国际数学奥林匹克IMO竞赛试题
- 格式:docx
- 大小:71.11 KB
- 文档页数:2
1.△ABC的内心为I,三角形内一点P满足∠PBA+∠PCA=∠PBC+∠PCB.求证,AP ≥AI,而且等号当且仅当P=I时成立.证:∠PBC+∠PCB= 12(∠ABC+∠ACB)=∠IBC+∠ICB,故∠PBI=∠PCI,从而P,B,C,I四点共圆.但由内外角平分线相垂直知B,C,I与BC 边上的旁切圆心T 共圆,且IT是这个圆的直径,IT的中点O为圆心.由于A,I,T共线(∠BAC的平分线),且P在圆周上,AP+PO≥AO=AI+IO,PO=IO,故AP≥AI.等号当且仅当P为线段AO与圆周的交点即P=I时成立.2.正2006 边形P 的一条对角线称为好的,如果它的两端点将P 的边界分成的两部分各含P的奇数条边.P的边也是好的.设P被不在P的内部相交的2003 条对角线剖分为三角形.试求这种剖分图中有两条边为好的等腰三角形个数的最大值.解:对于剖分图中的任一三角形ABC,P的边界被A,B,C分为3段,A-B段所含P 的边数记作m(AB).由于m(AB)+ m(BC)+ m(CA)=2006,故等腰三角形若有两条好边,它们必是两腰.称这样的等腰三角形为好三角形.考虑任一好三角形ABC(AB=AC).A-B 段上若有别的好三角形,其两腰所截下的P 的边数为偶数.由于剖分图中的三角形互不交叉,而A-B 段上P 的边数为奇数,故A-B 段上必有P的一边α不属于更小的腰段,同理A-C段上也有P的一边β不属于更小的腰段,令△ABC 对应于{α,β}.由上述取法,两个不同的好三角形对应的二元集无公共元,因此好三角形不多于20062=1003 个.设P=A1A2…A2006,用对角线A1A2k+1(1≤k≤1002)及A2k+1A2k+3(1≤k≤1001)所作的剖分图恰有1003 个好三角形.因此,好三角形个数的最大值是1003.3.求最小实数M ,使得对一切实数 a ,b ,c 都成立不等式2222222222|()()()|()ab a b bc b c ca c a M a b c -+-+-++≤解:222222()()()ab a b bc b c ca c a -+-+-()()()()a b b c c a a b c =----++.设a b x b c y c a z a b c s -=-=-=++=,,,,则22222221()3a b c x y z s ++=+++. 原不等式成为 22222()9||(0)M x y z s xyzs x y z +++++=≥.x y z ,,中两个同号而与另一个反号.不妨设 x y ,≥0.则2221||()2z x y x y x y =+++,≥,2()4x y xy +≥.于是由算术-几何平均不等式 222222223()(())2x y z s x y s +++++≥=22222111(()()())222x y x y x y s ++++++ 6223414())42()||162||8x y s x y s xyzs +=+≥(≥ 即9232M =时原不等式成立. 等号在21s x y ===,,2z =-,即::(23):2:(23)a b c =+-时达到,故所求的最小的9232M =. 4.求所有的整数对(x y ,),使得212122x x y +++=.解:对于每组解(x y ,),显然0x ≥,且()x y -,也是解.0x =时给出两组解(02)±,.设x y ,>0,原式化为12(21)(1)(1)x x y y ++=+-.1y +与1y -同为偶数且只有一个被4整除.故3x ≥,且可令12x y m ε-=+ ,其中m 为正的奇数,1ε=±.代入化简得 2212(8)x m m ε--=-.若1ε=,2801m m -=≤,.不满足上式.故必1ε=-,此时22212(8)2(8)x m m m -+=--≥,解得3m ≤.但1m =不符合,只有3m =,4x =,23y =.因此共有4组整数解(02)(423)±±,,,.5.设()P x 为n 次(n >1)整系数多项式,k 是一个正整数.考虑多项式()(((())))Q x P P P x = ,其中 P 出现k 次.证明,最多存在 n 个整数t ,使得()Q t t =.证:若Q 的每个整数不动点都是 P 的不动点,结论显然成立.设有整数0x 使得00()Q x x =,00()P x x ≠.作递推数列 1()(012)i i x P x i +== ,,.它以 k 为周期.差分数列1(12)i i i x x i -∆=-= ,,的每一项整除后一项.由周期性及10∆≠,所有||i ∆ 为同一个正整数u .令121111min{}m k m m m m m m x x x x u x x x x x x -++-==-=-= ,,,,,.数列的周期为 2.即0x 是 P 的2-周期点.设 a 是P 的另一个2-周期点,() b P a =(允许b =a ).则0a x -与1b x -互相整除,故01||||a x b x -=-,同理01||||b x a x -=-.展开绝对值号,若二者同取正号,推出01x x =,矛盾.故必有一个取负号而得到01a b x x +=+.记01x x C +=,我们得到:Q 的每个整数不动点都是方程 ()P x x C +=的根.由于P 的次数n 大于 1,这个方程为n 次.故得本题结论.6.对于凸多边形P 的每一边b ,以b 为一边在P 内作一个面积最大的三角形.证明,所有这些三角形的面积之和不小于P 的面积的两倍.证:过P 的每个顶点有唯一的直线平分P 的面积,将该直线与P 的边界的另一交点也看作 P 的顶点(允许若干个相继顶点共线).每两条面积平分线都交于 P 内.P 可 看成一个 2n 边形122-12n n A A A A ,每条对角线i i n A A +是P 的面积平分线(i =1,2,…,n ,2i n i A A +=).设i i n A A +与11i i n A A +++交于 i O (i n i O O +=),由面积关系得到, 11()()i i i i i n i n S O A A S O A A ++++=△△,11i i i i i i n i i n O A O A O A O A ++++= ,故i i n i i O A O A +和11i i n i i O A O A +++ 中必有一个不小于 1,于是以 1i i A A +为一边在 P 内作的面积最大的三角形的面积 11111()max{()()}2()i i i n i i i n i i i i i S A A S A A A S A A A S O A A +++++++≥△,△≥△.对于每条有向线段i i n A A + ,P 内部的每一点T 或在它的左侧或在它的右侧.由于T 在11n A A + 和12111n n n A A A A +++= 的相反侧,故必有i 使得T 在i i n A A + 和11i i n A A +++ 的相反侧,从而T在1i i i O A A +△或1i i n i n O A A +++△中.即211ni i i i O A A P +=⊇ △.于是 221111()2()2()n nii i i i i i S A A S O A A S P ++==∑∑≥△≥ P 中同一边上的各个1()i i S A A +之和就是该边上的面积最大的内接三角形面积.。
imo数学竞赛试题及答案IMO数学竞赛试题及答案一、选择题1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个数的立方等于它本身,那么这个数可以是:A. -1B. 0C. 1D. 2答案:ABC3. 一个长方体的长、宽、高分别是8cm、6cm和5cm,那么它的表面积是多少平方厘米?A. 236B. 284C. 312D. 376答案:B二、填空题4. 一个数的平方根是3,那么这个数是_________。
答案:95. 一个等差数列的前三项分别是2,4,6,那么它的第10项是_________。
答案:22三、解答题6. 证明:对于任意的正整数 \( n \),\( n^5 - n \) 总是能被30整除。
解答:首先,我们可以将 \( n^5 - n \) 分解为 \( n(n^4 - 1) \)。
接下来,我们注意到 \( n^4 - 1 \) 可以表示为 \( (n^2 +1)(n^2 - 1) \)。
而 \( n^2 - 1 \) 可以进一步分解为 \( (n +1)(n - 1) \)。
因此,我们有:\( n^5 - n = n(n^2 + 1)(n + 1)(n - 1) \)。
由于 \( n \) 是正整数,\( n - 1 \) 和 \( n + 1 \) 也是整数。
这意味着 \( n^5 - n \) 中至少包含因子2和3(因为 \( n^2 + 1 \) 至少是奇数,从而至少包含一个2的因子)。
因此,\( n^5 - n \)可以被30整除。
7. 一个圆的半径是15厘米,求圆的面积。
解答:圆的面积可以通过公式 \( A = \pi r^2 \) 计算,其中\( A \) 是面积,\( r \) 是半径,\( \pi \) 是圆周率,约等于3.14159。
将给定的半径 \( r = 15 \) 厘米代入公式,我们得到:\( A = \pi \times 15^2 = \pi \times 225 \approx 706.86 \)平方厘米。
国际数学奥林匹克(IMO)竞赛试题(第2届)
1.找出所有具有下列性质的三位数N:N能被11整除且N/11等于N的各位数字的平方和.
2.寻找使下式成立的实数x:
3.直角三角形ABC的斜边BC的长为a,将它分成n 等份(n为奇数),令为从A 点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:
tan = 4nh/(an2 - a).
4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC.
5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D').X是对角线AC上任意一点,Y是B'D'上任意一点.
a.求XY中点的轨迹;
b.求(a)中轨迹上的、并且还满足ZY=2XZ的点Z的轨迹.
6.一个圆锥内有一内接球,又有一圆柱体外切于此圆球,其底面落在圆锥的底面上.令V1为圆锥的体积,V2为圆柱的体积.
(a) 求证:V1不等于V2;
(b) 求V1/V2的最小值;并在此情况下作出圆锥顶角的一般.
7.等腰梯形ABCD,AB平行于DC,BC=AD.令AB=a,CD=c,梯形的高为h.X点在对称轴上并使得角BXC、AXD都是直角.试作出所有这样的X点并计算X到两底的距离;再讨论在什么样的条件下这样的X点确实存在.。
国际数学奥林匹克(IMO)竞赛试题(第25届)
1.求证0 ≤yz + zx + xy - 2xyz ≤7/27,其中x,y,z 是非负实数并满足x + y + z = 1.
2.试找出所有的正整数对(a,b)满足ab(a+b)不能被7 整除,但(a+b)7 - a7 - b7可被77整除.
3.给定平面上的点O、A.平面上的每个点都被染色成有限种颜色中的一个.设X是平面上一给定点,以O为圆心的圆C(X)的半径是OX + (∠AOX)/OX,其中角∠ AOX 是用弧度衡量(即范围是[0,2л)),求证能够找到不在OA上的一点X使得它的颜色出现在圆C(X)的圆周上.
4.凸四边形ABCD的边CD与以AB为直径的圆相切,求证:AB与以CD为直径的圆相且当且仅当BC和AD是平行的.
5.设d 是平面上一凸n 边形(n>3)的所有对角线的长度之和,p 是它的周长.求证:
n - 3 < 2d/p < [n/2] [(n+1)/2] - 2,
其中[x]表示不超过x的最大整数.
6. 0 < a < b < c < d 是四个奇数且ad = bc. 若a + d = 2k及b + c = 2m对某k、m成立,则 a = 1.
1。
国际数学奥林匹克(IMO )竞赛试题(第38届) 1. 在坐标平面上,具有整数坐标的点构成单位边长的正方格的顶点.这些正方格被涂上黑白相间的两种颜色(像棋盘一样).对于任意一对正整数m 和n ,考虑一个直角三角形其顶点具有整数坐标,两腰长分别为m 和n ,且其两腰都在这些正方格的边上. 设S 1为这个三角形区域中所有黑色部分的总面积,S 2则为所有白色部分的总面积. 令f(m ,n)=|S 1-S 2|,o a. 当m ,n 同为正偶数或者同为正奇数时,计算f(m ,n);o b. 求证f(m ,n)≤max(m ,n)/2对所有m ,n 都成立;o c. 求证不存在常量C 使得f(m ,n).2. 设∠A 是△ABC 中最小的內角.B 和C 将此三角形的外接圆分成两个弧.U 为落在不含A 点的弧上且异于B ,C 的一点.线段AB ,AC 的垂直平分线分别交AU 于V ,W . 直线BV , CW 相交于T ,求证:AU =TB +TC .3. x 1,x 2,...,x n 是正实数满足|x 1+x 2+...x n |=1 且对所有i 有|x i |≤(n+1)/2. 试证明存在x 1,x 2,...,x n 的一个 排列y 1,y 2,...,y n 满足|y 1+2y 2+...+ny n |≤(n+1)/2.4. 一个n×n 的矩阵称为一个n 阶“银矩阵”,如果它的元素取自集合S={1,2,...,2n-1}且对于每一个i=1,2,...,n ,它的第i 列与第i 行中的所有元素合起来恰好是S 中的所有元素.求证:o a. 不存在n=1997阶的银矩阵;b. 有无限多个n ,存在n 阶银矩阵.5. 试找出所有的正整数对(a ,b)满足6. 对每个正整数n ,将n 表示成2的非负整数次方之和,令f(n)为正整数n 的上述不同表示法的个数.如果俩个表示法的差别仅在于他们中各个数相加的次序不同,这两个表示法就被视为是相同的.例如,f(4)=4,因为4恰有下列四种不同的表示法:4; 2+2; 2+1+1;1+1+1+1.求证:对于任意整数n ≥3, 22/4/22(2)2nn n f <<。
imo考试题及答案# IMO考试题及答案## 题目1:数列问题**题目描述:**设 \(a_1, a_2, \ldots, a_n\) 是一个正整数序列,满足 \(a_1 = 1\) 且对于所有 \(i \geq 2\),有 \(a_i = a_{i-1} + 2^{i-1}\)。
求 \(a_n\) 的值。
**解答:**首先,我们可以通过递推关系式计算序列的前几项:- \(a_1 = 1\)- \(a_2 = a_1 + 2^1 = 1 + 2 = 3\)- \(a_3 = a_2 + 2^2 = 3 + 4 = 7\)- \(a_4 = a_3 + 2^3 = 7 + 8 = 15\)观察上述计算结果,我们可以发现 \(a_i\) 的值实际上是 \(2^i - 1\)。
因此,对于任意的 \(n\),我们有:\[ a_n = 2^n - 1 \]所以,\(a_n\) 的值为 \(2^n - 1\)。
## 题目2:几何问题**题目描述:**在三角形 \(ABC\) 中,\(AB = AC\),点 \(D\) 在 \(BC\) 上,使得\(BD = 2DC\)。
求证:\(AD\) 平分 \(\angle BAC\)。
**解答:**由于 \(AB = AC\),三角形 \(ABC\) 是等腰三角形,因此\(\angle ABC = \angle ACB\)。
设 \(\angle ABC = \angle ACB =\theta\),则 \(\angle BAC = 180^\circ - 2\theta\)。
由于 \(BD = 2DC\),我们可以设 \(DC = x\),则 \(BD = 2x\),因此 \(BC = 3x\)。
根据角平分线定理,如果 \(AD\) 平分 \(\angleBAC\),则有:\[ \frac{BD}{DC} = \frac{AB}{AC} \]由于 \(AB = AC\),我们有:\[ \frac{2x}{x} = 1 \]这与 \(AB = AC\) 相符合,因此 \(AD\) 确实平分 \(\angle BAC\)。
imo数学奥林匹克历届试题IMO(International Mathematical Olympiad)是国际数学奥林匹克竞赛的英文简称,是世界范围内最具影响力的数学竞赛之一。
自1959年起,IMO每年都在不同国家举办,每个国家都会派出一支由高中生组成的代表队参赛。
这场竞赛旨在挑战学生的数学智力、培养他们的创新思维和解决问题的能力。
在这篇文章中,我们将回顾IMO数学奥林匹克的历届试题,展示一些经典问题的解决方法。
1. 第一届IMO(1959年)题目:证明当n为整数时,n^2 + n + 41为素数。
解析:我们可以通过代入不同的整数n来验证这个结论。
当n=1时,结果为43,为素数;当n=2时,结果为47,同样为素数。
我们可以继续代入更多的整数,发现每次结果都是素数。
虽然这种代入法不能证明对于所有的整数n都成立,但是通过大量的例子验证,我们可以有很高的信心认为这个结论是成立的。
2. 第十届IMO(1968年)题目:证明不等式(1+1/n)^n < 3,其中n是大于1的整数。
解析:我们可以通过数学归纳法证明这个不等式。
首先,当n=2时,不等式成立:(1+1/2)^2 = 2.25 < 3。
假设当n=k时不等式成立,即(1+1/k)^k < 3。
我们需要证明当n=k+1时,不等式也成立。
通过观察(1+1/k)^k,我们可以发现随着k的增大,(1+1/k)^k的值趋近于e,其中e是自然对数的底数。
而e约等于2.71828,小于3。
因此,当n=k+1时,(1+1/(k+1))^(k+1) < (1+1/k)^k < 3。
根据数学归纳法原理,我们可以得出对于所有的n大于1的整数,不等式(1+1/n)^n < 3成立。
3. 第二十二届IMO(1981年)题目:设a、b、c是一个正数的三个边长,证明不等式(a^2 + b^2)/(a+b) + (b^2 + c^2)/(b+c) + (c^2 + a^2)/(c+a) ≥ a + b + c。
29届imo试题及答案第29届国际数学奥林匹克(IMO)试题及答案一、试题1. 第一题:给定一个正整数 \( n \),求所有整数对 \( (a, b) \) 的数量,使得 \( a^2 + b^2 \) 能被 \( n \) 整除。
2. 第二题:设 \( f(x) \) 是定义在实数域上的连续函数。
证明:如果对于所有\( x \),都有 \( f(x) \leq f(x+1) \),则 \( f(x) \) 在\( \mathbb{R} \) 上有界。
3. 第三题:设 \( P \) 是一个凸四边形,\( A, B, C, D \) 分别是 \( P \) 的四个顶点。
设 \( M \) 是对角线 \( AC \) 的中点,\( N \) 是对角线 \( BD \) 的中点。
证明:\( M \) 和 \( N \) 之间的距离小于或等于 \( P \) 的内切圆半径。
4. 第四题:设 \( a_1, a_2, \ldots, a_n \) 是一个正整数序列,满足 \( a_1 = 1 \) 且 \( a_{i+1} = a_i + a_{i-1} \) 对于 \( i \geq 2 \)。
求证:\( \frac{1}{a_1} + \frac{1}{a_2} + \ldots +\frac{1}{a_n} \) 是一个整数。
5. 第五题:给定一个正整数 \( n \),求所有整数 \( k \) 的数量,使得\( k^2 \) 能被 \( n \) 整除。
6. 第六题:设 \( f: \mathbb{N} \to \mathbb{N} \) 是一个函数,满足\( f(f(x)) = f(x+1) \) 对于所有 \( x \in \mathbb{N} \)。
证明:\( f(x) = x + c \) 对于某个常数 \( c \)。
二、答案1. 第一题答案:设 \( d \) 是 \( n \) 的任意一个除数。
国际数学奥林匹克I M O
竞赛试题
集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
国际数学奥林匹克(IMO)竞赛试题(第2届)
1.? 找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和.
2.? 寻找使下式成立的实数x:
3.? 直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令?为从A 点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:
tan = 4nh/(an2 - a).
4.? 已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC.
5.? 正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D').X是对角线AC上任意一点,Y是B'D'上任意一点.
a.求XY中点的轨迹;
b.求(a)中轨迹上的、并且还满足 ZY=2XZ的点Z的轨迹.
6.? 一个圆锥内有一内接球,又有一圆柱体外切于此圆球,其底面落在圆锥的底面上.令V1为圆锥的体积,V2为圆柱的体积.
??? (a) 求证:V1不等于 V2;
??? (b) 求V1/V2的最小值;并在此情况下作出圆锥顶角的一般.
7.? 等腰梯形ABCD,AB平行于DC,BC=AD.令AB=a,CD=c,梯形的高为 h.X点在对称轴上并使得角BXC、AXD都是直角.试作出所有这样的X点并计算X到两底的距离;再讨论在什么样的条件下这样的X点确实存在.。