高等数学预备知识
- 格式:ppt
- 大小:275.50 KB
- 文档页数:17
大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
高数考前必看知识点
高数是大学中一门重要的基础课程,涉及到极限、导数、积分、微分方程等多个知识点。
以下是高数考前必看的一些知识点:
1. 函数与极限:函数的定义、性质和分类,极限的概念、性质和计算方法,无穷小量和无穷大量的概念和性质。
2. 导数与微分:导数的概念、几何意义和计算方法,微分的概念和计算方法,导数的应用(如求曲线的切线方程、速度、加速度等)。
3. 积分:积分的概念、性质和计算方法,不定积分和定积分的概念和计算方法,换元积分法和分部积分法,积分的应用(如求平面图形的面积、体积等)。
4. 微分方程:微分方程的概念和分类,一阶微分方程的求解方法(如分离变量法、常数变易法等),二阶线性微分方程的求解方法。
5. 向量与空间解析几何:向量的概念、运算和坐标表示,平面向量的线性相关性和向量组的极大无关组,空间直角坐标系和向量的坐标表示,平面和空间曲线的方程。
6. 多元函数微分学:多元函数的概念、极限和连续性,偏导数和全微分的概念和计算方法,多元函数的极值和条件极值。
7. 重积分:二重积分和三重积分的概念和计算方法,重积分的应用(如求曲面的面积、体积等)。
8. 曲线积分和曲面积分:第一类曲线积分和第一类曲面积分的概念和计算方法,第二类曲线积分和第二类曲面积分的概念和计算方法,格林公式和高斯公式。
以上是高数考前必看的一些知识点,当然,高数的知识点还有很多,需要根据自己的学习情况进行有针对性的复习。
同时,要注重做题,通过做题来加深对知识点的理解和掌握。
学高数预备知识要想把高数学好,就必须把高中的一些知识再重温一遍,例如三角公式、重要的不等式、基本初等函数等,这些知识点,在高数老师看来,只要是到了大学的学生都是掌握了的,他不会再带你去回顾,直接就过了这个知识点。
以下就是高数中需要用到的高中的知识:一、集合论A∪B,称A并B,即子集A中的元素加上子集B的元素所得的元素。
A∩B,称A交B,即子集A与子集B中共同的元素。
cos(α+β)=cosαcosβ−sinαsinβcos(α−β)=cosαcosβ+sinαsinβtan(α+β)=tanα+tanβ1−tanαtanβ4.倍角公式sin2α=2sinαcosαcos2α=cos2α−sin2α=2cos2α−1=1−2sin2αtan2α=2tanα1−tan2α5.半角公式(sin α2)2=1−cosα2(cos α2)2=1+cosα26.诱导公式奇变偶不变(对于π2而言),符号看象限(对于整个括号而言)。
一全正,二正弦,三两切,四余弦。
(对于正号而言)sin(2kπ+α)=sinα sin(π+α)=−sinαcos(π2−α)=sinαtan(π2−α)=cotαcot(π2−α)=tanα7.三角形记忆法 8.万能替换公式sin α=2tan α21+tan 2αcos α=1−tan 2α21+tan 2α2 tan α=2tan α21−tan 2α2三、基本不等式⑴a 2+b 2≥2ab由此不等式得出其它不等式:(a +b)2≥4aba 2+b 2≥(a +b)22⑵a +b 2≥√ab 由此不等式得出其它不等式:ab ≤(a +b 2)2ab ≤a 2+b 22(a +b 2)2≤a 2+b 22 a b +b a≥2 (ab >0) √a 2+b 22≥a +b 2≥√ab ≥21a +1b sin αcos αtan αcot αsec αcsc α1 (1) 对角连接乘积为1,例:sin α∙csc α=1(2) 六边形每个端点都等于相邻两端点乘积,例:sin α=tan α∙cos α(3) 阴影三角形中,上两端点平方和等于下端点平方(包括中间的1点),例:sin 2α+cos 2α=12,tan 2α+12=sec 2α。
高中数学高等数学预备知识在我们从高中数学迈向高等数学的学习之旅中,掌握一些预备知识是至关重要的。
这就像是在建造高楼大厦之前,要先打好坚实的基础。
首先,让我们来谈谈函数的概念。
在高中数学中,我们已经对函数有了初步的认识,知道函数是一种将一个集合中的元素映射到另一个集合中元素的规则。
但在高等数学中,对函数的理解会更加深入和广泛。
我们会遇到各种类型的函数,比如分段函数、复合函数、隐函数等等。
掌握函数的性质,如单调性、奇偶性、周期性,对于后续的学习非常关键。
接着是极限的思想。
这是高等数学中一个极其重要的概念。
想象一下,当一个变量无限接近某个值时,函数的取值会趋近于一个确定的值,这就是极限。
通过极限,我们能够更好地理解函数的变化趋势。
比如,当 x 趋近于某个数时,函数 f(x) 的极限值是多少。
这不仅有助于我们研究函数的连续性,也是后续学习导数、积分等知识的基础。
导数也是高等数学中的核心概念之一。
它可以理解为函数在某一点的变化率。
通俗地说,如果一个函数表示了某个运动的规律,那么导数就告诉我们在某个时刻运动的速度。
导数的计算方法和应用非常广泛,通过求导,我们可以找到函数的极值点、判断函数的单调性等。
再来说说积分。
积分与导数是相反的运算。
如果导数是求变化率,那么积分就是求函数曲线下的面积。
积分在物理学、工程学等领域有着广泛的应用,比如计算物体的位移、计算不规则图形的面积等。
而数列和级数则是另一个重要的预备知识。
数列是按照一定顺序排列的数,而级数则是数列的和。
通过研究数列的收敛性和级数的敛散性,我们可以深入理解无限的概念。
在学习这些预备知识的过程中,数学思维的培养也是不可或缺的。
我们要学会从具体问题中抽象出数学模型,运用逻辑推理和数学方法来解决问题。
同时,要注重练习,通过大量的习题来巩固所学的知识和方法。
另外,高等数学的学习往往需要我们具备更强的自主学习能力和探索精神。
遇到问题时,不能仅仅满足于表面的理解,要深入思考,举一反三。
高等数学预备知识(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高等数学 预备知识1.不同三角函数间的关系αααcos sin tan =αααsin cos cot = ααcos 1sec = ααsin 1csc = 1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα2.加法公式(注意“±”与“ ”) βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos( =±βαβαβαtan tan 1tan tan )tan( ±=± αββαβαcot cot 1cot cot )cot(±=±3.和差化积2cos2sin2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=- βαβαβαcos cos )sin(tan tan ±=±βαβαβαsin sin )sin(cot cot ±±=±βαβαβαsin cos )cos(cot tan ±=± (注意符号)4.积化和差)]cos()[cos(21sin sin βαβαβα--+-=)]cos()[cos(21cos cos βαβαβα-++=)]sin()[sin(21cos sin βαβαβα-++=5.倍角公式ααααα2tan 1tan 2cos sin 22sin +== ααααααα222222tan 1tan 1sin 211cos 2sin cos 2cos +-=-=-=-= ααα2tan 1tan 22tan -= αααcot 21cos 2cot 2-=6.半角公式 2cos 12sinαα-±= 2cos 12cos αα+±= αααααααcos 1sin sin cos 1cos 1cos 12tan+=-=+-±= αααααααcos 1sin sin cos 1cos 1cos 12cot-=+=-+±= 7.降幂公式 )2cos 1(21sin 2αα-=)2cos 1(21cos 2αα+= 8.反三角函数(1)反三角函数的定义域与主值范围(2)图像(附加)三角函数的图像1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyx1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyx y=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx (3)反三角函数的相互关系21arctanarccos2)arcsin(arcsinxxxxx-=-=--=π21arctanarcsin2)arccos(arccosxxxxx-=-=--=ππ21arcsincot23)arctan(arctanxxxarcxx+=-=--=π21arccosarctan 2)cot(cot xx x x arc x arc +=-=--=ππ9.数列 (1)等差数列通项公式:d n a a n )1(1-+= 前n 项和:d n n na n a a S n n 2)1(2)(11-+=+= (2)等比数列通项公式:11-=n n q a a前n 项和:qqa a q q a S n n n --=--=11)1(11 (3)某些数列的和)1(21321+=++++n n n )1(2642+=++++n n n2)12(531n n =-++++)12)(1(613212222++=++++n n n n 23333)321(321n n ++++=++++ 10.乘法与因式分解2222)(b ab a b a +±=± 3223333)(b ab b a a b a ++±=± ))((22b a b a b a +-=- ))((2233b ab a b a b a +±=±))((122321-----+++++-=-n n n n n n n b ab b a b a a b a b a (n 为正整数) ))((122321------+-+-+=-n n n n n n n b ab b a b a a b a b a (n 为偶数) ))((122321-----+--+-+=+n n n n n n n b ab b a b a a b a b a (n 为奇数) 11.不等式(1)有关绝对值的不等式||||||b a b a +≤± ||||||||||b a b a b a +≤-≤-||||||||k b a k b a +++≤±±± ((2)有关三角函数、指数函数、对数函数的不等式)20(tan sin π<<<<x xx x )0(1sin cos π<<<<x xxx)0(1≠+>x x e x )0,1(11≠<-<x x xe x )0(1ln >-≤x x x )0,1(1)1ln(≠<-<--<x x xx x x)0,1(1)1(>>+>+x x x ααα(3)某些重要不等式 ① 222a b ab +≥,221()2ab a b ≤+;②1()2a b +≥12121()n n n a a a a a a n+++≥⋅⋅⋅;(0,0,0,1,2,,i a b a i n ≥≥≥=)③ ||||||||||a b a b a b -≤±≤+,11221122|()()()||||()||||()||||()|n n n n a f x a f x a f x a f x a f x a f x +++≤+++n a a a na a a n n2222121+++≤+++ na a a a a a nn n ++≤2121))(()(121221∑∑∑===≤ni i ni ini i i b a b a (柯西不等式)12.阶乘、排列、组合 (1)阶乘n n ⋅⋅⋅⋅= 321! )12(531!2)!12(!)!12(+⋅⋅⋅⋅=+=+n n n n n (规定)1!0= 0!!0= )2(42!2!)!2(n n n n ⋅⋅⋅== (2)排列)1()2)(1()!(!+---=-=k n n n n k n n A kn123)2)(1(!⋅⋅--=== n n n n A P nn n(3)组合!)!(!!k k n n k A C kn kn-== (kn C 也记作⎪⎪⎭⎫ ⎝⎛k n ) 13.二项式定理与多项式定理二项式定理:∑=-----=+++++=+nk kk n k n nnnn n nn nn nnnnb a C b C abCb aC b a C a C b a 011222110)( 多项式定理:s q p ns q p n k b a s q p n k b a ∑=++=+++!!!!)(14.指数运算nm nmaa a +=⋅ n m n ma aa -= mn n m a a =)( m m mb a ab =)( mm m b a b a =⎪⎭⎫ ⎝⎛ m n n m n ma a a )(== m m a a 1=- )0(10≠=a a 15.对数运算01log =a 1log =a a y x xy a a a log log log +=y x yxa a alog log log -= x b x a b a log log = 对数恒等式:x a x a =log x a x a =log 换底公式:ayy b b a log log log =1log log =⋅a b b a 数学中常见基本初等函数和初等函数:①基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数和常数这6类函数称为基本初等函数。
高等数学预备知识(新生自学内容)(一)数学归纳法1、适用范围:只适用于证明与正整数n 有关的命题.2、证明步骤:(1)证明当n 取第一个值0n (例如01n =或2 等)时,命题成立.(2)假设当k n =(0k N k n +∈≥且)时结论正确,证明当1k n +=时结论也成立. 由这两个步骤,就可以断定命题对于从0n 开始的所有正整数n 都成立. 3、注意:第一步是递推的基础,第二步是递推的根据,两步缺一不可.4、用途:(1)证明代数和或三角恒等式;(2)证明不等式;(3)证明整除性;(4)证几何命题等.数学归纳法的思想类似于多米诺骨牌玩法:第一,要求第一张骨牌被推倒;第二,假如某一张骨牌倒下,要求其后一张骨牌必须跟着倒下. 例1、用数学归纳法证明:)1n 2)(1n (n 61n 3212222++=++++ . 证明:(1)当1n =时,左边=112=,右边=132161=⋅⋅⋅,等式成立. (2)假设当k n =时,等式成立,即)1k 2)(1k (k 61k 3212222++=++++ ,那么222222)1k ()1k 2)(1k (k 61)1k (k 321++++=++++++)6k 7k 2)(1k (61)]1k (6)1k 2(k )[1k (612+++=++++=]1)1k (2][(1)1k )[(1k (61)3k 2)(2k )(1k (61+++++=+++=故当1k n +=时等式也成立.根据(1)、(2)可知等式对任何+∈N n 都成立.例2、设)1n (n 3221a n +++⨯+⨯= (+∈N n ),求证:2)1n (a 2n +<.证明:(1)当1n =时,22)11(221a 21=+<=⨯=,不等式成立. (2 ) 假设当k n =时(1k ≥时)不等式成立,即有2)1k ()1k (k 3221a 2k +<+++⨯+⨯=那么,)2k )(1k (2)1k ()2k )(1k ()1k (k 3221a 21k ++++<++++++⨯+⨯=+2]1)1k [(2)2k (2)2k ()1k (2)1k (222++=+=+++++<, 即当1k n +=时不等式也成立.由(1)、(2)可知,不等式对任何+∈N n 都成立. 例3.设, ,11 ,11121 x x x x ++==) ,3 ,2(1111 =++=--n x x x n n n ,证明:{}n x 单调增加. 解:(1) ∵11=x ,且) ,3 ,2(1111=++=--n x x x n n n ,∴) ,3 ,2 ,1( 0 =>n x n .又∵0211111111112>=+=-++=-x x x x x x ,∴12x x >. (2)假设1->k k x x 成立,则)11()11( 111--+++-++=-k k k k k k x xx x x x 有 1111--+-+=k k k k x x x x 0)1)(1(11>++-=--k k k k x x x x ,由(1)、(2)可知, ) ,2 ,1( 1 =>+n x x n n ,从而{}n x 单调增加.(二) 三角函数A 三角函数的积化和差公式由正弦加法定理的两式相加减和余弦加法定理的两式相加减可得:三角函数的积化和差公式:1sin cos [sin()sin()]2αβαβαβ=++-1cos sin [sin()sin()]2αβαβαβ=+--1cos cos [cos()cos()]2αβαβαβ=++- 1sin sin [cos()cos()]2αβαβαβ=-+--当αβ=时,即为倍角公式.例1、不查表,求sin512πcos π12的值. 解:sin512πcos π12=12[sin (512π+π12)+sin (512π-π12)]=12+34. 或:sin512πcos π12=sin (2π—12π)cos π12 =cos 2π12=12(1+cos 6π)=12+34.练习: 2cos31︒sin 14︒; cos215πcos π5; sin 70︒cos20︒. 注:分析三角函数的积化和差公式的整体结构,记忆公式,从公式本身的结构特征上了解积化和差公式的作用.B 三角函数的和差化积在积化和差公式中,令α+β=θ,α—β=ϕ,则α=θϕ+2,β=θϕ-2所以有:sin θ+sin ϕ = 2sinθϕ+2cosθϕ-2sin θsin -ϕ = 2cosθϕ+2sinθϕ-2cos θ+cos ϕ = 2cosθϕ+2cosθϕ-2cos θ—cos ϕ = 2sin-θϕ+2sinθϕ-2叫做三角函数的和差化积公式1+cos α = 2cos 2α2,1-cos α = 2sin 2α2等都可看成和差化积的形式.例2、把sin 2α-sin 2β化成积的形式. 解:原式=(sin α+sin β)(sin α-sin β) =2sinαβ+2cosαβ-2·2 cosαβ+2sinαβ-2=sin (α+β)sin (α—β)例3、求.10cos 70cos 10sin 70sin+-解:s in s in cos cos cos s in cos cos 70107010240302403033-+==例4、化1+cot α+csc α 为积的形式.解:原式=αααsin sin cos 1++= 222222cos sin 2cos sin 2cos 2ααααα+ =2222sin )cos(cos ααπα-+ = 44222cos cos()sin ππαα- =2cos(4π—2α) csc 2α练习: 化1+sin α和1+cos α+cos β+cos(α+β)为积的形式. ( 1+sin α=2sin (4π+2α)cos(4π—2α), 1+cos α+cos β+cos(α+β)= 4cos αβ+2cos 2αcos 2β)在三角函数的计算和化简中,常要把a sin α+bcos α化为A sin (α+ϕ)的形式.如:sin α+3cos α=2(12sin α+32cos α)=2(sin αcos π3+sin π3cos α)=2sin (α+π3) 一般地,设a =Acos ϕ,b=A sin ϕ,则a sin α+bcos α=A(sin α cos ϕ+sin ϕcos α) =A sin (α+ϕ),其中:A =a b 22+,ϕ所在象限由a ,b 的符号决定,由tan ϕ=ba可求出ϕ的值. (ϕ在(—π,—2π),(—2π,2π),(0,2π),(2π,π)内的值)例5、将下列各式化为Asin(α+ϕ)的形式.(1) 3sin x -4cosx ; (2) 3cosx -4sin x ; 解:(1) A =5,tan ϕ=b a =-43=-1 .3333 ,a >0,b <0,所以ϕ在第IV 象限,即ϕ=-53︒8'. 故3sin x -4cosx =5sin (x -53︒8'). (2) A =5,tan ϕ=ba=-0 .75 ,a <0,b >0, 所以ϕ在第II 象限,即ϕ=180︒-36︒52'=143︒8',故3cosx -4sin x =5sin(x+143︒8').C 万能公式22222tan1tan 2tan222sin ;cos ;tan .1tan 1tan 1tan 222ααααααααα-===++-统称为万能公式它们的特点是统一用tan 2α来表示sin ,cos ,tan αααD 一个常用不等式当x 为锐角时,sin tan x x x <<即 sin tan x x x <<OACxB作单位圆,取圆心角x AOB =∠,∵AOB ∆的面积<扇形AOB 的面积AOC ∆<面积,∴x x x tan 2121sin 21<<,(三) 复数A 复数的概念一、复数的定义1、虚数单位 我们知道方程x 2=-1在实数范围内无解,为了使它有解,我们引进一个新数i,规定i 2=-1,且它能与实数一起进行四则运算.数i 叫做虚数单位.因为i 2=-1,所以i 3=—i,i 4=1,i 5=i,i 6=-1,i 7=—i,i 8=1… 即i 4n =1,i 4n+1=i,i 4n+2=-1,i 4n+3=-i (n ∈Z ).(—i) 2=-1,即i 和—i 是-1的两个平方根.我们规定:i 0=1,i-m=mi1(m ∈Z ).例如:i 2001=i, i —5=ii 115==—i. 2、纯虚数 我们再来看x 2=-4的解,可以看出有两个解2i 和-2i.数bi 叫做纯虚数,其中b ∈R,且b ≠0.3、虚数 考察方程x 2+2x+10=0的解,x 等于—1+3i 或—1—3i.数a+bi 叫做虚数,其中a 、b ∈R,且b ≠0.4、复数 数a+bi 叫做复数,其中a 、b ∈R,其中a 叫做复数的实部,b 叫做复数的虚部.复数集通常用C 来表示.虚数集通常用I 来表示.C =R I.⎪⎪⎩⎪⎪⎨⎧=⇒≠+⎪⎩⎪⎨⎧⎩⎨⎧=+)0()0()0(a bi b bi a b a bi a 纯虚数虚数无理数分数整数有理数实数复数 例题:实数m 为何值时,复数(m 2—3m —4)+ (m 2—5m —6)i 是(1)实数;(2)纯虚数?解:(1)当b =0时,复数为实数.即m 2—5m —6=0解得m=—1或6.(2)当a=0,且b ≠0时复数为纯虚数.即m 2—3m —4=0且m 2—3m —4≠0解得m=4. 5、复数相等的条件 两个复数相等必须是它们的实部和虚部分别相等. 二、复数的几何表示法1、用复数直角平面内的点表示复数 复数a+bi 是由一对有顺序的实数a 、b 构成,这与直角坐标平面的构成一样.我们规定:直角坐标平面内的横轴为实轴,单位为1,纵轴(不包括原点)为虚轴,单位为i,那么,复数a+bi 就可用这样的平面内的点M(a,b)来表示,其中,复数的实部a 和虚部b 分别是点M 的横坐标和纵坐标.我们把表示复数的平面叫做复数直角坐标平面.简称复平面. 例题:(1)用复平面内的点表示复数:—3+2i,3i,—2,0,-i,2—3i.(2)复平面内的点M(2 ,3) ;N(—3 ,—4) ;P(—3 ,0) ;Q(0 ,—2)各表示什么复数?解:略. 2、用向量表示复数 如果复平面内的点M 表示复数a+bi,连结原点O 与M 点,并且把O看作线段OM 的起点,M 点作为终点,那么线段OM 就是一条有方向的线段,这样的一条线段叫做向量.记作OM .可以看出:复数a+bi ⇔点M(a,b) ⇔向量OM .向量OM 的长度叫做复数a+bi 的模,记作|a+bi |.显然|a+bi |=a b 22+.例如:|-1+3i | =2.由x 轴的正半轴到向量OM 的角θ叫做复数a+bi 的幅角.它指出了向量OM 的方向.一个不等于0的复数a+bi 的幅角有无穷多个,它们的弧度数彼此相差2π的整数倍,我们把幅角在[0 ,2π)内的值叫做幅角的主值,但在高等数学中,我们常用(,]ππ-范围内的角。