图形的平移和旋转
- 格式:doc
- 大小:167.50 KB
- 文档页数:3
平移旋转图形知识点总结平移和旋转是几何学中两个重要的变换操作,它们可以改变图形的位置和方向,扩展了几何学的应用领域。
在本文中,我们将对平移和旋转的基本概念、性质和应用进行总结。
一、平移的基本概念平移是指图形在平面上沿着一定方向按照一定距离移动的变换操作。
在平移过程中,图形的大小和形状保持不变,只是位置发生改变。
平移可以用向量来描述,移动向量即为图形移动的方向和距离。
1. 平移的向量表示设图形A经过平移得到图形A',平移向量为向量→a,表示为A→A' = →a。
向量→a的方向和长度即为平移的方向和距离。
2. 平移的性质平移操作满足以下性质:(1)平移不改变图形的大小和形状;(2)平移不改变图形的面积和周长;(3)平移不改变图形的对称性。
3. 平移的表示方法平移可以通过向量、坐标和平移矩阵等多种方式来表示和描述。
在向量表示中,平移向量→a可以作为图形平移的唯一标识。
二、平移的应用平移在几何学和其他领域中有着广泛的应用,例如地图制作、计算机图形学和物理学等。
下面我们将介绍平移在几何学中的应用场景和相关问题。
1. 平移的作用(1)简化计算:通过平移操作,可以将图形移动到方便计算的位置,简化问题的解决过程;(2)构造对称图形:利用平移可以构造出一些对称图形,如平移正方形可以构造出菱形;(3)解决坐标运算:在坐标运算中,平移可以使坐标系原点发生偏移,方便计算。
2. 平移的问题在平移问题中,常见的问题包括:给定图形A和平移向量→a,求出图形A经过平移后的位置和形状;给定平移前后的图形A和A',求出平移向量→a。
解决这些问题需要灵活运用平移的基本性质和表示方法。
三、旋转的基本概念旋转是指图形围绕一点按照一定角度转动的变换操作。
在旋转过程中,图形的大小和形状保持不变,只是方向发生改变。
旋转可以用角度来描述,旋转角度即为图形旋转的方向和角度。
1. 旋转的角度表示设图形A经过旋转得到图形A',旋转角度为θ,表示为A→A' = θ。
第十五章图形的平移与旋转一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。
注意:1.平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2.平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;3.平移前后两图形是全等的。
平移的特征:平移不改变图形和,只改变了图形的位置;经过平移,对应点所连的线段(或 )且相等;对应线段(或)且相等,对应角。
二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。
这个定点称为,转动的角称为。
任意一对对应点与旋转中心的连线所成的角都是 .注意:1.旋转中心在旋转过程中保持不动;2.图形的旋转是由,和所决定的;3.作平移图与旋转图。
(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。
图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。
2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。
3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。
这个点叫做对称中心。
中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。
4、成中心对称:把一个图形绕着某一点旋转180º,如果它能够和另一个图形重合,就称这两个图形成中心对称。
这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。
在成中心对称的两个图形中,连结对称点的线段都经过,并且被对称中心。
DCFE CBA第四讲 图形的平移与旋转【基础知识精讲】一、平移:1.平移的定义——在平面内,把一个图形沿某一个方向移动一定的距离,这样的图形运动叫图形的平移。
说明:(1)平移是图形的一种运动(变换)(2)平移的要素:①平移方向;②平移距离。
2.平移的性质:①平移前后图形的大小、形状都不改变。
即:平移前后的图形全等形。
②平移前后对应点的连线段平行(或在同一直线上)且相等;对应线段平行(或在同一直线上)且相等;对应角相等。
二、旋转1.旋转的定义——在平面内,把一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫图形的旋转。
说明:(1)旋转是图形的一种运动(变换)(2)旋转的要素: ①旋转中心 ②旋转方向 ③旋转角2.旋转的性质①旋转前后图形的大小、形状都不改变。
即:旋转前后的图形全等形。
②图形上任意点都绕中心沿相同方向转动相同的角度(旋转角); ③对应点到旋转中心的距离相等。
【重难点高效突破】例1.如图,经过平移△ABC 的边AB 移到了EF ,作出平移后的三角形.例2.如图,△ABC 绕C 点旋转后,B 转到了D 处,作出旋转后的三角形。
例3.如图,在长32m 宽20m 的土地上要修筑同样宽的两条“之”字路,路宽2m ,则剩余耕地的面积为 . 例4、如图,E 为正方形ABCD 的边AB 上一点,AE=3,BE=1,P 为AC 上的动点,则PB+PE 的最小值是_________.例5、如图,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BC=12,CF=5,则△DEF 的面积为______________。
例6、如图,在△ABC 中,AB 2=32,∠BAC=45°, ∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,求BM+MN 的最小值。
例7、如图,设P 为等边△ABC 内的一点,且PA=3,PB=4,PC=5,能否确定∠APB 的大小?请说明理由。
图形的平移和旋转知识点1.平移的定义与规律关键:平移不改变图形的形状和大小,也不会改变图形的方向.(1)平移的规律:经过平移,对应线段、对应角分别相等,•对应点所连的线段平行且相等(或共线且相等).(2)简单作图平移的作图主要关注要点:1.方向,2.距离.整个平移的作图,就象把整个图案的每个特征点放在一套平行的轨道上滑动一样,每个特征点滑过的距离是一样的. 2.旋转的定义与规律(1)定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,•这样的图形运动称为旋转.关键:旋转不改变图形的大小和形状,但改变图形的方向. (2)旋转的规律经过旋转,图形上的每一点,都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(3)简单的旋转作图: 旋转作图关键有两点:①旋转方向,②旋转角度.主要分四步:边、转、截、连.旋转就象把每个特征点与旋转中心用线连住的风筝,每个点转的角度是相同的,每个点与旋转中心的距离是不会改变的,即对应点与旋转中心距离相等.小试牛刀1.平移是由_________________________________________所决定。
2. 平移不改变图形的 和 ,只改变图形的 。
3.钟表的分针匀速旋转一周需要60分,它的旋转中心是___________,经过20分,分针旋转___________度。
4.(2010年兰州市)如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为 .5、(2008年湖北省咸宁市)如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论,其中正确的是_____ ①△AED ≌△AEF ; ②BE DC DE += ③S △ABE +S △ACD >S △AED ; ④222BE DC DE +=例题讲解1、如图所示:正方形ABCD 中E 为BC 的中点,将面ABE 旋转后得到△CBF. (1)指出旋转中心及旋转角度.(2)判断AE 与CF 的位置关系.(3)如果正方形的面积为18cm 2,△BCF 的面积为4cm 2,问四边形AECD 的面积是多少?(第8题图)A B C D E F A B C DE2、如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,求∠EAF3、如图,已知正方形ABCD的对角线AC、BD相交于O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,求证:OE=OF。
图形的平移和旋转通过图形的平移和旋转帮助学生理解图形的平移和旋转的概念和方法图形的平移和旋转图形的平移和旋转是空间几何中非常重要的概念,它们帮助学生更好地理解图形的变换和运动。
本文将详细介绍图形的平移和旋转的概念和方法,并通过实例加深读者对这些概念的理解。
一、图形的平移平移是指将图形在平面上沿着指定的方向移动一段距离,而保持图形的形状和大小不变。
在平面坐标系中,平移可以通过改变图形的坐标来实现。
对于二维平面中的图形,平移涉及两个要素:平移的向量和平移的距离。
以坐标平面上的一个点P(x, y)为例,如果向量V(a, b)表示平移向量,则平移后的新点P'(x', y')的坐标可表示为:x' = x + ay' = y + b这样,对于平面上的其他点也可以进行同样的平移操作。
通过改变平移向量V的值,可以实现不同的平移方向和距离。
二、图形的旋转旋转是指将图形绕着某个固定点旋转一定角度,而保持图形的形状和大小不变。
在平面几何中,旋转可以通过改变图形中每个点的坐标来实现。
旋转涉及三个要素:旋转中心、旋转角度和旋转方向。
假设旋转中心为点O(x0, y0),旋转角度为θ,旋转方向为顺时针。
对于平面上的任一点P(x, y),其旋转后的新点P'的坐标可表示为:x' = (x - x0) * cosθ - (y - y0) * sinθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0类似地,通过改变旋转角度和旋转中心的值,可以实现不同的旋转效果。
需要注意的是,对于逆时针旋转,只需将旋转角度取负。
三、图形的平移和旋转实例为了更好地理解图形的平移和旋转,下面举例说明。
例一:平移操作考虑一个正方形,其中心点为O(0, 0),边长为2。
要将这个正方形向右平移4个单位,可将平移向量设为V(4, 0)。
根据平移公式,正方形的每个顶点的新坐标可计算如下:A(0, 0) 平移 4 个单位后的新坐标:A'(4, 0)B(2, 0) 平移 4 个单位后的新坐标:B'(6, 0)C(2, 2) 平移 4 个单位后的新坐标:C'(6, 2)D(0, 2) 平移 4 个单位后的新坐标:D'(4, 2)如此,正方形向右平移4个单位后,每个顶点的新坐标确定,从而实现了整个图形的平移操作。
图形的平移与旋转图形的平移和旋转是几何学中常见的操作,可以用于改变图形的位置和方向。
在本文中,我们将介绍图形平移和旋转的定义、原理、应用以及相关的数学概念和公式。
一、平移的定义与原理平移是指将一个图形在平面上沿着某个方向移动一定的距离,而不改变图形的形状和方向。
平移的原理是将图形的每一个点都按照相同的方式进行移动。
在二维平面上,平移可以通过向量来表示。
假设一个点的坐标为 (x, y),平移向量为 (a, b),那么平移后这个点的新坐标为 (x+a, y+b)。
也就是说,平移向量中的每一个分量都等于图形中每一个点的坐标在对应方向上的平移量。
二、旋转的定义与原理旋转是指将一个图形绕着某个点(旋转中心)按照一定的角度进行旋转,而不改变图形的大小。
旋转的原理是将图形的每一个点都按照相同的方式进行旋转。
同样在二维平面上,旋转可以通过向量来表示。
假设一个点的坐标为 (x, y),旋转角度为θ(弧度制),旋转中心为原点 (0, 0),那么旋转后这个点的新坐标为 (x', y'),其中x' = x * cos(θ) - y * sin(θ)y' = x * sin(θ) + y * cos(θ)也就是说,旋转后的点的新坐标可以通过将旋转矩阵与原坐标矩阵相乘的方式计算得出。
三、平移与旋转的应用平移和旋转在几何学和计算机图形学中有着广泛的应用。
下面我们来介绍一些常见的应用场景。
1. 图像处理:在图像处理中,平移和旋转常常用于改变图像的位置和角度。
通过对图像进行平移和旋转操作,可以实现图像的校正、调整和修饰。
2. 动画制作:在动画制作中,平移和旋转用于控制和改变动画中的图形的位置和角度。
通过对图形进行平移和旋转操作,可以实现图形的移动、旋转和变形,为动画添加更多的变化和效果。
3. 机器人运动控制:在机器人运动控制中,平移和旋转用于控制和改变机器人的位置和朝向。
通过对机器人进行平移和旋转操作,可以实现机器人的移动和旋转,为机器人的运动提供更多的灵活性和精确性。
图形的旋转与平移图形的旋转与平移在几何学中起着重要的作用,它们能够帮助我们理解和描述物体在平面上的位置和形态的变化。
本文将介绍图形的旋转和平移的概念、特性及其应用。
一、图形的旋转旋转是指围绕某一点或某一轴线进行转动,使图形按一定角度沿轴旋转后得到的新图形。
图形的旋转有以下几个重要特性:1. 旋转角度:指图形旋转的角度,可以是逆时针方向的正角度或顺时针方向的负角度。
2. 旋转中心:指图形旋转的中心点,可以是图形内部的某个点,也可以是图形外部的某个点。
3. 旋转方向:旋转可以按逆时针方向或顺时针方向进行。
图形的旋转可以应用于许多领域,如计算机图形学、工程制图等。
在计算机图形学中,旋转可用于实现图像的变换和动画效果。
二、图形的平移平移是指沿着平行于某一方向的轴线移动图形,使图形在平面上平行地移动到另一个位置,但形状和大小保持不变。
图形的平移有以下几个重要特性:1. 平移向量:指平移移动的方向和距离,可以用向量表示。
2. 平移方向:平移可以沿着任意方向进行,只要是平行于轴线即可。
3. 平移距离:指图形平移的具体距离。
平移常用于地图上的位置标记、机械设计、建筑设计等领域。
在计算机图形学中,平移可用于实现图像的拖动和位置调整。
三、旋转与平移的组合应用旋转和平移常常需要组合应用,以实现更加复杂的变换效果。
例如,在游戏开发中,我们可以利用旋转和平移将一个平面上的二维图形转换为在三维空间中的位置和姿态,以实现更真实的游戏画面。
旋转和平移的组合应用还可用于机器人控制、航天器轨道设计等领域。
通过将图形围绕不同的方向旋转和平移,可以控制机器人或航天器在空间中的位置和方向。
总结:图形的旋转与平移是几何学中的基本概念,它们能够帮助我们描述和理解物体的位置和形态变化。
通过旋转和平移,我们可以实现图像的变换、位置调整和动画效果等。
无论是在计算机图形学还是实际应用中,旋转与平移都具有重要的意义。
理解和掌握图形的旋转与平移,对于几何学的学习和应用都具有重要的帮助。
很多同学学习几何时对于一些概念都不是很了解。
那么什么是平移?什么是旋转呢?
平移简介
平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
平移不改变图形的形状和大小。
图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。
它是等距同构,是仿射空间中仿射变换的一种。
它可以视为将同一个向量加到每点上,或将坐标系统的中心移动所得的结果。
即是说,若是一个已知的向量,是空间中一点,平移。
旋转的定义
在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫做旋转。
这个定点叫做旋转中心,旋转的角度叫做旋转角,如果一个图形上的点A经过旋转变为点A',那么这两个点叫做旋转的对应点。
平移和旋转的区别与联系
1、区别:旋转不改变物体在空间上的位置不发生位移,平移将一个图形上的所有点都按照某个直线方向做相同距离的移动发生了位移。
2、联系:旋转和平移都是物体运动现象,在运动中都没有改变本身的形状、大小与自身性质特征。
以上就是一些有关于平移和旋转的相关信息,供大家参考。
(一):【知识梳理】
1.图形的平移
(1)平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运
动称为平移,平移不改变图形的形状和大小.
注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换.
②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这
两个要素是图形平移的依据.
③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只
改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质
的依据.
(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:
经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.
②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间
的性质,又可作为平移作图的依据.
(3)简单的平移作图
平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移
的方向;③平移的距离.
2.图形的旋转
(1)旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。
理解旋转这一概念应注意以下两点:①旋转和平移一样是图形的一种
基本变换;②图形旋转的决定因素是旋转中心和旋转的角度.
(2)旋转的基本性质:图形中每一个点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段、对应角都相等,图形的形状、大小都不发
生变化.
(3)简单图形的旋转作图
两种情况:①给出绕着旋转的定点,旋转方向和旋转角的大小;
②给出定点和图形的一个特殊点旋转后的对应点.
作图步骤:①作出图形的几个关键点旋转后的对应点;
②顺次连接各点得到旋转后的图形.
(4)图案设计:图案的设计是由基本图形经过适当的平移、旋转、轴对称等图形的变
换而得到的。
其中中心对称是旋转变换的一种特例。
(二):【课前练习】
1.如图,四边形ABCD平移后得到四边形 EFGH,
填空(1)CD=______,(2)∠ F=______
(3)HE= ,(4)∠D=_____,
(5)DH=_________
2.如图,若线段CD是由线段AB平移而得到的,
则线段CD、AB关系是__________.
3.将长度为3cm的线段向上平移20cm,所得线段的长度是()
A.3cm B.23cm C.20cm D.17cm
4.关于平移的说法,下列正确的是()
A.经过平移对应线段相等; B.经过平移对应角可能会改变
C.经过平移对应点所连的线段不相等; D.经过平移图形会改变
5.在“党”“在”“我”“心”“中”五个汉字中,旋转180o后不变的字是_______
在字母“X”、“V”、“Z”、“H”中绕某点旋转(旋转度数不超过180)后不能
与原图形重合的是____
二:【经典考题剖析】
1.下列说法正确的是()
A.由平移得到的两个图形的对应点连线长度不一定相等
B.我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方
向的平移”
C.小明第一次乘观光电梯,随着电梯向上升,他高兴地对同伴说:“太棒了,我现在比
大楼还高呢,我长高了!”
D.在图形平移过程中,图形上可能会有不动点
2.如图,已知△ABC,画出△ABC沿 PQ方向平移
2cm后的△A′B′C′.
3.如图⑴,两块完全重合的正方形纸片,如果上面的一块统正方形的中心O作0○~90o的
旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n的关系的图象大致是图⑵中的()
(图1)(图2)
4.如图,在方格纸上,有两个形状、大小一样的三角形,请指出如何运用轴对称、平移、
旋转这三种运动,将方格中的△ABC重合到△DEF上.
5.如图是跷跷板示意图,模板AB通过点O,且可以绕点O上下转动,如果∠OCA=90○,
∠CAO= 25○,
(1)画出在空中划过的线;
(2)上下最多可以转动多少角度?
三:【课后训练】
1.将△ABC平移10cm,得∠EFG,如果∠ABC=52○,则∠EFG=_____.BF=_____.
2.平移不改变图形的________,只改变图形的位置。
故此若将线段AB向右平移3cm,得
到线段CD,如果AB=5㎝,则 CD=___________
3.下列关于旋转和平移的说法正确的是()
A.旋转使图形的形状发生改变
B.由旋转得到的图形一定可以通过平移得到
C.平移与旋转的共同之处是改变图形的位置和大小
D.对应点到旋转中心距离相等
4.如图,正方形ABCD可以看成由三角形______旋转而成的,其旋转
中心为______点,旋转角度依次为________,________,________.
5.如图,△ABC是直角三角形,B C是斜边,将△ABP绕点A逆时
针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度为()
. D.4
A.3 B.
6.△ABC是等腰直角三角形,如图,AB=AC,∠BAC=90°,
D是BC上一点,△ACD经过旋转到达△ABE的位置,则
其旋转角的度数为()
A.90° B.120° C.60° D.45°
7.如图,先将方格纸中“猫头”分别向左平移6格、12格,然后分析所画三个图案的关
系.
8.如图,已知∠AOB,要求把其往正东方向平移3cm,要求留画痕,写作法
.
9.已知边长为 1个单位的等边三角形ABC,
(1)将这个三角形绕它的顶点C按顺时针方向旋转30○作出这个图形;
(2)再将已知三角形分别按顺时针方向旋转60○、90○、120○,作出这些图形.
10.如图,在△ABC中,AB=AC,∠BAC=40°,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,请你用对称和旋转的知识回答下列问题:
(l)△ADE和△DFA关于直线AD对称吗?为什么?
(2)把△BDE绕点D顺时针旋转160○后能否与△CDF重合?为什么?
(3)把△BDE绕点D旋转多少度后,此时的△BDE和△CDF关于直线BC对称?。