(完整word版)振动力学 概念题
- 格式:doc
- 大小:19.55 KB
- 文档页数:2
物理振动试题及答案解析1. 简谐运动的振动周期与哪些因素有关?答案:简谐运动的振动周期与振子的质量以及弹簧的劲度系数有关,与振幅无关。
2. 什么是阻尼振动?其振动周期与自由振动相比有何不同?答案:阻尼振动是指在振动过程中受到阻力作用的振动。
与自由振动相比,阻尼振动的振动周期会变长。
3. 简述单摆的周期公式。
答案:单摆的周期公式为 \( T = 2\pi \sqrt{\frac{L}{g}} \),其中 \( T \) 是周期,\( L \) 是摆长,\( g \) 是重力加速度。
4. 什么是共振现象?请举例说明。
答案:共振现象是指当驱动力的频率接近或等于系统的固有频率时,系统振幅急剧增大的现象。
例如,当行人在桥上行走时,如果步频与桥的固有频率接近,可能会引起桥梁的共振,导致桥梁剧烈振动甚至断裂。
5. 请解释为什么在声波传播中,频率越高的声波传播距离越短?答案:频率越高的声波波长越短,波长越短的声波在传播过程中更容易受到空气分子的散射作用,因此传播距离较短。
6. 什么是多普勒效应?请用物理公式表达。
答案:多普勒效应是指当波源和观察者相对运动时,观察者接收到的波频率与波源发出的频率不同的现象。
多普勒效应的公式为 \( f'= \frac{f(u + v)}{u + v \cos \theta} \),其中 \( f' \) 是观察者接收到的频率,\( f \) 是波源发出的频率,\( u \) 是波源的速度,\( v \) 是观察者的速度,\( \theta \) 是波源和观察者之间的夹角。
7. 请解释为什么在弹簧振子的振动过程中,振幅会逐渐减小?答案:在弹簧振子的振动过程中,振幅逐渐减小是因为存在阻力作用,如空气阻力或摩擦阻力,这些阻力会消耗振子的机械能,导致振幅减小。
8. 什么是机械波?请列举三种常见的机械波。
答案:机械波是指需要介质传播的波,其传播过程中介质的质点并不随波迁移,而是在平衡位置附近做振动。
振动力学的60对概念1 广义坐标与自由度广义坐标:能够完全确定系统在运动过程中的某一瞬时在空间所处的几何位置与形状的独立参变量。
自由度:系统独立坐标的数目。
2 线性振动与非线性振动根据系统运动微分方程的性质划分,微分方程中只包含位移、速度的一次方项称为线型振动,如果还包含位移、速度的二阶或高阶项则是非线性振动。
3 离散(集中参数)系统与连续(分布参数)系统单自由度和多自由度振动系统统称为离散系统.无限自由度系统具有连续分布的质量与连续分布的弹性,称为分布参数系统。
4角振动与扭转振动角振动:振动按位移的特征分为直线振动和角振动。
当质点只作围绕轴线的振动,就称为角振动。
扭转振动:弹性体绕其纵轴产生扭转变形的振动。
5 简谐振动与谐波分析用时间t的正弦或余弦函数表示的运动规律称为简谐振动。
一般的周期振动可以借助傅里叶级数表示成一系列简谐振动的叠加,该过程称为谐波分析.6 简谐振动的振幅与相位角振幅:振动物体离开平衡位置的最大距离叫振动的振幅.相位角:某一物理量随时间(或空间位置)作正弦或余弦变化时,决定该量在任一时刻(或位置)状态的一个数值。
7 简谐振动的周期与频率一次振动循环所需的时间T称为周期;单位时间内振动循环的次数f称为频率.8 简谐振动的旋转矢量与复指数描述方法(书P4页图1-2 公式1—6)9 幅值谱与相位谱在信号的频域描述中,以频率作为自变量,以组成信号的各个频率成分的幅值作为因变量,这样的频率函数称为幅值谱,它表征信号的幅值随频率的分布情况。
相位谱,指的是相位随频率变化的曲线,是信号的重要特征之一。
10粘性阻尼与等效粘性阻尼粘性阻尼,是振动系统的运动受大小与运动速度成正比而方向相反的阻力所引起的能量损耗。
等效粘性阻尼:11临界阻尼与阻尼比任何一个振动系统,当阻尼增加到一定程度时,物体的运动是非周期性的,物体振动连一次都不能完成,只是慢慢地回到平衡位置就停止了.当阻力使振动物体刚能不作周期性振动而又能最快地回到平衡位置的情况,称为“临界阻尼”。
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得:()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得:()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222121212121θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得:()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得:()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222121212121θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
《振动力学》习题集(含答案)质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图所示。
求系统的固有频率。
图-解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l⎰⎰==⎪⎭⎫ ⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: [()()lm m g m m n 113223++=ω质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图所示。
求系统的固有频率。
图解::如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω:转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图所示。
求系统的固有频率。
,图解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:]()232323212332222121212121θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω:在图所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
1、简谐运动的概念①简谐运动的定义:____________________________________________________________。
②简谐运动的物体的位移x、回复力F、加速度a、速度v、动能E K、势能E P的变化规律:A.在研究简谐运动时位移的起点都必须在处。
B.在平衡位置:位移最、回复力最、加速度最;速度最、动能最。
C.在离开平衡位置最远时:_________________________________________。
D.振动中:注意以上各量的矢量性和对称性。
③简谐运动机械能守恒,但机械能守恒的振动不一定时简谐运动。
④注意:A.回复力是效果力。
B.物体运动到平衡位置不一定处于平衡状态(如单摆,最低点有向心力)。
C.简谐运动定义式F=-K x中的K不一定是弹簧的劲度系数,是振动系数(如双弹簧)。
1.A关于回复力,下列说法正确的是( )A.回复力一定是物体受到的合外力B.回复力只能是弹簧的弹力提供C.回复力是根据力的作用效果命名的D.回复力总是指向平衡位置答案:CD2.A下列的运动属于简谐运动的是( )A.活塞在气缸中的往复运动B.拍皮球时,皮球的上下往复运动C.音叉叉股的振动D.小球在左右对称的两个斜面上来回滚动答案:C3.A一质点做简谐运动,当位移为正的最大值时,质点的( )A.速度为正的最大值,加速度为零B.速度为负的最大值,加速度为零C.速度为零,加速度为正的最大值D.速度为零,加速度为负的最大值答案:D4.A关于简谐运动的位移、加速度和速度的关系,正确的说法是( )A.位移减小时,加速度增大,速度增大B.位移方向总和加速度方向相反,和速度方向相同C.物体的速度增大时,加速度一定减小D.物体向平衡位置运动时,速度方向和位移方向相同答案:C6.B关于简谐运动中的平衡位置,下列说法正确的是( )A.平衡位置就是物体所受合外力为零的位置B.平衡位置就是加速度为零的位置C.平衡位置就是回复力为零的位置D.平衡位置就是受力平衡的位置答案:C7.B一平台沿竖直方向做简谐运动,一物体置于平台上随台一起运动,当振动平台处于什么位置时,物体对台面的压力最大( )A.振动平台在最高位置时B.振动平台向下振动经过平衡位置时C.振动平台在最低位置时D.振动平台向上运动经过平衡位置时答案:C8.B简谐运动是下列哪一种运动( )A.匀速直线运动B.匀加速运动C.匀变速运动D.变加速运动答案:D9.B做简谐运动的物体每次经过同一位置时,一定相同的物理量是( )A.速度B.位移C.回复力D.加速度答案:BCD10.B 对于弹簧振子,其回复力和位移的关系,在下图中正确的是()答案:C11.C 对简谐运动的回复力F=-kx 的理解,正确的是()A.k 只表示弹簧的劲度系数B.式中负号表示回复力总是负值C.位移x 是相对平衡位置的位移D.回复力只随位移变化,不随时间变化答案:C12.C 弹簧振子的质量是0.2kg,在水平方向做简谐运动,当它运动到平衡位置左侧x 1=2cm 的位置时,受到的回复力大小F 1=4N,则当它运动到平衡位置右侧x 2=4cm 的位置时,它的加速度是()A.20m/s 2,方向向左 B20m/s 2,方向向右C.40m/s 2,方向向左 D.40m/s 2,方向向右答案:C二、计算题(共16分)13.C 试证明:用轻弹簧悬挂一个振子,让它在竖直方向振动起来,在弹性限度内,振子是做简谐运动.(如图)答案:设振子的平衡位置为O,令向下为正方向,此时弹簧的形变为x 0,根据胡克定律及平衡条件有mg-kx 0=0.当振子向下偏离平衡位置x 时,有F=mg-k(x+x 0) 整理可得F=-kx(紧扣简谐运动特征及对称性)故重物的振动满足简谐运动的条件 2、总体上描述简谐运动的物理量①振幅A :_ _称为振幅。
概念题
1、ritz法和releiy法是求解振动系统固有频率的两种近似法,简述其基本思路。
瑞兹法:是将连续系统离散为有限个自由度的系统,再根据机械能守恒定律进行计算,并用拉式方程建立微分方程,得到系统的振型函数,由此得到系统的固有频率以及振型。
瑞利法:主要用来估算系统的基频,它的依据的是机械能守恒定律,即T MAX=U MAX,对任一个连续系统,只能近似给出第一阶振型函数,且要求满足系统的端点条件,再计算系统的动能和势能,即估算出系统的基频。
2说明矩阵迭代法求解多自由度系统第一阶固有频率的基本步骤以及思路(P91)。
基本思路:KA-w2MA=0 也可以写成:1/w2A=ɸMA
令D=ɸM, λ=1/w2 则:DA=λA
基本步骤:
1)求第一阶固有频率以及振型
(1)任意假设一个初始振型A
(2)按下列格式计算位形列降序列A m
A1=DA0 A2=DA1 。
`A n=DA n-1
当n足够大的时候,A n趋近于A1,1/λ1=ω12
3轴向力对梁横向振动有何影响?(拉压)
振动方程为:(P122)
轴向拉力可以提高梁横向振动的固有频率;
轴向压力可以降低梁横向振动的固有频率;
4造成非线性恢复力的原因有?
1)几何非线性,即大位移,超出了小变形范围;
2)物理非线性,即结构材料的性质和及结构强度性能超出弹性范围;
5简述求解无阻尼多自由度系统对初始激励响应的基本步骤
1)建立振动微分方程,确定系统的质量矩阵以及刚度矩阵;
2) 求固有频率以及振型
3)求主振型矩阵和正则振型矩阵
4)将外激励再转化为正则坐标下的激励(初始条件)
5)求正则坐标下的系统响应
6)求广义坐标下的系统响应
6在建立梁的横向振动力学模型时,梁的力学模型分为哪三种?
1) 欧拉-伯努利梁:只考虑弯曲变形,不计剪切变形及转动惯量的影响。
2)瑞利梁:考虑弯曲和转动惯量,不计剪切变形的影响。
3)铁木辛柯梁:弯曲变形,转动惯量,剪切变形都考虑。
7隔震分哪几种?机理是什么?举例说明
1)隔震分为主动隔振和被动隔振两种。
2)主动隔振:机器是振动根源,使他与地基隔开,以减少对周围环境的影响。
如
把机器放在软大基础上,在机器与地基之间设置若干橡胶隔振器。
3)被动隔振:振源来自地基的振动,为了使外界振动少传到系统中来所采取的的措施,如TMD控制。
8 工程实际中所研究和需要解决的问题可分为哪几种?其研究内容是?
1) 分类:响应分析系统设计系统识别环境预测
2)响应分析:已知系统激励和系统参数的情况下,求系统响应,包括位移,加速度,速度,力的响应
系统设计:已知系统激励的情况下,设计合理的系统参数,满足动态响应或其他输出要求。
系统识别:已知系统激励和系统响应的情况下,求系统参数,了解系统特性。
环境预测:已知系统输出以及参数情况下,确定系统的输入,判别系统的环境特性。
9什么是随机振动?举2工程实例简单说明。
1)激励响应事先不能用时间的确定函数描述,这类不确定的振动称为随机振动。
可用概率或者统计的方法研究随机振动的规律。
例1:车辆的随机振动问题,道路不平顺对车辆的位移以及速度的扰动。
2:地震载荷下的结构振动问题。
地震波传至地面时产生的垂向振动以及两个方向的水平振动。
3:风载荷作用下的振动问题。
4:船舶在风浪中的横摆问题。