[long21]+[log22]+[log23]+…+[log2128]+[log2129]+…+[log2255]=2×1+4×2+8×3+16×4+32×5+64×6+128×7=1538.A2-031 对给定的一个正整数n.设p(n)表示n的各位上的非零数字乘积(如果n只有一位数字,那么p(n)等于那个数字).若S=p(1)+p(2)+p(3)+…+p(999),则S 的最大素因子是多少?【题说】第十二届(1994年)美国数学邀请赛题5.【解】将每个小于1000的正整数作为三位数,(若位数小于3,则前面补0,如25可写成025),所有这样的正整数各位数字乘积的和是(0·0·0+0·0·1+0·0·2+…+9·9·8+9·9·9)-0·0·0=(0+1+2+…+9)3-0p(n)是n的非零数字的乘积,这个乘积的和可以由上面表达式将0换成1而得到.因此,=463-1=33·5·7·103最大的素因子是103.A2-032 求所有不相同的素数p、q、r和s,使得它们的和仍是素数,并且p2+qs及p2+qr 都是平方数.【题说】第二十届(1994年)全俄数学奥林匹克九年级题7.【解】因为四个奇素数之和是大于2的偶数,所以所求的素数中必有一个为偶数2.若p≠2,则p2+qs或p2+qr中有一个形如(2k+1)2+2(2l+1)=4(k2+k+l)+3,这是不可能的,因为奇数的平方除以4的余数是1,所以p=2.设22+qs=a2,则qs=(a+2)(a-2).若a-2=1,则qs=5,因为q、s是奇素数,所以上式是不可能的.于是只能是q=a-2,s=a+2或者q=a+2,s=a-2所以s=q-4或q+4.同理r=q-4或q+4.三个数q-4、q、q+4被3除,余数各不相同,因此其中必有一个被3整除.q或q+4为3时,都导致矛盾,所以只能是q-4=3.于是(p,q,r,s)=(2,7,3,11)或(2,7,11,3)A2-033 求所有这样的素数,它既是两个素数之和,同时又是两个素数之差.【题说】第二十届(1994年)全俄数学奥林匹克十年级题5.【解】设所求的素数为p,因它是两素数之和,故p>2,从而p是奇数.因此,和为p的两个素数中有一个是2,同时差为p的两个素数中,减数也是2,即p=q+2,p=r-2,其中q、r 为素数.于是p-2、p、p+2均为素数.在三个连续的奇数中必有一数被3整除,因这数为素数,故必为3.不难验证只有p-2=3,p=5,p+2=7时,才满足条件.所以所求的素数是5.个整数.【题说】第三十五届(1994年)国际数学奥林匹克题4.本题由澳大利亚提供.【解】n3+1=n3+mn-(mn-1),所以mn-1|n(n2+m).因为(mn-1,n)=1,所以mn -1|n2+m.又n(m2+n)-(n2+m)=m(mn-1),所以mn-1|m2+n.因此m,n对称,不妨设m≣n.当n=1时,mn-1=m-1|n3+1=2,从而m=2或3,以下设n≣2.若m=n,则n2-1|(n3+1)=(n3-n)+(n+1),从而n2-1|(n+1),m=n=2.若m>n,则由于2(mn-1)≣n2+mn+n-2≣n2+2m>n2+m所以mn-1=n2+m,即(m-n-1)(n-1)=2从而于是本题答案为(m,n)=(2,1),(3,1),(1,2),(2,2),(5,2),(1,3),(5,3),(3,5),(2,5)共九组.【题说】第十三届(1995年)美国数学邀请赛题7.【解】由已知得即所以A2-036 一个正整数不是42的正整数倍与合数之和.这个数最大是多少?【题说】第十三届(1995年)美国数学邀请赛题10.【解】设这数为42n+p,其中n为非负整数,p为小于42的素数或1.由于2×42+1,42+2,42+3,42×5+5,42+7,2×42+11,42+13,4×42+17,3×42+19,42+23,3×42+29,2×42+31,4×42+37,2×42+41,都是合数,所以在n≣5时,42n +p都可表成42的正整数倍与合数之和,只有42×5+5例外.因此,所求的数就是42×5+5=215.A2-038 求所有正整数x、y,使得x+y2+z3=xyz,这里z是x、y的最大公约数.【题说】第三十六届(1995年)IMO预选题.【解】由原方程及y2、z3、xyz均被z2整除得出z2|x.设x=az2,y=bz,则原方程化为a+b2+z=abz2 (1)由b2、abz2被b整除得b|(a+z).于是b≢a+z.a+z+b2=abz2=(a+z)b+(a+z)b+b((z2-2)a-2z)≣a+z+b2+b((z2-2)a-2z)(2)(2)中不等式的等号只在b=1并且b=a+z时成立,而这种情况不可能出现(a+z>1),所以(2)是严格的不等式.这表明(z2-2)a-2Z<0 (3)从而z≢2(否则(3)的左边≣z2-2-2z≣z-2>0).在z=2时,2a-2z<0,即a=1,代入(1)得b=1或3,从而x=4,y=2或6.在z=1时,(1)成为a+b2+1=ab (4)从而(a-b)(b-1)=b+1=(b-1)+2这表明(b-1)|2,b=2或3.代入(4)得a=5.于是x=5,y=2或3.因此本题共有四组解:(x,y)=(4,2),(4,6),(5,2),(5,3).A2-039 设m、n∈N,(m,n)=1.求(5m+7m,5n+7n).其中(m,n)表示m、n的最大公约数.【题说】1996年日本数学奥林匹克题2.【解】记H(m,n)=(5m+7m,5n+7n).则H(0,1)=(2,12)=2H(1,1)=(12,12)=12因H(m,n)=H(n,m),故可设n≣m.当n≣2m时,(5m+7m,5n+7n)=(5m+7m,(5m+7m)(5n-m+7n-m)-5m7m(5n-2m+7n-2m))=(5m+7m,5m7m(5n-2m+7n-2m))=(5m+7m,5n-2m+7n-2m)当m≢n<2m时,(5m+7m,5n+7n)=(5m+7m,(5m+7m)(5n-m+7n-m)-5n-m7n-m(52m-n+72m-n))=(5m+7m,52m-n+72m-n)记则(1)H(m′,n′)=H(m,n);(2)m′+n′≡m+n(mod 2);(3)(m′,n′)=(m,n).当(m,n)=1时,反复进行上面的操作,最后必有(m′,n′)=(1,0)或(m′,n′)=(1,1).从而有A2-040 求下列方程的正整数解:(a,b)+[a,b]+a+b=ab其中a≣b,[a,b]、(a,b)分别表示a与b的最小公倍数与最大公因数.【题说】1996年日本数学奥林匹克预选赛题7.【解】记(a,b)=d,a=da′,b=db′,则[a,b]=da′b′.题设条件变为1+a′+b′+a′b′=da′b′(*)所以故1<d≢4.当d=4时,a′=b′=1,从而a=b=4;当d=3时,(*)等价于(2a′-1)(2b′-1)=3由a′≣b′得a′=2,b′-1.故a=6,b=3.当d=2时,(*)等价于(a′-1)(b′-1)=2由a′≣b′得a′=3,b′=2.从而a=6,b=4.综上所述,所求的正整数解有4,4;6,4;6,3.A2-041 一个幻方中,每一行,每一列及每一对角线上的三个数之和有相同的值.图示一个幻方中的四个数,求x.【题说】第十四届(1996年)美国数学邀请赛题1.【解】幻方中两条对角线的和与第二列的和都为同一值s,这3s也是第一行的和加上第二行的和,再加上中央一数的3倍.所以中央的左下角的数为19+96-1=114.因此x=3×105-19-96=200A2-042 对整数1,2,3,…,10的每一个排列a1,a2,…,a10,作和|a1-a2|+|a3-a4|+|a5-a6|+|a7-a8|+|a9-a10|数.求p+q.【题说】第十四届(1996年)美国数学邀请赛题12.【解】差|a i-a j|有如下的45种:这45种的和为1×9+2×8+3×7+4×6+5×5+6×4+7×3+8×2+9×1=165.每一种出现的次数相同,而在和|a1-a2|+|a3-a4|+|a5-a6|+|a7-a8|+|a9-a10|中有5种,所以A2-043 设正整数a、b使15a+16b和16a-15b都是正整数的平方.求这两个平方数中较小的数能够取到的最小值.【题说】第三十七届(1996年)国际数学奥林匹克题4.本题由俄罗斯提供.【解】15a+16b=r2,16a-15b=s2于是16r2-15s2=162b+152b=481b (1)所以16r2-15s2是481=13×37的倍数.由于0,±1,±2,±3,±4,±5,±6的平方为0,±1,±3,±4(mod 13),所以15≡2(mod 13)不是任一数的平方.因此,16r2≡15s2(mod 13)时,必有13|s.同样,由于0,±1,±2,±3,±4,±5,±6,±7,±8,±9,±10,±11,±12,±13,±14,±15,±16,±17,±18的平方为0,±1,±3,±4,±9,±12,±16(mod 37),所以必有37|s.于是481|s.由(1),481|r.在r=s=481时,b=(16-15)×481=481,a=(16+15)×481=31×481,满足15a+16b =r2,16a-15b=s2.所以所说最小值为481.A2-044 设自然数n为十进制中的10位数.从左边数起第1位上的数恰是n的数字中0的个数,第2位上的数恰是n的数字中1的个数,一般地,第k+1位上的数恰是n的数字中k的个数(0≢k≢9).求一切这样的数n.【题说】1997年日本数学奥林匹克预选赛题7.【解】设n的左数第k+1位上的数字为n k(0≢k≢9),则数字k出现的次数为n k.因为n是10位数,所以n0+n1+n2+…+n9=10 (1)位上出现,则数字j在n中出现k次.n k个k意味着有数字j1,j2,…,又数字k若在左数第n j+1j nk,共出现k nk次.于是,又有n i+2n2+…+9n9=10 (2)由(2)显然n5,n6,n7,n8,n9,至多一个非零,且n6,n7,n8,n9均≢1.若n5=n6=n7=n8=n9=0 (3)则n0≣5.于是n中至少有一个数字≣5,与(3)矛盾.所以n5,n6,n7,n8,n9中有一个非零,其余四个为0.从而n1+2n2+3n3+4n4≢5 (4)(4)表明n1,n2,n3,n4中至少有两个为0,从而n中0的个数不少于6,即n0≣6.于是n6,n7,n8,n9中有一个为1,n5=0.若n9=1,则n0=9,n1≣1,这显然不可能.若n8=1,则n0=8,n1≣1,但无论n1>1或n1=1均不合要求.若n7=1,则n0=7,n1=1或2,前者显然不合要求.后者导致n2≣1,n0+n1+n2+n7>10也不合要求.若n6=1,则n0=6,n1=2或3.n1=2时,n2=1,数6210001000满足要求.n1=3时,n3>0,n0+n1+n3+n6>10,不合要求.综上所述,满足条件的10位数n只有6210001000.A2-045 求所有的整数对(a,b),其中a≣1,b≣1,且满足等式a b2=b a.【题说】第三十八届(1997年)国际数学奥林匹克题5.本题由捷克提供.【解】显然当a、b中有一个等于1时,(a,b)=(1,1).以下设a,b≣2.设t=b2/a,则由题中等式得到b=a t,at=a2t,从而t=a2t-1.如果2t-1≣1,则t=a2t-1≣(1+1)2t-1≣1+(2t-1)=2t>t,矛盾.所以2t-1<1.于是我们有0<t<1.记K=1/t,则K=a/b2>1为有理数,由a=b k可知K=b K-2 (1)如果K≢2,则K=b K-2≢1,与前面所证K>1矛盾,因此K>2.设K=p/q,p,q∈N,p、q 互质,则p>2q.于是由(1)q=1,即K为一个大于2的自然数.当b=2时,由(2)式得到K=2K-2,所以K≣4.又因为等号当且仅当K=4时成立,所以得到a=b K=24=16.当b≣3时,=b K-2≣(1+2)K-2≣1+2(K-2)=2K-3.从而得到K≢3.这意味着K=3,于是得到b=3,a=b K=33=27.综上所述,满足题目等式的所有正整数对为(a,b)=(1,1),(16,2),(27,3).75=3×5^2显然N必含有质因数3、5,且质因数5的个数至少为2。
第二章代数第三节不等式B3-001 北京、上海同时制成电子计算机若干台,除本地应用外,北京可支援外地10台,上海可支援外地4台.现在决定给重庆8台,汉口6台,若每台计算机运费如右表所示(单位:百元),又上海、北京当时制造的机器完全相同.问应怎样调运,才能使总的运费最省?【题说】1960年上海市赛高一复赛题6.【解】设北京调给重庆x台,上海调给重庆y台,则0≤x≤10,0≤y≤4x+y=8总运费为8x+4(10-x)+5y+3(4-y)=4x+2y+52=84-2y当y=4时,总运费最小,此时,x=4,10-x=6,4-y=0.答:北京调给重庆4台,调给汉口6台,上海调给重庆4台,这样总运费最省.B3-002 x取什么值时,不等式成立?【题说】第二届(1960年)国际数学奥林匹克题2.本题由匈牙利提供.将原不等式化简得 x2(8x-45)<0,因此,原不等式的解为B3-003甲队有2m个人,乙队有3m个人,现自甲队抽出(14-m)人,乙队抽出(5m-11)人,参加游戏,问甲、乙队各有多少人?参加游戏的人有几种选法?【题说】1962年上海市赛高三决赛题4.【解】抽出的人数必须满足解得m=5.故甲队有2m=10人,乙队有3m=15人,甲队抽出14-m=9(人).乙队抽出5m-11=14(人),从而参加游戏的人共有选法.B3-004 求出所有满足不等式的实数.【题说】第四届(1962年)国际数学奥林匹克题2.本题由匈牙利提供.B3-007 设a1,a2,…,a n为n个正数,且设q为一已知实数,使得0<q<1.求n个数b1,b2,…,b n使1.a k<b k, k=1,2,…,n.【题说】第十五届(1973年)国际数学奥林匹克题6.本题由瑞典提供.【解】设b k=a1q k-1+a2q k-2+…+a k-1q+a k+a k+1q+…+a n q n-k(k=1,2,…,n).1.显然b k>a k对k=1,2,…,n成立.2.比较b k+1=q k a1+q k-1a2+…+qa k+a k+1+…+q n-k-1a n与qb k=q k a1+…+q2a k-1+qa k+q2a k+1+…+q n-k+1a n,qb k的前面k项与bk+1的前面k项相等,其余的项小于b k+1的相应项(因为q<1).因此b k+1>qb k.因此,b1,b2,…,b n满足题目的要求.B3-008求满足条件:x≥1,y≥1,z≥1,xyz=10,x lgx y lgy z lgz≥10的x、y、z的值.【题说】1979年黑龙江省赛二试题3.【解】设lgx=u,lgy=v,lgz=w,则原题条件就变为:u≥0,v≥0,w≥0 (1)u+v+w=1(2)u2+v2+w2≥1(3)(2)平方得 u2+v2+w2+2(uv+vw+wu)=1 (4)(4)-(3)得 uv+vw+wu≤0由(1)得 uv=vw=wu=0(5)由(2)及(5)得:因此满足题意的解为:B3-009长方形的一边长为1cm已知它被两条相互垂直的直线分成四个小长方形,其中三个的面积不小于1cm2,第四个的面积不小于2cm2.问原长方形另一边至少要多长?【题说】第十七届(1983年)全苏数学奥林匹克九年级题6.【解】设小长方形的边长如图所示,则我们要求c+d的最小值,由题设c+d=(a+b)·(c+d)=ac+bd+ad+bcB3-010 m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有的这样的m与n,问3m+4n的最大值是多少?请证明你的结论.【题说】第二届(1987年)全国冬令营赛题6.【解】1987≥2+4+6+2m+1+3+…+(2n-1)=m(m+1)+n2因此,由柯西不等式于是221为3m+4n的上界,当m=27,n=35时,3m+4n取得最大值221.B3-011 求最大的正整数n,使不等式只对一个整数k成立.【题说】第五届(1987年)美国数学邀请赛题8.【解】原式等价于取n=112,则k只能取唯一的整数值97.另一方面,在n>112时,因此满足要求的n=112.B3-012 非负数a和d,正数b和c满足条件b+c≥a+d,这时【题说】第二十二届(1988年)全苏数学奥林匹克九年级题7.【证】不妨设a+b≥c+dc≤c+dB3-013 设a1、a2、…、a n是给定不全为0的实数,r1、r2、…、r n是实数,如果不等式r1(x1-a1)+r2(x2-a2)+…+r n(x n-a n)对任何实数x1、x2、…、x n成立,求,r1、r2、…、r n的值.【题说】第三届(1988年)全国冬令营赛题1.【解】取x i=a i,i=2,3,…,n代入原不等式,得当x1>a1时,由上式得当x1<a1时,上述不等式反号.令x1分别从大于a1与小于a1的方向趋于a1,得到B3-014 对于i=1,2,…,n,有|x i|<1 ,又设|x1|+|x2|+…+|x n|=19+|x1+…+x n|.那么整数n的最小值是多少?【题说】第六届(1988年)美国数学邀请赛题4.另一方面,令x1=x2=…=x10=0.95,x11=x12=…=x20=-0.95,则有故n=20即为所求最小值.B3-015 设m、n为正整数,证明存在与m、n无关的常数a【题说】1989年瑞典数学奥林匹克题5.【解】 a max=3因为 m2≡0,1,2,4(mod7)所以 7n2-m2≡-m2≡0,6,5,3(mod7)a=3maxB3-016 设x、y、z>0且x+y+z=1.求1/x+4/y+9/z的最小值.【题说】1990年日本第一轮选拔赛题10.【解】 1/x+4/y+9/z=(x+y+z)(1/x+4/y+9/z)B3-017 设n为自然数,对任意实数x、y、z,恒有(x2+y2+z2)2≤n(x4+y4+z4)成立,求n的最小值.【题说】1990年全国联赛一试题2(3).原题为填空题.【解】(x2+y2+z2)2=x4+y4+z4+2x2y2+2y2z2+2z2x2≤x4+y4+z4+(x4+y4)+(y4+z4)+(z4+x4)=3(x4+y4+z4)当x=y=z>0时,原不等式化为9x4≤3nx4,故n≥3.所以,n的最小值是3.B3-019 a、b、c是一个任意三角形的三边长,证明:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.【题说】第六届(1964年)国际数学奥林匹克题2.本题由匈牙利提供.【证】不妨设a≤b≤c.3abc-a2(b+c-a)-b2(c+a-b)-c2(a+b-c)=a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)≥b(b-c)(b-a)+c(c-a)(c-b)≥c(c-b)[(c-a)(b-a)]=c(c-b)2≥0 B3-020 怎样的整数a,b,c满足不等式 a2+b2+c2+3<ab+3b+2c?【题说】1965年匈牙利数学奥林匹克题1.【解】对于整数a、b、c,所要解的不等式等价于a2+b2+c2+4≤ab+3b+2c这个不等式可以变成由此可知,原不等式只可能有唯一的一组解a=1,b=2,c=1.B3-021有限数a1,a2,…,a n(n≥3)满足关系式a1=a n=0,a k-1+a k+1≥2a k(k=2,3,…,n-1),证明:数a1,a2,…,a n中没有正数.【题说】1966年~1967年波兰数学奥林匹克二试题1.【证】设a1,a2,…,a n中,a r最大,s是满足等式a s=a r的最小下标.若n >s>1,则a s-1;<a s,a s+1≤a s,从而a s-1+a s+1<2a s,与已知条件a s-1+a s+1≥2a s矛盾.故只有s=1或s=n,于是a r=0,数a1,a2,…,a n中没有正数,B3-022设a、b、c、d是正数,证明不等式a+b<c+d(1)(a+b)(c+d)<ab+cd (2)(a+b)cd<ab(c+d)(3)中至少有一个不正确.【题说】第三届(1969年)全苏数学奥林匹克九年级题1.【证】假定(1)、(2)、(3)都正确.则(a+b)2(c+d)<(a+b)(ab+cd)<ab(a+b)+ab(c+d)<2ab(c+d)从而(a+b)2<2ab, 矛盾.B3-023 证明:任何正数a1,a2,…,a n满足不等式【题说】第三届(1969年)全苏数学奥林匹克十年级题6.原不等式左端的和大于故原不等式得证.【注】可以考虑更强的不等式(1954年美国数学家夏皮罗提出的猜测)对n≤12上式成立.对偶数n≥14与奇数n ≥27不成立.B3-024证明:对所有满足条件x1>0,x2>0,x1y1-成立,并求出等号成立的充要条件.【题说】第十一届(1969年)国际数学奥林匹克题6.本题由原苏联提供.所以当且仅当x1=x2,y1=y2,z1=z2时,等号成立.B3-025 设a、b、n都是自然数,且a>1,b>1,n>1,A n-1和A n是a 进制数系中的数,B n-1和B n是b进制数系中的数.A n-1、A n、B n-1和B n呈如下形式:A n-1=x n-1x n-2…x0,A n=x n x n-1…x0(a进制的位置表示法);B n-1=x n-1x n-2…x0,B n=x n x n-1…x0(b进制的位置表示法).其中x n≠0,x n-1≠0.证明:当a>b时,有【题说】第十二届(1970年)国际数学奥林匹克题2.本题由罗马尼亚提供.【证】由于a>b,故A n B n-1-A n-1B n=(x n a n-1+A n-1)B n-1-(x n b n-1+B n-1)A n-1=x n[x n-1(a n-1b n-2-a n-2b n-1)+…+x0(a n-1-b n-1)]>0B3-026 (n>2)是自然数,证明下述论断仅对n=3和n=5成立:对任意实数a1,a2,…,a n都有(a1-a2)·(a1-a3)…(a1-a n)+(a2-a1)·(a2-a3)…(a2-a n)+…+(a n-a1)·(a n-a2)…(a n-a n-1)≥0【题说】第十三届(1971年)国际数学奥林匹克题1.本题由匈牙利提供.1979年湖南省赛二试题4.【证】不妨设a1≤a2≤a3≤…≤a n.若n为偶数,令a1<a2=a3=…=a n,则左边小于0,因而不等式不成立;若n=3,则左边前两项的和为(a1-a2)2≥0第三项不小于0,故不等式成立;若n=5,则同样可知左边前两项的和不小于0,末两项的和也不小于0,第三项不小于0,因此左边总不小于0,不等式成立;若n≥7,令a1=a2=a3<a4<a5=a6=…=a n则左边只有一个非零项(a4-a1)(a4-a2)…(a4-a n)<0故不等式不成立.B3-027A=(a ij)是一个元素为非负整数的矩阵,其中i、j=1,2,…,n.该矩阵有如下性质:如果某一a ij=0,那么对i和j有a i1+a i2+…+a in+a1j+a2j+…+a nj≥n证明:这个矩阵所有元素的和不小于0.5n2.【题说】第十三届(1971年)国际数学奥林匹克题6.本题由瑞典提供.【证】交换A的两行或两列不改变题设的A的性质(因为行和与列和均不变、只是交换了位置),因此我们可以先通过交换两行或两列的变换,使得有尽可能大的k满足a11=a22=…=a kk=0.此时对于i,j>k有a ij≠0.对于i ≤k,j>k,若a ij=0,则a ji≠0,因若不然,交换i,j行,就会使a11=a22=…=a kk=a jj=0,与k的极大性矛盾.因而对于j>k,仍有a j1+…+a jn+a1j+…+a nj≥nB3-028求出所有能使不等式组成立的所有解(x1,x2,x3,x4,x5),其中x1,x2,x3,x4,x5都是正实数.【题说】第十四届(1972年)国际数学奥林匹克题4.本题由荷兰提供.【解】为方便起见,令x5+i=x i,则可以把原不等式组简写为将它们加起来得=x5=x2=x4.反之,如果x i都相等,原不等式组当然成立.B3-029 证明:对于正数a、b、c,下述不等式成立:a3+b3+c3+3abc≥ab(a+b)+bc(b+c)+ac(a+c)(1)【题说】第九届(1975年)全苏数学奥林匹克十年级题2.【证】不失一般性,可假定a≥b≥c.那末c(a-c)(b-c)≥0,(a-b)2(a+b-c)≥0从而 c3+abc≥ac2+bc2 (2)a3+b3+2abc≥ab(a+b)+a2c+b2c (3)(2)、(3)两式相加即得(1)式.B3-030已知a1,a2,…,a n为任何两两各不相同的正整数,求证对任何正整数n,下列不等式成立;【题说】第二十届(1978年)国际数学奥林匹克题5.本题由法国提供.【证】由柯西不等式【别证】利用排序不等式.B3-031 已知0≤a1,0≤a2,0≤a3,a1+a2+a3=1,0<λ1<λ2<λ3.求证:下面不等式成立【题说】1979年北京市赛二试题5.本题是康托洛维奇不等式的特例.【证】对任意正实数x,B3-032设a、b、c为正实数,证明【题说】第三届(1974年)美国数学奥林匹克题2.注意:这是一个对称不等式.【证】不失一般性,可以假定a≥b≥c>0.原不等式即a2a-b-c·b2b-a-c·c2c-a-b≥1 (1)由2a-b-c>0,得a2a-b-c·b2b-a-c≥b2a-b-c·b2b-a-c=b a+b-2ca=b=c时,等号成立.【别证】可以利用等式然后证明右端括号为正.B3-033 设x i、y i是实数(i=1,…,n).且x1≥x2≥…≥x n;y1≥y2≥…≥y n;z1、z2、…、z n是y1、y2、…、y n的任一个排列,证明【题说】第十七届(1975年)国际数学奥林匹克题1.本题由捷克斯洛伐克提供.【证】由排序不等式所以原式成立.B3-034有n个数a1,a2,…,a n.假设C=(a1-b1)2+(a2-b2)2+…+(a n-b n)2D=(a1-b n)2+(a2-b n)2+…+(a n-b n)2证明:C≤D≤2C.【题说】第十三届(1978年)全苏数学奥林匹克十年级题10.【证】设f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2则 f(x)=n(x-b n)2+f(b n)(1)现在用归纳法来证明不等式C≤D≤2C.当n=1时,C=D,故有C≤D≤2C.假设当n时,不等式成立,往a1,a2,…,a n中添一个数a n+1,此时C增加了(a n+1-b n+1)2,而D增加了(a n+1-b n+1)2+f(b n+1)-f(b n).在(1)式中,令x=bn+1,得这样,D增加的值(a n+1-b n+1)2+f(b n+1)-f(b n)在(a n+1-b n+1)2与2(a n+1-b n+1)2之间,从而,对于n+1时,也有C≤D≤2C所以,对一切n,都有C≤D≤2CB3-035 a、b、c、d、e为整数,满足1≤a<b<c<d<e其中[m,n]为m、n的最小公倍数.【题说】第十一届(1979年)加拿大数学奥林匹克题3.【证】更一般地,可以证明:对于n个整数a1,a2,…,a n,满足1≤a1<a2<…<a n时,有n=2时,(1)显然成立.假设n=k-1时(1)成立,考虑n=k的情况:若a k>2k,则若a k≤2k,则其中(m,n)为m、n的最大公约数,从而B3-036 S为正奇数集{a i},i=1,2,…,n.没有两个差|a i-a j|相等,1≤i<j≤n.求证:【题说】1979年英国数学奥林匹克题3.【证】不妨设a1<a2<…<a n,r为整数且2≤r≤n.对于1≤所以, a r≥a1+r(r-1)≥1+r(r-1)r=1时,上式也成立,故B3-037对于n为一正整数,以p(n)表示将n表为一个或较多个正整数的和的方法数,例如p(4)=5,因为有5个不同的和,即1+1+1+1,1+1+21+3,2+2,4证明:当n>1时,p(n+1)-2p(n)+p(n-1)≥0【题说】1979年英国数学奥林匹克题5.【证】将n的p(n)个不同的表达式各加上1,得到p(n)个n+1的不同表达式,每一个都包含加数1.而且,n+1的每一个含有加数1的表达式,都可由这方法得到.因此将n+1表为大于1的整数的和的方法数q(n+1)=p(n+1)-p(n)同样将n+1表为大于2的整数的和的方法数即q(n+1)-q(n).显然q(n+1)-q(n)≥0因此p(n+1)-2p(n)+p(n-1)≥0B3-038若0≤a,b,c≤1,证明:【题说】第九届(1980年)美国数学奥林匹克题5.结论可以推广到n个数的情形.【证】令因为(1-b)(1-c)(1+b+c)≤(1-b)(1-c)(1+b)(1+c)=(1-b2)(1-c2)≤1(当a、b、c轮换时均成立)因此δ≥0.B3-039 若x为正实数,n为正整数.证明:其中[t]表示不超过t的最大整数.【题说】第十届(1981年)美国数学奥林匹克题5.【证】用数学归纳法.当n=1,2时,(1)显然成立.假设(1)对n≤k-1均成立.kx k=kx k-1+[kx]=(k-1)x k-1+x k-1+[kx] (2)(k-1)x k-1=(k-2)x k-2+x k-2+[(k-1)x] (3)…2x2=x1+x1+[2x](k)将(2)至(k)式相加,得kx k=x k-1+x k-2+…+x1+x1+[kx]+[(k-1)x]+…+[2x]因此,由归纳假定,kx k≤[kx]+2([(k-1)x]+[(k-2)x]+…+[x])但是[(k-m)x]+[mx]≤[(k-m)x+mx](m<k),所以kx k≤[kx]+([(k-1)x)]+[x])+…+([x]+[(k-1)x])≤k[kx]即x k≤[kx].此即所欲证之(1)式.B3-041 设a、b、c是三角形的边长,证明:a2b(a-b)+b2c(b-c)+c2a(c-a)≥0,并说明等号何时成立.【题说】第二十四届(1983年)国际数学奥林匹克题6.本题由美国提供.【证】设a是最大边,原式左边=a(b-c)2(b+c-a)+b(a-b)(a-c)(a+b-c)显然上式是非负的,从而原式成立,当且仅当a=b=c,即这三角形为正三角形时等号成立.B3-043 设x1,x2,…,x n都是正整,求证:【题说】1984年全国联赛二试题5.本题可用柯西不等式、数学归纳法等多种方法证明.将以上各式相加,即得所要证的不等式.B3-044设P(x)=a0+a1x+…+a k x k为整系数多项式,其中奇系数的个数由W(P)来表示,设Q i(x)=(1+x)i,i=0,1,…,n.如果i1,i2,…,i n是整数,且0≤i1<i2<…<i n,证明:【题说】第二十六届(1985年)国际数学奥林匹克题3.本题由荷兰提供.当i n=1时,命题显然成立.设i n>1并且命题在i n换为较小的数时成立.令k=2m<i n<2m+1,(1)i1<k.设i r<k,i r+1>k,Q=R+(1+x)k S,其中的次数均小于K,由(1)(1+x)k≡1+x k(mod2),故W(Q)=W(R+S+x k S)=W(R+S)+W(S)≥W(R)的次数均小于K.W(Q)=W(S+x k S)=2W(S)≥2W(R)=W(R+x k R)=W((1+x k)R)045 证明:对于任意的正数a1,a2,…,a n不等式成立.【题说】第二十届(1986年)全苏数学奥林匹克十年级题2.【证】不妨设a1≤a2≤…≤a n.因为当2≤k≤(n+1)/2时【注】原不等式可加强为B3-046 正数a,b,c,A,B,C满足条件a+A=b+B=c+C=k证明: aB+bC+cA <k2【题说】第二十一届(1987年)全苏数学奥林匹克八年级题5.【证】由题设k3=(a+A)(b+B)(c+C)=abc+ABC+aB(c+C)+bC(a+A)+cA(b+B)=abc+ABC+k(aB+bC+cA)>k(aB+bC+cA)即 aB+bC+cA<k2B3-048证明:对于任意的正整数n,不等式(2n+1)n≥(2n)n+(2n-1)n 成立.【题说】第二十一届(1987年)全苏数学奥林匹克十年级题8.【证】只须证明由恒等式所以(1)式成立.B3-049已知a、b为正实数,且1/a+1/b=1.试证:对每一个n∈N,有(a+b)n-a n -b n≥22n-2n+1【题说】1988年全国联赛一试题5.【证】用数学归纳法证.(1)当n=1时,左边=0=右边,命题成立.(2)假设n=k时,不等式成立,即(a+b)k-a k-b k≥22k-2k+1当n=k+1时,左边=(a+b)k+1-a k+l-b k+1=(a+b)[(a+b)k-a k-b k]+a k b+ab k从而有≥2·2k+1=2k+2所以,左边≥4(22k-2k+1)+2k+2=22(k+1)-2k+2=右边由(1)及(2),对一切n∈N,不等式成立.B3-050已知a5-a3+a=2.证明:3<a6<4.【题说】第十四届(1988年)全俄数学奥林匹克八年级题3.【证】由a5-a3+a=2,变形为(1)a[(a2-1)2+a2]=2(2)由(2)知 a>0且a≠1(1)÷a得 a4-a2+1=2/a (3)(1)×a得 a6-a4+a2=2a (4)(3)+(4)得 a6+1=2(a+1/a)>4 (5)又由(1)知 2=(a5+a)-a3>2a3-a3=a3故 a3<2(6)由(5)和(6)得3<a6<4.B3-051已知a、b、c、d是任意正数,求证:【题说】1989年四川省赛二试题1.由平均值不等式,(2)≤2ab+2ac+2ad+2bc+2bd+2cd+2a2+c2+b2+d2=(a+b+c+d)(3)(2)÷(3)即得结论.B3-052已知x i∈R(i=1,2,…,n,n≥2),满足【题说】1989年全国联赛二试题2.因为 A/n≤a≤A,B≤b≤B/nB3-053已知a1,a2,…,a n是n个正数,满足a1·a2…a n=1,求证(2+a1)(2+a2)…(2+an)≥3n【题说】1989年全国联赛一试题3.B3-054对于任何实数x1,x2,x3,如果x1+x2+x3=0,那么x1x2+x2x3+x3x1≤0,请证明之.又对于什么样的n(n≥4),如果x1+x2+…+x n=0,那么x1x2+x2x3+…+x n-1x n+x n x1≤0?【题说】1989年瑞典数学奥林匹克题3.【证】如果x1+x2+x3=0,则有当n=4时,若x1+x2+x3+x4=0,则即n=4时,命题成立.当n≥5时,令x1=x2=1,x4=-2,x3=x5=x6=…=x n=0,则x1+x2+x3+x4+…+x n=0而 x1x2+x2x3+x3x4+…+x n-1x n+x n x1=l>0 所以n≥5时,命题不成立.B3-055证明:对于任意的x、y、z∈(0,1),不等式x(1-y)+y(1-z)+z(1-x)<1成立.【题说】第十五届(1989年)全俄数学奥林匹克九年级题6.【证】设f(x)=(1-y-z)x+y(1-z)+z,它是x的一次函数,因此关于x是单调的.因为f(0)=y-yz+z=(y-1)(1-z)+1<1f(1)=1-yz<1所以当x∈(0,1)时,f(x)的最大值小于1,即x(1-y)+y(1-z)+z(1-x)<1B3-056证明:若a、b、c为三角形三边的长,且a+b+c=1,则【题说】第二十三届(1989年)全苏数学奥林匹克九年级题2.1990年意大利数学奥林匹克题4.所以B3-057已知二次函数f(x)=ax2+bx+c,当-1≤x≤1时,有-1≤f(x)≤1求证:当-2≤x≤2时,有-7≤f(x)≤7.【题说】1990年南昌市赛二试题1【证】由已知 -1≤f(1)=a+b+c≤1 (1)-1≤f(0)=c≤1(2)-1≤f(-1)=a-b+c≤1 (3)(1)+(3)得 -1≤a+c≤1 (4)由(4)、(2)得 -2≤a≤2从而 |4a±2b+c|=|2(a±b+c)+2a-c|≤2|a±b+c|+2|a|+|c|≤7即 |f(±2)|≤7|f(x)|≤7所以,当|x|≤2时B3-058证明:对于和为1的正数a1,a2,…,a n,不等式成立.【题说】第二十四届(1990年)全苏数学奥林匹克十年级题2.当a1=a2=…=a n=时,上式取等号.B3-059设a、b、c、d是满足ab+bc+cd+da=1的非负数.试证:【题说】第三十一届(1990年)IMO预选题88.本题由泰国提供.【证】设则由柯西不等式熟知B3-060设a1≤a2≤…≤a7≤a8是8个给定的实数,且x=(a1+a2+…+a7+a8)/8;【题说】1991年中国国家教委数学试验班招生数学题3.【证】并且由柯西不等式,y≥x2,所以B3-061已知0<a<1,x2+y=0,求证:【题说】1991年全国联赛一试题5.B3-063已知a1,a2,…,a n>1(n≥2),且|a k+1-a k|<1,k=1,2,…,n-1.证明: a1/a2+a2/a3+…+a n-1/a n+a n/a1<2n-1【题说】第十七届(1991年)全俄数学奥林匹克九年级题8.【证】若a k≤a k+1(k=1,2,…,n-1),则a k/a k+1≤1,故a1/a2+a2/a3+…+a n-1/a n+a n/a1<(n-1)+na1/a1=2n-1(n≥2)若有a k>a k+1,则由|a k+1-a k|<1知a k/a k+1<1+1/a k+1<2设有p个k值使a k≤a k+1,(n-1-p)个k值使a k>a k+1,则a1/a2+a2/a3+…+a n-1/a n≤p+2(n-1-p)同时 a n/a1=[(a n-a n-1)+…+(a2-a1)+a1]/a1<p+1因此 a1/a2+a2/a3+…+a n-1/a n+a n/a1<p+2(n-1-p)+p+1=2n-1 B3-064令其中m,n∈N,证明a m+a n≥m m+n n【题说】第二十届(1991年)美国数学奥林匹克题4.【证】不妨设m≥n,则故n≤a≤m,而有m m-a m=(m-a)(m m-1+m m-2a+…+a m-1)≤(m-a)(m m-1+m m-1+…+a m-1)=(m-a)m m (2)a n-n n=(a-n)(a n-1+a n-2+…+n n-1)≥(a-n)n n由(1)有(m-a)m m=(a-n)n n (3)将(2)、(3)代入,即得a n-n n≥m m-a m或a m+a n≥m m+n n此即所求证之式.B3-065设a、b、c是非负数,证明:【题说】第二十五届(1991年)全苏数学奥林匹克十年级题1.【证】(a+b+c)2=(a2+bc)+(b2+ca)+(c2+ab)所以原不等式成立.B3-066设a i≥0(i=1,2,…,n),a=min{a1,a2,…,a n},试证式中a n+1=a1.【题说】1992年第七届数学冬令营题2.B3-067设n(≥2)是整数,证明: 【题说】1992年日本数学奥林匹克题3.B3-068 n是正整数,证明:【题说】1992年澳大利亚数学奥林匹克题8.【证】因为B3-069对x、y、z≥0,证明不等式x(x-z)2+y(y-z)2≥(x-z)(y-z)(x+y-z)等号何时成立?【题说】第二十四届(1992年)加拿大数学奥林匹克题2.【解】原不等式即x3+y3+z3+3xyz≥x2y+xy2+y2z+yz2+z2x+zx2由对称性,可设x≥z≥y,于是x(x-z)2+y(y-z)2≥0≥(x-z)(y-z)(x+y+z)B3-070设实数x、y、z满足条件yz+zx+xy=-1,求x2+5y2+8z2的最小值和最大值.【题说】1992年英国数学奥林匹克题4.【解】由于(y-2z)2+(x+2y十2z)2≥0所以x2+5y2+8z2≥-4(xy+yz+zx)=4的最小值为4.x2+5y2+8z2>x2当y→0时,函数x2+5y2+8z2的值可趋于无穷大.B3-071设A是一个有n个元素的集合,A的m个子集A1,A2,…,A n两两互不包含,证明:其中a i为A i中元素个数.【题说】1993年全国联赛二试题2.【证】A中元素的全排列共n!个.其中开头a i个元素取自A i中的,有a i!(n-a i)!个.由于A i与A j(i≠j)互不包含,故这些排列与开头a j个元素取自A j中的不同.由柯西不等式,结合(1)便得(2).B3-073设函数f:R+→R+满足条件:对任意x、y∈R+,f(xy)≤f(x)f(y).试证:对任总x>0,n∈N,有【题说】1993年中国数学奥林匹克(第八届数学冬令营)题6.【证】f(x2)≤f2(x),所以f(x2)≤f(x)f1/2(x2).假设有则≥f n-1(x n)所以(1)对所有的自然数n成立.B3-075设a、b、c、d都是正实数,求证不等式【题说】第三十四届(1993年)IMO预选题本题由美国提供.【证】由柯西不等式即又(a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2≥0结合(1)、(2)即得结论.B3-076设a1,a2,…,a n为n个非负实数,且a1+a2+…a n=n.证明:【题说】1994年合肥市赛题4.一方面由柯西不等式知B3-077已知f(z)=c0z n+c1z n-1+…+c n (1)是z的n次复系数多项式.求证:存在一个复数z0,|z0|=1,使|f(z0)|≥|c0|+|c n|(2)【题说】1994年中国数学奥林匹克(第九届数学冬令营)题4.【证】取复数β,使|β|=1且βn·c0与c n辐角相同,从而|βn c0+c n|=|βn c0|+|c n|=|c0|+|c n|再令ω=e2πi/n,a k=β·ωk(0≤k≤n-1)故必有一个k,使 |f(αk)|≥|c0|+|c n|显然,|αk|=1,于是αk就是所求的z0。
2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。
B4二项式,数学归纳法,概率B4-001求(1+x)3+(1+x)4+(1+x)5+…+(1+x)n+2展开式里的x2的系数.【题说】1963年北京市赛高三一试题3.【解】因为(1+x)3+(1+x)4+(1+x)5+…+(1+x)n+2所以展开式中x2的系数为【别解】x2的系数为B4-002设f是具有下列性质的函数:(1)f(n)对每个正整数n有定义;(2)f(n)是正整数;(3)f(2)=2;(4)f(mn)=f(m)f(n),对一切m,n成立;(5)f(m)>f(n),当m>n时.试证:f(n)=n.【题说】第一届(1969年)加拿大数学奥林匹克题8.【证】先用数学归纳法证明f(2k)=2k(k=1,2,…).事实上,由(3),k=1时,f(2)=2成立.假设k=j成立,则由(4)f(2j+1)=f(2·2j)=f(2)f(2j)=2·2j=2j+1.故对所有自然数k,f(2k)=2k.现考虑自然数n=1.由(5)函数f的严格递增性知:f(2)=2>f(1).由(2),f(1)=1.再考虑自然数n:2k<n<2k+1.由(5)有2k=f(2k)<f(2k+1)<f(2k+2)<…<f(2k+1-1)<f(2k +1)=2k+1,故必有f(2k+1)=2k+1,f(2k+2)=2k+2,…,f(2k+1-1)=2k+1-1综上所述,对任何正整数n,都有f(n)=nB4-003证明:对任何自然数n,一定存在一个由1和2组成的n位数,能被2n整除.【题说】第五届(1971年)全苏数学奥林匹克八年级题1.【证】用归纳法.(1)当n=1时,取该数为2即可;(2)设A=2n B是一个能被2n整除的n位数,则2·10n+A和1·10n+A中必有一个能被2n+1整除.从而,命题得证.B4-004假设一个随机数选择器只能从1,2,…,9这九个数字中选一个,并且以等概率作这些选择,试确定在n次选择(n>1)后,选出的n个数的乘积能被10整除的概率.【题说】第一届(1972年)美国数学奥林匹克题3.【解】要使n个数之积被10整除,必须有一个数是5,有一个数是偶数.n次选择的方法总共有9n种,其中A.每一次均不取5的取法,有8n种;B.每一次均不取偶数的取法,有5n种;C.每一次均在{1,3,7,9}中取数的方法有4n种,显然C中的取法既包含于A,也包含于B,所以,取n个数之积能被10整除的概率是B4-005一副纸牌共有N张,其中有三张A,现随机地洗牌(假定纸牌一切可能的分布都有相等机会).然后从顶上开始一张接一张地翻牌,直至翻到第二张A出现为止.求证:翻过的纸牌数的期望(平均)值是(N+1)/2.【题说】第四届(1975年)美国数学奥林匹克题5.【证】设三张A的序号分别是x1、x2、x3.若将牌序颠倒过来,则第二张A的序号为N+1-x2.在这两副纸牌中,第二张A的平均位置(即翻过的纸牌数的期望值)为[x2+(N+1)-x2]/2=(N+1)/2【别证】由题设,除了第1张和最后一张外,其余各张皆可能是第2张A,且是等可能的.因此第2张A所在序号的平均期望值是[2+3+…+(N—1)]/(N-2)=(N+1)/2.B4-006某艘渔船未经允许在A国领海上捕鱼.每撒一次网将使A国的捕鱼量蒙受一个价值固定并且相同的损失.在每次撒网期间渔船被A国海岸巡逻队拘留的概率等于1/k,这里k 是某个固定的正整数.假定在每次撒网期间由渔船被拘留或不被拘留所组成的事件是与其前的捕鱼过程无关的.若渔船被巡逻队拘留,则原先捕获的鱼全被没收,并且今后不能再来捕鱼.船长打算捕完第n网后离开A国领海.因为不能排除渔船被巡逻队拘留的可能性,所以捕鱼所得的收益是一个随机变量.求n,使捕鱼收益的期望值达到最大.【题说】1975年~1976年波兰数学奥林匹克三试题5.这里ω是撒一次网的收益.由(1)可知f(n)达到最大值.B4-007大于7公斤的任何一种整公斤数的重量都可以用3公斤和5公斤的两种砝码来称,而用不着增添其他不同重量的砝码.试用数学归纳法加以证明.【题说】1978年重庆市赛二试选作题1(3).数a,b,使得n=3a+5b.事实上(1)当n=8,9,10,11时,不难验证命题成立.(2)设k>11并且当8≤n<k时,命题成立,则当n=k时,由归纳假设k-3=3l+5m,m,n为非负整数所以 k=(k-3)+3=3l+5m+3=3(l+1)+5m故命题对k成立.B4-008给定三只相同的n面骰子,它们的对应面标上同样的任意整数.证明:如果随机投掷它们,那么向上的三个面上的数的和被3整除的概率大于或等于1/4.【题说】第八届(1979年)美国数学奥林匹克题3.【证】因为问题只涉及和是否被3整除,所以不妨假定,每个面上的数是被3除后的余数;0、1、2.设每个骰子上标“0”的有a个,标“1”的有b个,标“2”的有c个.这里a,b,c 是适合下列条件的整数:0≤a,b,c≤n, a+b+c=n (1)随机地投掷三只骰子,总共有n3种等可能情形.其中朝上三个数的和被3整除的情形有以下四种类型:0,0,0;1,1,1; 2,2,2;0,1,2第一类共有a3种,第二类共有b3种,第三类有c3种,第四类有3!abc=6abc种.因此,原问题转化为在条件(1)下,证明不等式即 4(a3+b3+c3+6abc)≥(a+b+c)3上式可化简为等价的不等式a3+b3+c3+6abc≥a2b+a2c+b2a+b2c+c2a+c2b (2)不妨设a≥b≥c,则a3+b3+2abc-a2b-ab2-a2c-b2c=a2(a-b)+b2(b-a)+ac(b-a)+bc(a-b)=(a-b)(a2-b2-ac+bc)=(a-b)2(a+b-c)≥0, (3)c3+abc-c2a-c2b=bc(a-c)+c2(c-a)=c(a-c)(b-c)≥0 (4)(3)、(4)相加得a3+b3+c3+3abc≥a2b+a2c+b2a+b2c+c2a+c2b从而(2)成立.B4-009抛掷一枚硬币,每次正面出现得1分,反面出现得2分.试【题说】第十二届(1980年)加拿大数学奥林匹克题4.【证】令得到n分的概率为P n.因为得不到n分的情况只可能是:先得n-1分,再掷出一次反面.所以有由于 P1=1/2B4-010某个国王的25位骑士围坐在一张圆桌旁.他们中的三位被选派去杀一条恶龙(设三次挑选都是等可能的),令P是被挑到的三人中至少有两人是邻座的概率.若P写成一个既约分数,其分子与分母之和是多少?【题说】第一届(1983年)美国数学邀请赛题7.【解】选二相邻的骑士有25种方法.再随着选第三位,有23种,故共有25×23种方法.但其中三者相邻的25种情况重复,应减去.故因此,所求之分子、分母之和为57.【别解】所选3人分两种情况:3人皆相邻,或2人相邻、1人不邻,故有25+25×(25-4)种.B4-011在给定的圆周上随机地选择A、B、C、D、E、F六点,这些点的选择是独立的,对于弧长而言是等可能的.求ABC、DEF这两个三角形不相交(即没有公共点)的概率.【题说】第十二届(1983年)美国数学奥林匹克题1.【解】设圆周上给定6个点,从这6点中取3个点作为△ABC的顶B4-012一个园丁把三棵枫树、四棵橡树和五棵白桦树种成一行.十二棵树的排列次序是随机的,每一种排列都是等可能的.把没有两棵白桦树相邻的概率写成既约分数m/n.试求m +n.【题说】第二届(1984年)美国数学邀请赛题11.【解】先把三棵枫树和四棵橡树排好,有7!种排法,中间6个空所以,m+n=106为所求.B4-013设A、B、C、D是一个正四面体的顶点,每条棱长1米.一只小虫从顶点A出发,遵照下列规则爬行:在每一个顶点相交的三条棱中选一条(三条棱选到的可能性相等),然后从这条棱爬到另一个点.设小虫爬了7米路之后,又回到顶点A的概率为P=m/729,求m的值.【题说】第三届(1985年)美国数学邀请赛题12.【解】设从A出发走过n米回到A点的走法为a n种.由于从A出发走n-1米的走法共3n-1种,其中a n-1种走到A的,下一步一定离开A.除去这an-1种,其余的每一种都可以再走1米到达A点.因此有a n=3n-1-a n-1B4-014某商店有10台电视机,排成一排.已知其中有三台是次品,如果我们对这批电视机作一次随机抽查,那么在前5台电视机中出现所有次品的概率是多少?【题说】1988年新加坡数学奥林匹克(A组)题9.原题为选择题.品的概率是B4-015把一个质地不均匀的硬币抛掷5次,正面朝上恰为一次的可能性不为0,而且与正面朝上恰为二次的概率相同.令既约分数i/j为硬币在5次抛掷中有3次正面朝上的概率.求i+j.【题说】第七届(1989年)美国数学邀请赛题5.【解】令r是掷一次硬币正面朝上的概率,则在n次投掷中k次正面朝上的概率为由已知,有由此得r=0,1或1/3.但r=0,1都不可能,故r=1/3.于是5次投掷3次正面朝上的概率为因此 i+j=283B4-016 n(n+1)/2个不同的数随机排成一个三角阵:设M k是从上往下数第k行中的最大数,求M1<M2<…<M n的概率.【题说】第二十二届(1990年)加拿大数学奥林匹克题2.【解】设所求概率为p n,显然p1=1,p2=2/3假设 p k=2k/(k+1)!对于n=k+1,最大数在最下一行的概率为因此,对所有自然数n,都有p n=2n/(n+1)!B4-017在吐姆巴利亚仅有总统与发言人两名诚实的人.其它人均以概率p(0<P<1)说谎.总统决定再次竞选,并告诉他身边的第一个人,这个人再告诉他身边的人,如此继续下去,直到这链上第n个人将总统的决定告诉发言人.发言人在这以前未听到有关总统的决定的信息,在n=19与n=20中,哪一种情况,发言人宣布的结果与总统决定相符的可能性较大?【题说】1990年匈牙利数学奥林匹克第二轮较高水平题1.【解】设发言人宣布结果与总统决定相符的概率为Q n,则有递推公式Q n+1=P(1-Q n)+(1-P)Q n=P+(1-2P)Q n将n+1换为n得Q n=P+(1-2P)Q n-1所以Q n+1-Q n=(1-2P)(Q n-Q n-1)由于Q0=1,Q1=1-P,所以Q n+1-Q n=(1-2P)n·(-P)时,Q20<Q19.B4-018某生物学家想要计算湖中鱼的数目,在5月1日他随机地捞出60条鱼并给它们做了记号,然后放回湖中.在9月1日他又随机捞出70条鱼,发现其中有3条有标记.他假定5月1日时湖中的鱼有25%在9月1日时已不在湖中了(由于死亡或移居),9月1日湖中40%的鱼在5月1日时不在湖里(由于新出生或刚刚迁入湖中),并且在9月1日捞的鱼能代表整个湖中鱼的情况.问5月1日湖中有多少条鱼?【题说】第八届(1990年)美国数学邀请赛题6.【解】设5月1日湖中有x条鱼因此x=840.【注】题中条件25%可改为任一百分数,不影响结果.B4-019用二项式定理展开(1+0.2)1000,有(1+0.2)1000=A0+A1+…+A1000【题说】第九届(1991年)美国数学邀请赛题3.比较A k-1与A k.B4-020有两串字母aaa与bbb要在电讯线上传送.每一串都是一个一个字母地传送.由于设备的毛病,这些字母的每一个都以1/3的概率被错误地接收到,即该收到a的都收到b,该收到b的都收到a.但每一个字母是否被正确收到与接收其他字母的状况互相独立.以S a记传送aaa时收到的一串3个字母,以S b记传送bbb时收到的一串3个字母,按词典顺序,S a在S b之前的概率记为P,将P写成既约分数,它的分子是多少?【题说】第九届(1991年)美国数学邀请赛题10.【解】设S a=x1x2x3,S b=y1y2y3.因此所求的数是532.B4-021一只抽屉内装有红袜子和蓝袜子,袜子至多有1991只.现在的情况是:不放回地随机取两只袜子,它们都是红色或都是蓝色的概率恰为1/2,按此情况,抽屉中红袜子的数目最多可能是几只?【题说】第九届(1991年)美国数学邀请赛题13.【解】设红、蓝袜子数分别为x和y.由已知,任取两只袜子其颜色不同的概率是1/2.故有即 (x-y)2=x+y令n=x-y,则 n2=x+y≤1991B4-022一位网球选手的“赢率”是她赢的场数比参赛的场数.在一个周末开始时,她的赢率恰好是0.500.在这个周末期间她比赛了四场,赢了三场,输了一场,到这个周末结束时,她的赢率大于0.503.在这个周末开始之前,她最多可能赢几场?【题说】第十届(1992年)美国数学邀请赛题3.【解】设W是这网球运动员在周末开始时已赢的局数,M是她已若W=164,M=328,则W/M=0.500.而(W+3)/(M+4)>0.503.因此,在周末开始前,这运动员最多可赢164场.B4-023在贾宪-杨辉三角形中,每一个数值是它上面的二个数值之和,这三角形开头几行如下:在贾宪-杨辉三角形中的哪一行中会出现三个相邻的数,它们的比是3∶4∶5?【题说】第十届(1992年)美国数学邀请赛题4.n组成.如果第n行中有那么 3n-7k=-3,4n-9k=5解这个联立方程组,得k=27,n=62.即第62行有三个相邻的数B4-024从集合{1,2,3,…,1000}中随机地、不放回地取出3个数a1、a2、a3,然后再从剩下的997个数中同样随机地、不放回地取出3个数b1、b2、b3.令p为a1×a2×a3的砖能放在b1×b2×b3的盒子中的概率.若将p写成既约分数,那么分子和分母的和是多少?【题说】第十一届(1993年)美国数学邀请赛题7.【解】不妨设a1<a2<a3,b1<b2<b3,当且仅当a1<b1,a2<b2,a3<b3时砖可放入盒中.设c1<c2<c3<c4<c5<c6是从{1,2,…,1000}中选出的6个数,再从中选出3个有种方法.这3个作为a1、a2、a3,剩下3个作为b1、b2、b3.符合要求的a1只能是c1.a2若为c2,则a3可为c3或c4或c5;a2若为c3,则求分子、分母的和为1+4=5.B4-024从集合{1,2,3,…,1000}中随机地、不放回地取出3个数a1、a2、a3,然后再从剩下的997个数中同样随机地、不放回地取出3个数b1、b2、b3.令p为a1×a2×a3的砖能放在b1×b2×b3的盒子中的概率.若将p写成既约分数,那么分子和分母的和是多少?【题说】第十一届(1993年)美国数学邀请赛题7.【解】不妨设a1<a2<a3,b1<b2<b3,当且仅当a1<b1,a2<b2,a3<b3时砖可放入盒中.设c1<c2<c3<c4<c5<c6是从{1,2,…,1000}中选出的6个数,再从中选出3个有种方法.这3个作为a1、a2、a3,剩下3个作为b1、b2、b3.符合要求的a1只能是c1.a2若为c2,则a3可为c3或c4或c5;a2若为c3,则求分子、分母的和为1+4=5.B4-025 A和B轮流掷一个均匀的硬币,谁先掷出人头的一面谁获胜,他们玩了n次,而且前一场的输家下一场先掷.若A第一场先掷,数码是什么?【题说】第十一届(1993年)美国数学邀请赛题11.【解】任一场比赛,先掷的人赢的概率为令P k为A赢第k场比赛的概率,则P1=.对k≥2,有所以,m+n=1093,其最后三个数码为093.B4-026一种单人纸牌游戏,其规则如下:将6对不相同的纸牌放入一个书包中,游戏者每次随机地从书包中抽牌并放回,不过当抽到成对的牌时,就将其放到一边,如果游戏者每次总取三张牌,若抽到的三张牌中两两互不成对,游戏就结束,否则抽牌继续进行直到书包中没【题说】第十二届(1994年)美国数学邀请赛题9.【解】设书包中有n(≥2)对互不相同的牌,p(n)为按所说规则抽牌使书包空的概率.则P(2)=1.由于前三张牌中有两张成对的概率为所以,对n≥3,有反复利用这个递推公式,得当n=6时,有所以,p+q=9+385=394.B4-027质点x按下列规则(1),(2)在p、q两点之间移动:(1)x在q处时,1秒后必移到p处;(2)x在p处时,1秒p处的概率.【题说】1995年日本数学奥林匹克预选赛题5.【解】设n秒后x在p处的概率为p n,x在q处的概率为q n.则B4-028在重复掷一枚均匀硬币的过程中,在连得2个反面之前的正整数,求m+n.【题说】第十三届(1995年)美国数学邀请赛题15.【解】设掷k次,不出现连续2个反面的情况有b k种,易知b1=2,b2=3,约定b0=1.由于第一次为正面,再掷k-1次不出现连续2个反面的情况有b k-1种.第一次为反面,第2次必须为正面,再掷k-2次不出现连续2个反面的情况有b k-2种,所以b k=b k-1+b k-2(1)又设掷k次,无连续2个反面,而有5个连续正面,并且最后一次为正面的情况有a k种.这a k种,倒数1~5次均为正面的情况有b k-5种,倒数1~4次均正、第5次为反面的情况有a k-5种,倒数1~3次均正、第4次为反面的情况有a k-4种,依此类推,从而有递推关系a k=b k-5+a k-5+a k-4+a k-3+a k-2(2)又显然a1=a2=a3=a4=0,a5=1,a6=2.掷k+2次,最后2次为反面,而且在这前面已有5个连续正面,没利用递推关系(2)有再利用(1)所以m+n=3+34=37B4-029一目标在坐标平面上一步步移动.它从(0,0)出发,每一步移动一个单位长度,可以向左、向右、向上、向下,四个方向是等可能的.设p为该目标移动6步或更少的步数到达(2,2)的概率.p【题说】第十三届(1995年)美国数学邀请赛题3.【解】到达(2,2)需4步或6步.6步到达有两类情况,一类一下三上两右,另一类一左三右两上.概率为4步到达后再走两步仍回到(2,2)的概率为所以B4-030在五个队参加的比赛中,每个队与别的队都比赛一场.一场比赛中每个参加的队有50%赢的机会(没有平局).整个比赛既没有m+n.【题说】第十四届(1996年)美国数学邀请赛题6.所以m+n=17+32=49。
(一)不等式1. (排序不等式)设,...21n a a a ≤≤≤ n b b b ≤≤≤...21 n j j j ,...,,21是n ,...,2,1的一个排列,则..........221121112121n n j n j j n n n b a b a b a b a b a b a b a b a b a n +++≤+++≤+++-2.(均值不等式) 设n a a a ,......,,21是n 个正数,则na a a n +++...21....21nn a a a ≥3.(柯西不等式)设),...2,1(,n i R b a i i =∈则.)())((211212i ni i ni ini i b a ba ∑∑∑===≥等号成立当且仅当存在R ∈λ,使得),...,2,1(n i a b i i ==λ.从历史角度看,柯西不等式又可称柯西--布理可夫斯基-席瓦兹不等式变形:(1)设+∈∈R b R a i i ,则.)()(11212∑∑∑===≥ni i ni i ni ii b a b a (2)设i i b a ,同号,且 ,0,≠i i b a 则.)()(1121∑∑∑===≥ni i i ni i ni iib a a b a4.(J s e n不等式)若)(x f 是),(b a 上的凸函数,则对任意),(,...,,21b a x x x n ∈)].(...)()([1)...(2121n n x f x f x f nn x x x f +++≤+++5.(幂均值不等式)设α)(0+∈>>R a i β 则 .)...()...(121121βββββαααααM na a a n a a a M nn =+++≥+++=证: 作变换 令i i x a =β,则β1i i x a = 则.)...()...(12121βαβαβαβαβαnx x x x x x n M M n n +++≥+++⇔≥因 0>>βα 所以 ,1>βα则函数βαx x f =)(是),0(+∞上的凸函数,应用Jensen 不等式即得。
一道数学奥林匹克问题的多种解法莱州市第一中学李明辉问题背景:本题被孙一鸣同学放在一个看板上,以求“挑战天下英雄”。
我看过这道题后觉得颇有意思,经过一番思索,确实发现了一些出乎我意料的解法,现将其中四种做法以及思考过程进行展示,以飨读者。
问题:α 13prove c b a cyc ≥+-∆∑cb a a ABC :三边是、、探究:刚拿到这道题时,我们会想到“内切圆代换”来突破“三边是、、ABC ∆c b a ”的束缚。
βα 1222y 2222y x 1242424y x z y x x z c z y b y x a ≥+++++⇔≥++++++++⇔≥++++++++⇔∈+=+=+=+xz x z y z y x xz x z z y z y y x xz x z z y z y y x R )、、(其中,,设:对于β式,我们不难想到这样一种做法:[]done z y x z y x x z x z y z y x y z y x x z x z y z y x y z y x x z x z y z y x y x z x z y z y x y ,1)()(222)()2()2()2()(222)2()2()2(Cauchy 2222=++++≥+++++++=+++++++≥⎪⎪⎭⎫ ⎝⎛++++++++++故不等式,注意到:由我们继续对β进行探究:1121121121)1(,,1121121121≥+++++⇔=∈===≥+++++⇔+w v u uvw R w v u xz w z y v y x u xz z y y x ,且、、其中设β这样,我们不难发现这一问题的另一解法:doneu f v f u f v v u u f v u u f v u uv u u v v u f u f v u f v v uv u v u uv v u u f v uv v u uv v u 恒成立,综上所述,时,当时,时,时,注意到时,当下证恒成立时,显然,当:我们构造这样一个函数对于0)(0)1()(4010)(;100)(10)2()12()1)(4(2)(0)(40:0)(4121)2)(12()4(22121121)(,002212112112uv 1211210000020220000000000≥=≥<<><'<<>'==++--='≥<<≥≥++++-=+-+++=>∀≥+-+++⇔≥+++++⇔β接下来,我们再次对β式进行探索,以期得到更加出乎我们意料的解法:不等式,显然成立由AG xyzx z z y y x xy y x xyz xy y x xyz x z z y y x z y y x x x z y x z x z z y y cyc cyccyc 3249)(43)2)(2)(2()2)(2()2)(2()2)(2(2222222≥++⇔++≥++⇔+++≥++++++++⇔∑∑∑β经过一翻化简,竟然得到了一个简洁明了的式子,着实出乎我们意料,可见去分母的做法并非总使问题复杂化!最后,我们回到原题目α式,再次尝试,试图发现“三边是、、ABC ∆c b a ”这一条件的其他应用形式,即不通过“内切圆代换”将题目证明出来。
2023年imo第六题讲解摘要:一、引言1.介绍2023 年IMO(国际数学奥林匹克竞赛)第六题的背景2.强调题目的重要性和难度二、题目内容概述1.题目具体描述2.题目涉及的数学知识点三、解题思路与方法1.分析题目,理解问题2.运用相关数学知识点解决问题3.详细解题过程四、解题关键点与难点解析1.解题过程中的关键步骤2.可能遇到的难点及解决方法五、结论1.总结解题过程2.对学生的建议和启示正文:一、引言2023 年IMO(国际数学奥林匹克竞赛)第六题是一道具有挑战性和重要性的题目。
通过对该题目的解答,学生们可以巩固和提高自己的数学知识及解题能力。
二、题目内容概述题目内容:设函数f(x) = a^x (a > 0, a ≠ 1)。
已知函数g(x) = f(x) + f(1/x) + f(1/(x+1)),求证:对于任意实数x,都有g(x) ≥ 3。
涉及的数学知识点:指数函数、函数求和、不等式证明。
三、解题思路与方法1.分析题目,理解问题首先,我们需要理解题目所给出的函数f(x) 和g(x) 的定义,明确需要证明的不等式。
2.运用相关数学知识点解决问题根据题目所涉及的数学知识点,我们可以尝试对函数g(x) 进行简化,以便于证明不等式。
3.详细解题过程设t = a^x,则原不等式可化为:g(x) = t + a^(1/x) + a^(1/(x+1)) ≥ 3接下来,我们需要证明这个不等式。
(解题过程省略,具体解题过程请参考相关资料。
)四、解题关键点与难点解析1.解题过程中的关键步骤关键步骤包括对函数g(x) 的简化,以及找到证明不等式的合适方法。
2.可能遇到的难点及解决方法在解题过程中,可能遇到的不难点是如何将不等式与已知条件相结合。
解决这个问题的方法是仔细分析题目所给出的条件,并尝试运用这些条件来简化不等式。
五、结论通过对2023 年IMO 第六题的解答,我们可以看到,解题过程中需要灵活运用所学的数学知识点,并注重分析题目条件。
第1届国际数学奥林匹克(IMO)1.求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。
2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:(a) A=√2;(b)A=1;(c)A=2。
3.a、b、c都是实数,已知 cos x的二次方程a cos2x +b cos x +c = 0,试用a,b,c作出一个关于 cos 2x的二次方程,使它的根与原来的方程一样。
当a=4,b=2,c=-1时比较 cos x 和cos 2x的方程式。
4.试作一直角三角形使其斜边为已知的 c,斜边上的中线是两直角边的几何平均值。
5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,(a.) 求证 AF、BC相交于N点;(b.) 求证不论点M如何选取直线MN 都通过一定点 S;(c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。
6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。
试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。
第2届国际数学奥林匹克(IMO)1.找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。
2.寻找使下式成立的实数x:4x2/(1 - √(1 + 2x))2< 2x + 93.直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令 为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:tan = 4nh/(an2 - a).4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。
5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。