eviews技术操作:非线性回归模型的建立
- 格式:ppt
- 大小:165.00 KB
- 文档页数:11
计量经济学上机实验上机实验一:一元线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参数估计并进行检验上机步骤:中国内地2011年中国各地区城镇居民每百户计算机拥有量和人均总收入一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y X2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y X2.相关图:键入命令 SCAT Y X 散点图:趋势图:上机结果:Yˆ11.958+0.003X=s (βˆ) 5.6228 0.0002t (βˆ) 2.1267 11.9826prob 0.0421 0.00002=0.831 R2=0.826 FR=143.584 prob(F)=0.0000上机实验二:多元线性回归模型实验目的:多元回归模型的建立、比较与筛选,掌握基本的操作要求并能根据理论对分析结果进行解释实验内容:对线性回归模型进行参数估计并进行检验上机步骤:商品的需求量与商品价格和消费者平均收入趋势图:散点图:上机结果:i Yˆ=132.5802-8.878007X1-0.038888X2s (βˆ) 57.118 4.291 0.419t (βˆ) 2.321 -2.069 -0.093prob 0.0533 0.0773 0.9286 R2=0.79 R2=0.73 F =13.14 prob(F)=0.00427三:非线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参上机步骤:我国国有独立核算工业企业统计资料一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y L K2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y K L2.相关图:键入命令 SCAT Y K L四.估计回归模型:键入命令LS Y C K L上机结果:Y =4047.866K1.262204L-1.227157s (βˆ) 17694.18 0232593 0.759696t (βˆ) 0.228768 5.426669 -1.615325prob 0.8242 0.0004 0.1407R2=0.989758 R2=0.987482 F=434.8689 prob(F)=0.0000上机实验四:异方差实验目的::掌握异方差的检验与调整方法的上机实现实验内容:我国制造工业利润函数行业销售销售行业销售销售实验步骤:一.检验异方差性1.图形分析检验:1) 观察Y、X相关图:SCAT Y X2) 残差分析:观察回归方程的残差图LS Y C X在方程窗口上点击Residual按钮;2. Goldfeld-Quant检验:SORT XSMPL 1 10LS Y C X(计算第一组残差平方和)SMPL 19 28LS Y C X(计算第二组残差平方和)计算F统计量,判断异方差性3.White检验:SMPL 1 28LS Y C X在方程窗口上点击:View\Residual\Test\White Heteroskedastcity 由概率值判断异方差性。
数据导入File-foreign data as workfile --2种选项的不同 File-new-workfile新变量的输入Object-new object-series 如:x ,双击打开后,edit+/-编辑,通过excel 复制粘贴,再一下结束Quick-generate series 通过已知变量的运算一元线性回归模型 and 多元线性回归模型t t t u bX a Y ++=t nt n t t t u X b X b X b a Y +++++= 2211非线性回归模型 常见有4种 双对数线性模型εγβ1x y = )ln()ln()ln(ln 1εβγ++=x y半对数模型—原先x or y 在指数上u x y ++=)ln(10αα u x y ++=10)ln(αα双曲函数模型(倒数模型)t tt u X Y ++=)1(21ββ多项式回归模型u x x x y n n +++++=ββββ 2210非线性回归模型,先用变量替换成为线性(一元or 多元)回归模型,然后做法相同。
虚拟变量模型⎩⎨⎧=另一种状态一种状态10t D eg ⎩⎨⎧=,男性女性1,0t D 研究定性变量的时候引入,比如说性别、种族、宗教、民族、婚姻状况、教育程度等。
一般的,定性变量有m 类,引入m-1个虚拟变量。
分布滞后模型t n t n t t t u x x x y +++++=--ββββ 1210对于时间序列数据,由于经济系统中的经济政策的传导、经济行为的相互影响和渗透都是需要一定时间的。
他们的数值是由某些滞后量决定的。
Eg 消费不仅取决于当期的收入,还取决于以前的收入。
先做图观察一下大体趋势,是否要取对数等。
Quick-graph 建立模型Quick-estimation equation 选择LS 变量第一个是因变量,常数项输入c 注:log (x )表示对x 取自然对数x (-1) 表示滞后一阶 ;x (-1 to -4)表示x (-1)、x (-2)、x (-3)、x (-4)其实,更方便快捷的是用execl进行普通的回归模型工具-加载宏-分析数据库and 分析数据库-vba函数工具-数据分析获取新变量“=”虚拟变量,简单编程eg:=IF(E2>400000,1,0)时间序列分析在处理有关时间序列的数据的时候,首先画图,看看是否需要季节调整Eg 冰激凌销售的例子。
Eviews上机指导第一节Eviews简介1、Eviews是什么2、运行Eviews3、Eviews的窗口4、Eviews的主要功能5、关闭Eviews第二节单方程计量经济模型Eviews操作案例一、创建工作文件二、输入和编辑数据三、图形分析四、OLS估计参数五、预测六、非线性回归模型的估计七、异方差检验与解决办法八、自相关检验与解决办法第三节联立方程计量经济模型Eviews操作第一节 Eviews简介Eviews是Econometrics Views的缩写,直译为计量经济学观察,通常称为计量经济学软件包。
它的本意是对社会经济关系与经济活动的数量规律,采用计量经济学方法与技术进行“观察”。
计量经济学研究的核心是设计模型、收集资料、估计模型、检验模型、应用模型(结构分析、经济预测、政策评价)。
Eviews是完成上述任务比较得力的必不可少的工具。
正是由于Eviews等计量经济学软件包的出现,使计量经济学取得了长足的进步,发展成为一门较为实用与严谨的经济学科。
1、Eviews是什么Eviews是美国QMS公司研制的在Windows下专门从事数据分析、回归分析和预测的工具。
使用Eviews可以迅速地从数据中寻找出统计关系,并用得到的关系去预测数据的未来值。
Eviews的应用范围包括:科学实验数据分析与评估、金融分析、宏观经济预测、仿真、销售预测和成本分析等。
Eviews是专门为大型机开发的、用以处理时间序列数据的时间序列软件包的新版本。
Eviews的前身是1981年第1版的Micro TSP。
目前最新的版本是Eviews4.0。
我们以Eviews3.1版本为例,介绍经济计量学软件包使用的基本方法和技巧。
虽然Eviews是经济学家开发的,而且主要用于经济学领域,但是从软件包的设计来看,Eviews的运用领域并不局限于处理经济时间序列。
即使是跨部门的大型项目,也可以采用Eviews进行处理。
Eviews处理的基本数据对象是时间序列,每个序列有一个名称,只要提及序列的名称就可以对序列中所有的观察值进行操作,Eviews允许用户以简便的可视化的方式从键盘或磁盘文件中输入数据,根据已有的序列生成新的序列,在屏幕上显示序列或打印机上打印输出序列,对序列之间存在的关系进行统计分析。
目录目录 (1)1、EViews简介 (3)1.1 什么是EViews (3)1.2 启动和运行EViews (3)1.3 EViews窗口 (3)1.4关闭EViews (4)2、EViews基本操作 (5)2.1工作文件与对象 (5)2.1.1工作文件 (5)2.1.2对象 (7)2.2数据处理 (10)2.2.1数据对象与样本 (10)2.2.2数据的输入和输出 (12)2.3图形与表格 (14)2.3.1图的创建 (14)2.3.2图的修改 (14)2.3.3多个图 (16)2.3.4图的打印和输出 (17)2.3.5表格对象 (18)2.3.6表的输出 (18)2.3.7文本对象 (19)3、基本回归模型 (19)3.1估计和方程对象 (19)3.1.1方程对象 (19)3.1.2在EViews中对方程进行说明 (20)3.1.3在EViews中估计方程 (20)3.2方程输出 (20)3.3方程操作 (22)3.3.1方程视图 (22)3.3.2方程过程 (24)3.3.3缺省方程 (24)4、基本检验 (24)4.1多重共线性的检验 (24)4.2异方差的检验 (25)4.3 自相关的检验 (26)5、时间序列模型 (27)5.1时间序列平稳性的单位根检验 (27)5.1.1单位根的ADF检验 (27)5.1.2Phillips-Perron(PP)检验 (27)5.2协整 (28)6、案例分析 (29)6.1多元线性回归及多重共线性的检验 (29)6.2异方差的检验 (31)6.3自相关的检验 (34)6.4时间序列的单位根和协整检验 (36)1、EViews简介1.1什么是EViewsEViews 是在大型计算机的TSP (Time Series Processor)软件包基础上发展起来的新版本,是一组处理时间序列数据的有效工具,是当今世界上最流行的计量经济学软件之一。
1981年QMS (Quantitative Micro Software) 公司在Micro TSP基础上直接开发成功EViews 并投入使用。
EViews的基本操作EViews 的基本操作实验目的:初步了解EViews 软件,掌握EViews 的基本操作1. EViews 主窗口EViews 是基于Windows 操作系统的计量分析软件,它的前身是1981 年发布的MicroTSP 。
EViews 大部分的数据处理是面对经济时间序列数据,但是这并不妨碍它对大量的截面数据处理同样表现出卓越的功能。
EViews 利用了现代软件开发中的可视化技术,可以使用鼠标,通过点击 Windows 命令、修改对话框选项等完成相关数据处理过程,同时也可以利用 EViews的命令行窗口和批处理程序完成同样的数据处理过程。
正确安装并运行EViews 后,我们将会看到EViews 窗口(如图 1 EViews 窗口所示)。
标题栏主菜单命令窗口下拉式菜单工作区域默认数据库消息区当前工作文件默认路径图 1 EViews 窗口2. 工作文件基础EViews 的大部分操作都是在工作文件的基础上完成的,因此工作文件构成了EViews 的基础。
对EViews 的基本操作离不开对工作文件的操作,以下部分介绍如何新建、保存、读取、修改一个工作文件。
2.1 新建一个工作文件(Creating a Workfile )使用EViews 的第一步通常就是新建一个工作文件。
建立一个工作文件可以按下列顺序点击EViews 的主菜单:File→New →Workfile 。
此时打开下列对话框。
图 2 新建一个工作文件在图 2 新建一个工作文件所示的对话框中,用户需要根据实际数据的特点,指定工作文件的数据频率(workfile frequency ),以及工作文件的范围,即开始日期(start date )和结束日期(end date )。
关于数据频率,对话框中提供了八种不同的选择,其含义和输入格式如下Annual ,即年度数据Semi-annual,即半年度数据,具体表示为年份跟着一个冒号或句点,和一个半年数。
1.EVIEWS基础 (3)1.1. E VIEWS简介 (3)1.2. E VIEWS的启动、主界面和退出 (3)1.3. E VIEWS的操作方式 (6)1.4. E VIEWS应用入门 (6)1.5. E VIEWS常用的数据操作 (15)2.一元线性回归模型 (24)2.1. 用普通最小二乘估计法建立一元线性回归模型 (24)2.2. 模型的预测 (30)2.3. 结构稳定性的C HOW检验 (34)3. 多元线性回归 (39)3.1. 用OLS建立多元线性回归模型 (39)3.2. 函数形式误设的RESET检验 (45)4. 非线性回归 (48)4.1. 用直接代换法对含有幂函数的非线性模型的估计 (48)4.2. 用间接代换法对含有对数函数的非线性模型的估计 (50)4.3. 用间接代换法对CD函数的非线性模型的估计 (53)4.4. NLS对可线性化的非线性模型的估计 (55)4.5. NLS对不可线性化的非线性模型的估计 (58)4.6. 二元选择模型 (62)5. 异方差 (68)5.1. 异方差的戈得菲尔德——匡特检验 (68)5.2. 异方差的WHITE检验 (72)5.3. 异方差的处理 (75)6. 自相关 (79)6.1. 自相关的判别 (79)6.2. 自相关的修正 (83)7. 多重共线性 (87)7.1. 多重共线性的检验 (87)7.2. 多重共线性的处理 (92)8. 虚拟变量 (94)8.1. 虚拟自变量的应用 (94)8.2. 虚拟变量的交互作用 (99)8.3. 二值因变量:线性概率模型 (101)9. 滞后变量模型 (105)9.1. 自回归分布滞后模型的估计 (105)9.2. 多项式分布滞后模型的参数估计 (110)10. 联立方程模型 (115)10.1. 联立方程模型的单方程估计方法 (115)10.2. 联立方程模型的系统估计方法 (119)21.Eviews基础1.1. Eviews简介Eviews:Econometric Views(经济计量视图),是美国QMS公司(Quantitative Micro Software Co.,网址为)开发的运行于Windows环境下的经济计量分析软件。
非线性模型参数估计的EViews 操作例3.5.2建立中国城镇居民食品消费需求函数模型。
根据需求理论,居民对食品的消费需求函数大致为: ()01,,f P P X Q =。
其中,Q 为居民对食品的需求量,X 为消费者的消费支出总额,P1为食品价格指数,P0为居民消费价格总指数。
表3.5.1 中国城镇居民消费支出及价格指数单位:元资料来源:《中国统计年鉴》(1990~2007)估计双对数线性回归模型μββββ++++=031210n n n P L LnP X L Q L 对应的非线性模型:32101βββP P AX Q =这里需要将等式右边的A 改写为0e β。
取0β,1β,2β,3β的初值均为1。
Eviews操作:1、打开EViews,建立新的工作文档:File-New-Workfile,在Frequency选择Annual,在Start date输入“1985”,End date输入“2006”,确认OK。
2、输入样本数据:Object-New Object-Group,确认OK,输入样本数据。
图13、设置参数初始值:在命令窗口输入“param c(1) 1 c(2) 1 c(3) 1 c(4) 1”,回车确认。
4、非线性最小二乘法估计(NLS):Proc-Make Equation,在NLS估计的方程中写入Q=EXP(C(1))*X^C(2)*P1^C(3)*P0^C(4),方程必须写完整,不能写成Q C(1) X P1 P0。
确定输出估计结果:图2NLS注意事项:1).参数初始值:如果参数估计值出现分母为0等情况将导致错误,解决办法是:手工设定参数的初始值及范围,比如生产函数中的c(2)肯定是介于0-1之间的数字。
eviews6.0中并没有start 的选项,只有iteration的次数和累进值得选择。
只能通过param c(1) 0.5 c(2) 0.5来设置。
2).迭代及收敛eviews用Gauss Seidel迭代法求参数的估计值。
实验二 非线性回归模型估计一、实验目的练习模型选择及非线性回归模型的估计方法。
用NLS 法估计成本函数、C-D 生产函数,利用C-D 函数测定宏观经济技术进步率,用NLS 法估计CES 生产函数,并掌握参数约束的Wald 检验。
二、实验要求运用给定的数据,依据相应的经济学理论,完成模型估计、选优、检验和应用等,掌握相应的EViews 操作方法。
三、实验内容1.选择成本函数的数学形式结合经济学中成本理论的有关知识,调用虚拟资料2.1CF 。
考虑三个备选模型:(1)双曲线:Xb b Y 10+= ;(2)对数曲线:X b b Y ln 10+=;(3)幂函数曲线:10b Xb Y =具体做法:(1)调入数据2.1CF(2)打出散点图,观察数据是否适宜采用线性形式?(3)分别用上述三个模型对数据进行拟合估计,有两种做法:A.线性化后运用回归命令进行OLS 法估计(运用genr 命令生成新变量);B.直接对模型进行非线性模型估计(NLS 法,直接输入模型表达式)。
请比较分别用两种方式估计后的输出结果有无异同?(4)比较三种模型估计输出结果:可决系数R 2的变化;t 、F 检验的结论;AIC 、SC 准则的表现等,决定哪一个模型为最优?2.C-D 生产函数的估计和应用——测定宏观经济技术进步率及要素贡献率基本原理:反映技术进步的生产函数的一般形式为:)),(),((t t K t K f Y =。
这种生产函数分为三类:Hicks 中性技术进步、Harrod 中性技术进步和Solow 中性技术进步。
当技术进步类型为Hicks 中性时,理论形式写为:βαL K eA Y mt0= (1)对(1)式两边取对数得:mt L K A Y +++=ln ln ln ln 0βα (2)对(2)式两边微分得:m dtdL L dtdK K dtdY Y dtY d ++==111)(ln βα(3)将(3)式对应表示为: m l k y ++= βα (4)(4)式中α、β分别是劳动弹性和资本弹性,m 为技术进步率,l k y m - βα-=,即著名的索罗增长速度方程。