测井资料解释(煤田测井解释)
- 格式:ppt
- 大小:3.55 MB
- 文档页数:115
煤田数字测井解释与地层层位判定第一部分煤田数字测井的作用常规的煤炭资源勘探手段,包括地震、钻探、测井,地震为我们解决了构造、煤层的露头;受市场经济影响,钻探的作用越来越弱化,现在的钻探纯粹就是解决煤层取样问题(水文孔另外解决水文问题),施工中多数都采用大段无心钻进,基本放弃了对地层的了解;钻探作用的弱化,使测井的作用更加突显。
总体来讲测井的作用主要包括:指导钻探施工,验证钻探资料,提高地质成果的精度,在地质成果使用方面,无论对地层、构造、煤层的查明程度,还是对煤层的开采技术条件研究,以及在煤层气勘探中都起到非常大的作用,是煤田地质勘探中不可缺少的重要手段。
主要作用解释如下:1、地球物理测井在指导钻探施工、验证钻探资料中的作用进行地质钻探的目的是直观地了解勘查区地层的岩性,采用全取芯的方法建立岩性剖面,探查煤层厚度与结构,钻取煤芯煤样进行化验,以查明煤质特征。
钻探结束后进行全孔测井,首先验证钻探资料,包括地层界面深度、煤层厚度与结构的准确性,确定钻孔煤层质量和孔斜质量,对钻孔终孔层位进行解释,验证其是否达到设计要求,如果存在质量问题,及时进行补救,以确保钻探质量;其次,获得地层物性剖面,结合取芯资料建立勘查区物性解释原则和方法。
由于区域内沉积环境比较稳定,相同层位地层的岩性、厚度基本一致,施工中就可以开展无岩芯钻探,建立勘查区物性解释原则后,就可以利用测井资料取得无岩芯段岩性剖面,这样可大大提高钻进效率,减少勘查成本,缩短勘查周期,并且有利于钻探施工的安全。
2、地球物理测井在地质成果提供中的作用2.1地层时代的划分不同岩性的岩层其物理性质不同,不同地质时代的地层由于其沉积环境及其环境条件变化具有明显的差异,从而使其岩性组合、岩相类型及变化规律不同,测井的各种参数方法曲线能够客观地反映出不同岩性岩层的物性差异,还能够直观地反映出不同地质时期地层在粒度、分选、泥质含量、密度等方面的物性差异,所以测井资料不仅能够详细划分出不同岩性的岩层,而且能够可靠地划分出地质时代的分界,测井提供的岩性、地层层位及地质时代界线成果是可靠的。
煤田测井资料解释介绍1. 引言煤田测井是煤炭勘探和开采过程中的重要技术之一。
通过测井技术,可以获取地下煤层的物理、化学等相关信息,用于评估煤层资源、确定开采方案以及预测煤田的地质条件等。
本文将介绍煤田测井资料的解释方法和常用测井曲线,帮助读者更好地理解和应用煤田测井技术。
2. 煤田测井资料的解释方法2.1 孔隙度孔隙度是指煤层中孔隙空间的比例,是煤层储层性质的重要指标。
常用的测井曲线中,密度曲线(Density Log)和中子孔隙度曲线(Neutron Porosity Log)可以用于计算孔隙度。
其中,密度曲线通过测量岩石的密度来反映孔隙度,而中子孔隙度曲线则利用了煤层中的氢含量与孔隙度之间的线性关系。
2.2 含气量含气量是指煤层中所含天然气的比例,是评估煤层气资源潜力的重要指标。
常用的测井曲线中,自然伽马曲线(Natural Gamma Log)可以用于估算含气量。
自然伽马曲线通过测量煤层中的放射性元素的辐射强度来反映含气量的变化。
2.3 渗透率渗透率是指煤层中液体(如水)通过孔隙流动的能力,是评估煤层开采条件和调整开采参数的重要指标。
常用的测井曲线中,声波时差曲线(Acoustic Log)和电阻率曲线(Resistivity Log)可用于计算渗透率。
声波时差曲线通过测量声波通过岩石的速度来反映渗透率,而电阻率曲线则利用岩石的电导率与渗透率之间的关系进行计算。
3. 常用测井曲线介绍3.1 密度曲线(Density Log)密度曲线通过测量煤层岩石的密度来计算孔隙度。
密度曲线的单位一般为克/立方厘米(g/cm³)。
密度曲线中的高低值反映了煤层孔隙度的变化情况,数值越高表示孔隙度越小,数值越低表示孔隙度越大。
3.2 中子孔隙度曲线(Neutron Porosity Log)中子孔隙度曲线利用煤层中的氢含量与孔隙度之间的线性关系来计算孔隙度。
中子孔隙度曲线的单位一般为百分比(%)。
中子孔隙度曲线中的高低值反映了煤层孔隙度的变化情况,数值越高表示孔隙度越大,数值越低表示孔隙度越小。
测井技术及资料解释测井技术及资料解释应用2022年一、石油测井技术方法二、石油测井地质应用三、测井资料的处理解释(一)石油测井技术概述石油测井技术是采用声、电、磁、放射性等物理测量方法, 应用电子技术及计算机等高新技术,在井中对地层的各项物理参数进行连续测量, 通过对测得的数据进行处理和解释,得到地层的岩性、孔隙度、渗透率、含油饱和度及泥质含量等参数。
石油测井技术与录井、取心等其他技术手段相比,它之所以成为地层和油气资源评价的关键技术手段,主要是由于其具有观测密度大、高分辨率与纵向连续性,以及由众多信息类型组成的综合信息群等技术优势。
三维地震服务于油气勘探和开发的全过程裸眼井测井评价裸眼井测井资料油井动态测井资料电缆测试资料射孔地震合成剖面测井沉积相分析地层评价(逐井) 岩性描述储层分析含油气评价储量计算勘探初期油藏模式分析油田解释模型完井评价孔隙度饱和度渗透率压力剖面勘探中后期油藏描述开发初期油藏模拟水泥胶结套管状况监测酸化压裂效果防砂效果产液剖面注入剖面温度压力剖面剩余油分布开发中期油藏工程开发后期采油工程油藏监测油田生产动态(二)石油测井技术方法迄今为止,测井技术已经历了四次的更新换代,这一发展进程,实质上是一个在更高层次上,形成精细分析与描述油藏地质特性配套能力的过程,是一个不断提高测井发现和评价油气藏能力的过程。
第一代:模拟测井(60年代以前、80年代末) 第二代:数字测井(60年代开始、90年开始)第三代:数控测井(70年代后期、97年开始)第四代:成像测井(90年代初期、2022年)测井方法电学声学核物理学力学磁学光学量子力学实验学电阻率测井声波测井核测井电缆地层测试井方位测井流体成份测量核磁共振测井岩电实验室测井技术应用电子学、计算机科学、传感器技术、精密加工和材料学的成果。
测井技术采用声、电、磁、放射性等物理测量方法, 应用电子技术及计算机等高新技术制造成测井仪器,在井中对地层的各项物理参数进行连续测量,现有的测井方法多达几十种.1 地层电阻率测井方法:双侧向测井双感应测井阵列感应测井微电极测井微球型聚焦测井 2.5米电位电极系测井 4.0米梯度电极系测井2、声学测井技术补偿声波长源距声波声波测井资料应用:确定岩性计算储层孔隙度及渗透率识别地层含流体性质计算岩石力学参数阵列声波数字声波多极阵列声波(Vp、Vs、Vst)垂直地震(VSP)刻度地面地震资料3、放射性测井技术自然伽马(GR) 补偿中子孔隙度(CNL) 岩性密度(DEN,Pe) 补偿密度(DEN) 自然伽马能谱(U、Th、K、SGR、CGR) 中子伽马(NGR)A、自然电位测井资料应用1.划分渗透性储层2.判断油水层(异常幅度大小)和水淹层(泥岩基线偏移) 3.地层对比和沉积相研究 4.估算泥质含量C SP SP min SP max S P min 2 GCUR *C 1 VS H 2GCUR 1自然电位5.确定地层水电阻率SSP K * lg Rmfe Cw K * lg Rwe CmfB、自然伽马测井资料应用1.划分岩性和地层对比高放射性储层:火成岩、海相黑色泥岩等;中等放射性岩石:大多数泥岩、泥灰岩等;低放射性岩石:一般砂岩、碳酸盐岩等自然伽马2.划分储层砂泥岩剖面:低伽马为砂岩储层,在半幅点处分层碳酸盐岩剖面:低伽马表示纯岩石,需结合地层孔隙度分层B、自然伽马测井3.计算地层泥质含量GR GRmin C GRmax GRmin 2GCUR *C 1 VS H 2GCUR 1自然伽马4.计算粒度中值粒度大小与沉积环境、沉积速度及颗粒吸附放射性物质的能力有关,岩性越细,放射性越强。
测井解释原理一:储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。
必须具备两个条件:(1)孔隙性(孔隙、洞穴、裂缝)具有储存油气的孔隙、孔洞和裂缝等空间场所。
(2)渗透性(孔隙连通成渗滤通道)孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。
储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。
储集层的分类•按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。
•按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。
碎屑岩储集层•1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。
•2、组成:–矿物碎屑(石英、长石、云母)–岩石碎屑(由母岩类型决定)–胶结物(泥质、钙质、硅质)•3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。
•4、有关的几个概念–砂岩:骨架由硅石组成的岩石都称为砂岩。
骨架成份主要为SiO 2–泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。
–砂泥岩剖面:由砂岩和泥岩构成的剖面。
碳酸盐岩储集层•1、定义:–由碳酸盐岩石构成的储集层。
•2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩•3、特点:–储集空间复杂有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等)次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等)–物性变化大:横向纵向都变化大•4 、分类按孔隙结构:•孔隙型:与碎屑岩储集层类似。
•裂缝型:孔隙空间以裂缝为主。
裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。
•孔洞型:孔隙空间以溶蚀孔洞为主。
孔隙度可能较大、但渗透率很小。
•洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。
•裂缝-孔洞型:裂缝、孔洞同时存在。
碳酸盐岩储集空间的基本类型砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主;碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。