LogDraw在煤田测井解释中应用探析
- 格式:pdf
- 大小:183.27 KB
- 文档页数:2
煤田地质勘探中数字测井技术的应用分析摘要:测井曲线可以准确确定煤层的厚度、位置,帮助人们准确定位煤层,科学进行采煤,科学分析岩层赋存情况,帮助人们进行科学判断。
因此从根本上来将测井技术在煤田地质勘探当中的运用能够帮助勘探人员采煤,为相关人员提供准确而且丰富的信息。
随着科技的发展进步,人们对采煤技术进行了积极的研究,研发出了数字测井技术。
数字测井技术在采煤工作当中有很大的优势,对现代采煤技术有很大的借鉴作用。
关键词:数字测井技术;每天;地质勘探随着社会经济的发展,煤炭资源的需求量不断上升,而地层中可供采集的煤层逐年下降,在这种情况下人们需要研究新的采煤技术帮助采煤,并且在这个过程中还需要兼顾环境的开发和保护。
煤炭地质勘探是一项复杂的工程,勘探质量决定了后期采煤工作的质量,因此为了提高采煤工作的质量,在煤田地质勘探过程中,需要选择合理的勘探技术,精准测量出煤田的地质情况,从而保证煤炭的开采质量。
1.数字测井技术的特征1.1 发展背景随着我国科技的发展进步,我国的煤炭开采技术已经逐渐成熟,当前的测井技术已经达到了数字模拟的全智能化水平。
在当前的煤炭开采工作当中,数字测井系统已经成为煤田地质勘探工作过程中运用的最主要技术。
随着计算机自动化控制技术和传感器技术的发展,单片机的运用越来越普及,煤田地质勘探测井技术也朝着数字化的方向不断发展。
数字测井技术的数据演变分析都交付给计算机,只需要投入专业劳动力就能够完成,该技术最早投入在尤其勘探过程中,由此打来了计算机处理测井数据的全新时代。
煤田地质勘探的过程中运用数字测井技术,能够明显提升物理测井的质量和效率[1]。
1.2 使用工具数字测井技术运用的设备有数字采集记录仪器、绞车控制器、测井绞车、组合密度探管、测井车辆、测井车辆、相关机电设备系统、电脑设备、绘图设备等。
1.3 测井技术的原理测井技术主要是利用电、声、核等原理制造出专业的测井工具,用在测井环节成为测井设备。
煤田测井中自然伽马曲线的应用效果分析1. 引言1.1 煤田测井中自然伽马曲线的应用效果分析煤田测井是勘查煤田地质特征和煤质的重要手段,而自然伽马曲线作为测井曲线之一,在煤田测井中扮演着关键的角色。
本文旨在对煤田测井中自然伽马曲线的应用效果进行深入分析,为煤田勘探工作提供参考。
自然伽马测井技术是利用地质剖面中所含放射性元素自然放射性进行测量,通过探测自然伽马辐射来刻画地层的放射性特征,从而识别地层层序和地层间的油气性质、岩性和孔隙度等信息。
在煤田测井中,自然伽马曲线可以有效地识别煤层和煤与围岩的分界,确定煤层的厚度和分布规律,为后续的煤炭资源评价和开发提供依据。
自然伽马曲线的解释和分析方法包括对曲线形态、峰值、平均值和等效钍值等参数的综合分析,结合地质资料和其它测井曲线进行比对,从而进行地层的精细分析和油气成藏特征的识别。
在煤田测井中,自然伽马曲线具有快速、直观、定量的优势,但也存在对地层精度和垂直分辨能力有限的局限性。
在实际应用中需结合其它测井工具和地质资料进行综合解释分析,以提高测井结果的准确性和可靠性。
通过对煤田测井中自然伽马曲线的效果评价,可以为煤田地质特征和煤质的判别提供科学依据,为煤炭资源的勘探与开发提供技术支撑和决策参考。
2. 正文2.1 自然伽马测井技术简介自然伽马测井技术是一种利用地层中天然放射性元素辐射来测定岩层性质和构造的地球物理勘探方法。
常用的放射性元素有钾、钍和铀,它们在地壳和岩层中广泛存在,通过检测它们的放射性衰变产物,可以获得关于地层中岩性、孔隙度、矿物含量等信息。
自然伽马测井设备包括探测器、放射源、数据采集系统等组成部分。
在进行测井时,探测器探测到地层中辐射的强度,然后通过数据采集系统记录下来,并进行分析处理。
通过测量不同深度处的伽马射线衰减曲线,可以确定地层的厚度、密度、孔隙度等参数,为地质构造和勘探开发提供重要的信息。
自然伽马测井技术具有快速、准确、无破坏性等优点,被广泛应用于煤田、油田、矿山等领域。
序言CLogPro V2.0是一个基于个人计算机和WINDOWS操作系统的、适用于煤田测井或其它固体矿产测井的测井数据处理程序,系统由单孔测井资料处理程序CLogDraw、测井资料综合出图辅助程序CLogCad组成、模拟测井资料辅助处理程序CLogVect 三部分组成。
该程序集测井数据库管理、原始数据读入、成果数据导出、曲线计算、校正与刻度、插值与滤波、岩性分析、煤质分析等基本功能。
本程序除实现了LOGSYS和CLGIS软件的所有预处理和数据库管理功能外,在算法和功能上均有所扩充,即煤层气方面的资料处理功能。
为了适应各种与用户应用习惯、测井设备有关的处理方法,在CLogPro程序中定义了各种“模板”,加上丰富的、可以自己设置的“选项”,使得用户可以定义本程序的所有参数,从而大大提高了系统的可扩充性和方便性。
为了满足煤田地质和矿井地质的需要,在程序中实现了输出CAD、MAPGIS图形文件的功能,使得用户可以将测井成果进入到其它地质图件中。
配合模拟资料辅助处理软件CLogVect ,更可以将老的模拟测井资料快速数字化,并直接数据修正后,写入数据库,降低模拟资料数字化的工作量,大大提高工作效率。
CLogPro中的处理方法主要依据刘家瑾编著的《煤田测井资料数字处理》、Mt.Sopris Instrument Co.《Software User’s Guide》,部分算法来自中国煤炭地质总局物探研究院《煤田测井地质解释系统开发研制报告》、欧阳健,王贵文,吴继余,宋惠珍等,测井地质分析与油气层定量评价、徐士良编著的《常用算法程序集》等。
在此表示衷心感谢。
声明:尽管本软件的开发者极力想使CLogPro尽善尽美,但是,鉴于软件产品的特殊性,本软件的开发者不能承诺用户数据的安全性和可靠性,因本软件造成的一切损失,本软件的开发者不承担任何直接责任和连带责任。
用户安装使用本软件,便意味着接受本条款。
随着用户的需求、系统的升级,CLogPro将不断得到完善和扩充。
煤田地质勘探中测井技术的应用现状及改善措施摘要:多维导向下的智能化设备设施的运用能在时间成本最省、工艺质量最优、综合费用最低的前提下完成相应工作,更快更好的达到工程目的。
为了研究煤田地质勘察中测井技术的发展、运用和数据处理现状。
本文基本笔者地质矿产勘查开发局多年相关工作经验,在理论结合实际的前提下,探讨数据处理和工况分析上的异同,为新技术的高效应用提供理论参考。
关键词:煤田;地质勘探;测井;措施测井技术分为生产测井和完井测井。
常规意义上的测井项目能反演储层情况、追踪地层沉积序列、探测完井质量及其近井段污染程度。
而不同矿产资源的井筒,其开采方式和后续改造工序的不同也给测井类别和成本控制带来了细微差别。
煤田地质勘探领域的相关测井是为了获取地理信息中的物理参数,并根据相关数据进行卡层和瓦斯预测,确保矿脉延伸受控以及巷道布局合理。
同时还能将底层重要信息进行反馈,是二项先导性开创技术。
本文在理论结合实际的前提下,探讨数据处理和工况分析上的异同,为新技术的高效应用提供理论参考。
1煤炭地质勘探特点及发展趋势煤田地质勘探依据常规地质勘探角度分为预查、普查、详查和勘探4个阶段。
具体如下:①预查阶段。
运用基础地质资料进行矿区内裂缝、断裂和多个矿产区域内测量数据的反演,在地质结构和多维构型方面进行煤田和其他矿产资源的普查,并在岩心检测、大数据分析的基础上进行煤矿启动预案普查工作的系统开展,把具体煤矿矿脉进行定点勘查、定位判定和区域地质特征下的最佳条件开采,为后续的系统工作开展提供数据链支持和综合准备。
②普查阶段。
该阶段是在上一步预查完成之后进行煤矿数据审核,并最终定量获取资源评价条件,以综合评定煤矿的经济性为后续科学开采方案的制定奠定基础。
③详查阶段。
通过普查和定点开采方案优选,在数据详实的基础上开展详查,运用多重手段在地质依据和作证的基础上进行区域性矿井划分,并详细编制不同综采面的矿区。
完善开采细则。
④勘探阶段。
运用多重手段进行煤田地质资料的合理分析,将矿井为单位的建设目标进行多步设计,并根据先期测井资料,在不同煤田地质特征下进行导电特性、声学特性和电化学特性等因素的对比性核实。
煤田测井资料解释介绍1. 引言煤田测井是煤炭勘探和开采过程中的重要技术之一。
通过测井技术,可以获取地下煤层的物理、化学等相关信息,用于评估煤层资源、确定开采方案以及预测煤田的地质条件等。
本文将介绍煤田测井资料的解释方法和常用测井曲线,帮助读者更好地理解和应用煤田测井技术。
2. 煤田测井资料的解释方法2.1 孔隙度孔隙度是指煤层中孔隙空间的比例,是煤层储层性质的重要指标。
常用的测井曲线中,密度曲线(Density Log)和中子孔隙度曲线(Neutron Porosity Log)可以用于计算孔隙度。
其中,密度曲线通过测量岩石的密度来反映孔隙度,而中子孔隙度曲线则利用了煤层中的氢含量与孔隙度之间的线性关系。
2.2 含气量含气量是指煤层中所含天然气的比例,是评估煤层气资源潜力的重要指标。
常用的测井曲线中,自然伽马曲线(Natural Gamma Log)可以用于估算含气量。
自然伽马曲线通过测量煤层中的放射性元素的辐射强度来反映含气量的变化。
2.3 渗透率渗透率是指煤层中液体(如水)通过孔隙流动的能力,是评估煤层开采条件和调整开采参数的重要指标。
常用的测井曲线中,声波时差曲线(Acoustic Log)和电阻率曲线(Resistivity Log)可用于计算渗透率。
声波时差曲线通过测量声波通过岩石的速度来反映渗透率,而电阻率曲线则利用岩石的电导率与渗透率之间的关系进行计算。
3. 常用测井曲线介绍3.1 密度曲线(Density Log)密度曲线通过测量煤层岩石的密度来计算孔隙度。
密度曲线的单位一般为克/立方厘米(g/cm³)。
密度曲线中的高低值反映了煤层孔隙度的变化情况,数值越高表示孔隙度越小,数值越低表示孔隙度越大。
3.2 中子孔隙度曲线(Neutron Porosity Log)中子孔隙度曲线利用煤层中的氢含量与孔隙度之间的线性关系来计算孔隙度。
中子孔隙度曲线的单位一般为百分比(%)。
中子孔隙度曲线中的高低值反映了煤层孔隙度的变化情况,数值越高表示孔隙度越大,数值越低表示孔隙度越小。
煤田测井中自然伽马曲线的应用效果分析
测井技术在煤田勘探中发挥着重要作用,其中自然伽马曲线是常用的一种测井曲线。
它通过测量地层中的自然伽马射线强度,可以得到有关地层岩性、矿物成分、孔隙度等信息,对于煤田的勘探和开发具有重要意义。
自然伽马曲线可以用于鉴别煤层和非煤层。
煤层富含放射性元素,因此其自然伽马射线强度较大,而非煤层的自然伽马射线强度较小。
通过解释自然伽马曲线的变化规律,可以准确识别煤层和非煤层,有助于确定煤层位置和分布范围。
自然伽马曲线可以用于测量煤层的厚度。
通过分析自然伽马曲线的峰谷形态和幅度变化,可以确定煤层的厚度,为煤炭资源的量化评价提供重要数据。
自然伽马曲线还可以用于测量不同煤层之间的夹层厚度,为煤层开采提供技术支持。
自然伽马曲线在煤田测井中的应用效果较好,可以为煤田勘探和开发提供重要技术支持。
但需要注意的是,自然伽马曲线只能提供关于地层的一些间接信息,准确解释需要结合其他测井曲线和地质资料进行综合解释,以提高解释的准确性和可靠性。
数字测井技术在煤田地质勘探中的应用【摘要】文章介绍了数字测井技术在煤田地质勘探中的应用,数字测井技术可以用于确定煤矿的断层位置、煤层含水量、煤的性质和变质程度,且该技术具有具有信息丰富、数据量大、分辨率高及现场测井快捷等优点,提高了煤田测井的整体质量。
【关键词】数字测井;优势;应用煤田测井是利用煤、岩层的地质-地球物理特性的差异,运用恰当的技术手段,测定它们的某些物理参数来间接地获得地层信息。
要完成煤田测井任务,须根据含煤地层的地球物理特征选用测量参数,利用多参数、多方法测量和综合分析资料完成煤田测井任务。
目前,煤田测井主要是利用煤、岩层的导电性、密度、放射性、声特性等物性差异,进行相应的方法测井。
数字测井在煤田地质勘探中是重要的勘探技术,它主要用来确定煤层的位置、深度以及厚度等。
由于数字测井技术在煤田地质勘探中具有工作效率高、气候影响程度低以及煤层测量的精确度高等特征,已得到广泛使用。
1 煤田测井资料在地质勘探中的用途计算机技术在煤田测井中的应用,促进了测井仪器的组合化、刻度化以及轻便化。
煤田测井资料对煤田区域的勘探、信息分析以及开采中,有着很大的使用价值。
煤田测井资料可以帮助勘察人员鉴定煤田沉积环境。
古代的地理沉积情况决定了煤炭的形成以及发育,利用煤田测井资料可以有效的了解含煤岩系中的岩性组合、各种岩相的类型和变化规律,还可以清楚的确定煤层发育的状况,确定什么位置煤比较多,什么位置比较少。
在确定煤层和岩层的厚度和深度上,有着很好的使用价值,这个时候可以根据数据资料绘制的密度测井曲线来划分煤层和岩层的状况。
利用体积模型方式以及竖立统计表,对密度、中子和声波等测井曲线分析处理时,可以准确的得到煤质指标和岩石的组合成分,还可以帮助勘察人员有效地分析出煤质和岩性的特征。
煤田测井资料还可以帮助我们确定煤田中煤的变质程度,地壳中火山岩侵入煤层时,往往会提高煤的变质程度。
在这种情况下,各种测井也会随之发生变化,伽玛—伽玛曲线的幅度值会随着煤的变质程度加深而减小,中子曲线也会跟着下降,电阻率曲线也会出现这种情况。