历年考研数学三真题及答案解析
- 格式:doc
- 大小:7.77 MB
- 文档页数:61
考研数学三(概率论与数理统计)历年真题试卷汇编15(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2002年] 设X1和X2是两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和.f2(x),分布函数分别为F1(x)和F2(x),则( ).A.f1(x)+f2(x)必为某一随机变量的概率密度B.F1(x)F2(x)必为某一随机变量的分布函数C.F1(x)+F2(x)必为某一随机变量的分布函数D.f1(x)f2(x)必为某一随机变量的概率密度正确答案:B解析:解一由命题3.2.1.2知,仅(B)入选.解二F1(x)F2(x)=P(X1≤x)P(X2≤x)=P(X1≤x,X2≤x).取X=max{X1,X2),并由于P(X1≤x,X2≤x)=P(max{X1,X2)≤x),则由定义可知,F1(x)F2(x)必为随机变量X=max{X1,X2}的分布函数.仅(B)入选.解三因故(A)不正确.又故(C)错误.取Xi在区间[0,2]上服从均匀分布,则于是有因而(D)也不成立.仅(B)入选.注:命题3.2.1.2 若F1(x),F2(x),…,Fn(x)分别是随机变量X1,X2,…,Xn的分布函数,则也是分布函数,且是随机变量max{X1,X2,…,X2)的分布函数.知识模块:概率论与数理统计2.[2011年] 设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是( ).A.f1(x)f2(x)B.2f2(x)F1(x)C.f1(x)F2(x)D.f1(x)F2(x)+f2(x)F1(x)正确答案:D解析:解一因f1(x),f2(x),F1(x),F2(x)分别为随机变量的密度函数与分布函数,故f1(x)≥0,f2(x)≥0,0≤F1(x)≤1,0≤F2(x)≤1,所以f1(x)F2(x)+f2(x)F1(x)≥0.而故f1(x)F2(x)+f2(x)F1(x)为概率密度.仅(D)入选.解二由题设有则f1(x)F2(x)+f2(x)F1(x)=F1’(x)F2(x)+F1(x)F2’(x)=(F1(x)F2(x))’.因F1(x)F2(x)为随机变量max{X1,X2)的分布函数(见命题3.2.1.2),故其导数f1(x)F2(x)+f2(x)F1(x)必为随机变量max{X1,X2}的概率密度.仅(D)入选.注:命题3.2.1.2 若F1(x),F2(x),…,Fn(x)分别是随机变量X1,X2,…,Xn的分布函数,则也是分布函数,且是随机变量max{X1,X2,…,X2)的分布函数.知识模块:概率论与数理统计3.[2018年] 设随机变量X的概率密度f(x)满足f(1+x)=f(1-x),且则P{X ≤0}=( ).A.0.2B.0.3C.0.4D.0.5正确答案:A解析:因为f(1+x)=f(1-x),所以f(x)的图形关于x=1对称,因此P(x≤0)=P(x≥2).又因为所以P(x≤0)+P(x≥2)=2P(x≤0)=1-0.6=0.4,从而P(x≤0)=0.2,故选(A).知识模块:概率论与数理统计4.[2010年] 设随机变量X的分布函数则P(X=1)=( ).A.0B.1/2C.1/2-e-1D.1-e-1正确答案:C解析:因P(X=1)=P(X≤1)-P(X<1)=F(1)-F(1-0),而故P(X=1)=1-e-1-1/2=1/2-e-1.仅(C)入选.知识模块:概率论与数理统计5.[2013年] 设X1,X2,X3是随机变量,且X1~N(0,1),X2~N(0,22),X3~N(5,32),pi=P{-2≤Xi≤2)(i=1,2,3),则( ).A.p1>p2>p3B.p2>p1>p3。
考研数学三(线性代数)历年真题试卷汇编3(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(14年)行列式【】A.(ad-bc)2B.-(ad-bc)2C.a2d2-b2c2D.b2c2-a2d2正确答案:B解析:按第1列展开,得所求行列式D等于D==-ad(ad-bc)+bc(ad-bc)=-(ad-bc)2 知识模块:线性代数2.(89年)设A和B都是n×n矩阵,则必有【】A.|A+B|=|A|+|B|B.AB=BAC.|AB|=|BA|D.(A+B)-1=A-1+B-1正确答案:C 涉及知识点:线性代数3.(94年)设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则【】A.r>r1.B.r<r1.C.r=r1.D.r与r1的关系依C而定.正确答案:C解析:因为,用可逆矩阵C右乘矩阵A相当于对A施行若干次初等列变换,而初等变换不改变矩阵的秩,故有r(AC)=r(A).知识模块:线性代数4.(96年)设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则【】A.(A*)*=|A|n-1AB.(A*)*=|A|n+1AC.(A*)*=|A|n-2AD.(A*)*=|A|n+2A正确答案:C解析:由A*=|A|A-1,得(A*)*=|A*|(A*)-1,又|A*|=|A|n-1,故(A*)*=|A|n-1(|A|A-1)-1=|A|n-1A=|A|n-2A.故C正确.知识模块:线性代数5.(97年)设A、B为同阶可逆矩阵,则【】A.AB=BA.B.存在可逆矩阵P,使P-1AP=B.C.存在可逆矩阵C,使CTAC=B.D.存在可逆矩阵P和Q,使PAQ=B.正确答案:D解析:因为,方阵A可逆A与同阶单位阵E行等价,即存在可逆矩阵P,使PA=E.同理,由于B可逆,存在可逆矩阵M,使MB=E.故有PA=MB,PAM-1=B,记M-1=Q,则P、Q可逆,使PAQ=B.于是知D正确.知识模块:线性代数6.(98年)设n(n≥3)阶矩阵A=的秩为n-1,则a必为【】A.1B.C.-1D.正确答案:B解析:因为r(A)=n-1<n,故必有|A|=0,而因此,或者a=,或者a=1.显然,当a=1时,有r(A)=1<n-1,所以,有a=,而且当a=时,A 的左上角的n-1阶子式等于,可知此时确有r(A)=n一1,故选项B正确.知识模块:线性代数7.(01年) 其中A可逆,则B-1等于【】A.A-1P1P2B.P1A-1P2C.P1P2A-1D.P2A-1P1正确答案:C解析:矩阵B是经A的列重排后所得的矩阵,由初等列变换与初等方阵的关系,有B=AP2P1,故B-1=P1-1P2-1A-1,而P1-1=P1,P2-1=P2,故有B-1=P1P2A-1.知识模块:线性代数8.(03年)设三阶矩阵A=,若A的伴随矩阵的秩等于1,则必有【】A.a=b或a+2b=0.B.a=b或a+2b≠0.C.a≠b且a+2b=0.D.a≠b且a+2b≠0.正确答案:C 涉及知识点:线性代数9.(04年)设n阶矩阵A与B等价,则必有【】A.当|A|=a(a≠0)时,|B|=a.B.当|A|=a(a≠0)时,|B|=-a.C.当|A|≠0时,|B|=0.D.当|A|=0时,|B|=0.正确答案:D解析:A与B等价是指A可经若干次初等变换化成B.如果对A分别施行一次第1、2、3种初等变换得到方阵B,则由行列式的性质知,依次有|B|=-|A|,|B|=k|A|(常数k≠0),|B|=|A|.可见,经初等变换后,方阵的行列式等于零或者不等于零的事实不会改变,但在不等于零时,行列式的值可能改变.因此,只有D正确.知识模块:线性代数10.(05年)设矩阵A=(aij)3×3满足A*=AT,其中A*为A的伴随矩阵,A*为A的转置矩阵.若a11,a12,a13为三个相等的正数,则a11为【】A.B.3C.D.正确答案:A解析:由题设条件A*=AT,即其中Aij为|A|中元素aij的代数余子式(i,j=1,2,3),得aij=Aij(i,j=1,2,3),故有再从AT=A*两端取行列式,得|A|=|AT|=|A*|=|A|2,即|A|(1-|A|)=0 由此得|A|=1.所以,有知识模块:线性代数11.(06年)设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则【】A.C=p-1AP.B.C=PAP-1.C.C=PTAP.D.C=PAPT.正确答案:B解析:将单位矩阵E的第2行加到第1行即得初等矩阵P,由初等变换与初等矩阵的关系,有B=PA.令矩阵则将E的第1列的-1倍加到第2列即得矩阵Q,于是有C=BQ,从而有C=PAQ.由于所以,C=PAQ=PAP-1,只有选项B正确.知识模块:线性代数填空题12.(88年)=_______.正确答案:-3解析:把行列式的各行都加到第1行,得知识模块:线性代数13.(16年)行列式=_______.正确答案:λ4+λ3+2λ2+3λ+4解析:按第1列展开,得行列式为知识模块:线性代数14.(88年)设矩阵A=,则A-1=_______.正确答案:解析:利用初等行变换法:故A-1=A.知识模块:线性代数15.(91年)设A和B为可逆矩阵,X=为分块矩阵,则X-1=_______.正确答案:解析:设A、B分别为m阶、n阶可逆方阵,设其中X12,X21分别为m阶、n阶方阵,则有XX-1=Em+n,即由分块矩阵的乘法,得AX21=Em,AX22=0,BX11=0,BX12=En 因为A、B均为可逆矩阵,所以解得X21=A-1,X22=0,X11=0,X12=B-1 于是得知识模块:线性代数16.(92年)设A为m阶方阵,B为n阶方阵,且|A|=a,|B|=b,C =,则|C|=_______.正确答案:(-1)mnab解析:从[O A]的第m行开始,依次将[O A]的每一行作,z次相邻两行的交换,把它移到[B O]的下边去,则经mn次相邻两行的交换,就将[O A]移到了[B O]的下边,因此有知识模块:线性代数17.(93年)设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_______.正确答案:0解析:因为r(A4×4)=2,即A中非零子式的最高阶数为2,故A的3阶子式全为0,即A的每个元素的余子式全为0,从而每个元素的代数余子式全为0,故A*=O,从而有r(A*)=0.知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三(微积分)历年真题试卷汇编15(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2005年)当a取值为( )时,函数f(x)=2x3一9x2+12x—a恰有两个不同的零点。
A.2。
B.4。
C.6。
D.8。
正确答案:B解析:由f’(x)=6x2一18x+12=6(x一1)(x一2),知可能极值点为x=1,x=2,当x<1和x>2时,函数单调增加,1<x<2时,函数单调减小,且f(1)=5一a,f(2)=4一a。
可见当a=4时,f(1)=1>0,且=一∞,由单调性和零点存在性定理可知,函数在(-∞,1)上有唯一的零点,而此时f(2)=0,在(1,2)和(2,+∞)上无零点,因此a=4时,f(x)恰好有两个零点。
故应选B。
知识模块:微积分2.(2001年)设函数f(x)的导数在x=a处连续,又,则( )A.x=a是f(x)的极小值点。
B.x=a是f(x)的极大值点。
C.(a,f(a))是曲线y=f(x)的拐点。
D.x=a不是f(x)的极值点,(a,f(a))也不是曲线y=f(x)的拐点。
正确答案:B解析:又函数f(x)的导数在x=a处连续,根据函数在某点连续的定义,左极限等于右极限且等于函数在该点的值,所以f’(a)=0,于是即f’(a)=0,f”(a)=一1<0,根据判定极值的第二充分条件知x=a是f(x)的极大值点,因此,正确选项为B。
知识模块:微积分3.(2004年)设f(x)=|x(1-x)|,则( )A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x)的拐点。
B.x=0不是f(x)的极值点,但(0,0)是曲线y=f(x)的拐点。
C.x=0是f(x)的极值点,且(O,O)是曲线y=f(x)的拐点。
D.x=0不是f(x)的极值点,(0,0)也不是曲线y=f(x)的拐点。
正确答案:C解析:令φ(x)=x(x一1),则φ(x)=是以直线x=为对称轴,顶点坐标为开口向上的一条抛物线,与x轴相交的两点坐标为(0,0),(1,0),f(x)=|φ(x)|的图形如图。
考研数学三(概率论与数理统计)历年真题试卷汇编12(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.对任意两个随机变量X和Y,若E(XY)=E(X).E(Y),则A.D(XY)=D(X).D(Y).B.D(X+Y)=D(X)+D(Y).C.X与Y独立.D.X与Y不独立.正确答案:B解析:∵D(X+Y)=D(X)+D(Y)+2[E(XY)-E(X)E(Y)],可见选项B与E(XY)=E(X)E(Y)是等价的.知识模块:概率论与数理统计2.设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然A.不独立.B.独立.C.相关系数不为零.D.相关系数为零.正确答案:D解析:∵X与Y同分布,∴DX=DY 得cov(U,V)=cov(X-Y,X+Y)=cov(X,X)+cov(X,Y)~cov(Y.X)-cov(Y,Y) =DX-DY==0 ∴相关系数ρ=0 知识模块:概率论与数理统计3.将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于A.-1B.0C.D.1正确答案:A解析:∵X+Y=n,∴Y=n-X 故DY=D(n-X)=DX,cov(X,Y)=cov(X,n-X)=-cov(X.X)=-DX.∴X和Y的相关系数ρ(X,Y)==-1.知识模块:概率论与数理统计4.设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(χ),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX|Y(χ|y)为A.fX(χ).B.fY(y).C.fX(χ)fY(y).D.正确答案:A解析:由(X,Y)服从二维正态分布,且X与Y不相关.故X与Y独立,∴(X,Y)的概率密度f(χ,y)=fX(χ).fY(y),(χ,y)∈R2.得fX|Y(X|Y)==fX(χ) 故选A.知识模块:概率论与数理统计填空题5.设随机变量Xij(i,j=1,2,…,n;n≥2)独立同分布,EXij=2,则行列式的数学期望EY=_______.正确答案:0解析:由n阶行列式的定义知Y=,p1,…,pn为(1,…,n)的排列,τ(p1p2…pn)为排列p1p2…pn的逆序数.而Xij(i,j=1,2,…,n)独立同分布且EXij=2,故知识模块:概率论与数理统计6.设随机变量X在区间[-1,2]上服从均匀分布,随机变量则方差DY=_______.正确答案:解析:由题意,X的概率密度为:则P(X>0)=∫0+∞f(χ)dχ=P(X <0)=∫-∞0=,而P(X=0)=0 故EY=1.P(X>0)+0.P(X=0)+(-1)P(x <0)=E(Y2)=12.P(X>0)+02.P(X=0)+(-1)2P(X<0)==1 ∴DY=E(Y)2-(EY)21-知识模块:概率论与数理统计7.设随机变量X和Y的联合概率分布为则X2和Y2的协方差cov(X2,Y2)=_______.正确答案:-0.02解析:E(X2Y2)=02×(-1)2×0.07+02×02×0.18+02×12×0.15+12×(-1)2×0.08+12×02×0.32+12×12×0.20=0.28 而关于X的边缘分布律为:关于Y的边缘分布律为:∴EX2=02×0.4+12×0.6=0.6,EY2=(-1)2×0.15+02×0.5+12×0.35=0.5 故cov(X2,Y2)=E(X2Y2)-EX2.EY2=0.28-0.6×0.5=-0.02.知识模块:概率论与数理统计8.设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y与Z的相关系数为_______.正确答案:0.9解析:因为D(Z)=D(X-0.4)=DX,且cov(Y,Z)=cov(Y,X-0.4)=cov(Y,X)=cov(X,Y) 故ρ(Y,Z)==ρ(X,Y)=0.9.知识模块:概率论与数理统计9.设随机变量X服从参数为λ的指数分布,则P{X>}=_______.正确答案:解析:由题意,DX=,而X的概率密度为故=e-1.知识模块:概率论与数理统计10.设随机变量服从参数为1的泊松分布,则P{X=EX2}=_______.正确答案:解析:由EX2=DX+(EX)2=1+12=2,故P{X=EX2}=P{X=2}=知识模块:概率论与数理统计11.设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=_______.正确答案:μ3+μσ2解析:由题意知X与Y独立同分布,且X~N(μ,σ2),解:由题意知X与Y独立同分布,且X~N(μ,σ2),故EX=μ,E(Y2)=DY+(EY)2=σ2+μ2 ∴E(XY2)=EX.E(Y2)=μ(σ2+μ2)=μ3+μσ2 知识模块:概率论与数理统计12.设随机变量X服从标准正态分布N(0,1),则E(Xe2X)=_______.正确答案:2e2解析:E(Xe2X)=而-χ2+2χ=-(χ2-4χ+4-4)=-(χ-2)2+2 ∴E(Xe2X)==2e2 知识模块:概率论与数理统计13.设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=_______.正确答案:解析:由题意可知X~N(1,1),Y~N(0,1),且X与Y独立.可得X-1~N(0,1),于是P(Y>0)=P(Y<0)=,P(X-1>0)=P(X-1<0)=,可得P(XY -Y<0)=P{Y(X-1)<0}=P{Y>0,X-1<0}+P{Y<0,X-1>0} =P(Y >0)P(X-1<0)+P(Y<0)P(X-1>0) =知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三(概率论与数理统计)历年真题试卷汇编5(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(03年)将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件【】A.A1,A2,A3相互独立.B.A2,A3,A4相互独立.C.A1,A2,A3两两独立.D.A2,A3,A4两两独立.正确答案:C 涉及知识点:概率论与数理统计2.(07年)某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<P<1),则此人第4次射击恰好第2次命中目标的概率为【】A.3p(1-p)2.B.6p(1-p)2.C.3p2(1-p)2.D.6p2(1-p)2.正确答案:C解析:P{第4次射击恰好第2次命中目标}=P{前3次射击恰中1枪,第4次射击命中目标} =P{前3次射击恰中1枪}.P{第4次射击命中目标}=C31p(1-p)2.P=3p2(1-p)2 知识模块:概率论与数理统计3.(09年)设事件A与事件B互不相容,则【】A.P()=0.B.P(AB)=P(A)P(B).C.P(A)=1-P(B).D.P()-1.正确答案:D 涉及知识点:概率论与数理统计4.(14年)设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3,则P(B-A)=【】A.0.1B.0.2C.0.3D.0.4正确答案:B解析:∵A与B独立,∴P(AB)=P(A)P(B).故0.3=P(A-B)=P(A)-P(AB)=P(A)-P(A)P(B) =P(A)[1-P(B)]=P(A)(1-0.5)=0.5(P(A) 得P(A)==06,P(B-A)=P(B)-P(AB)=P(B)-P(A)P(B)=0.5-0.6×0.5=0.2.知识模块:概率论与数理统计5.(15年)若A,B为任意两个随机事件,则【】A.P(AB)≤P(A)P(B).B.P(AB)≥P(A)P(B).C.P(AB)≤.D.P(AB)≥.正确答案:C解析:由ABA,ABB得P(AB)≤P(A),P(AB)≤P(B),两式相加即得:P(AB)≤.知识模块:概率论与数理统计6.(16年)设A,B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则【】A.P()=1.B.P(A|)=0.C.P(A∪B)=1.D.P(B|A)=1.正确答案:A解析:由1=P(A|B)=,有P(B)=P(AB) 于是知识模块:概率论与数理统计7.(90年)设随机变量X和Y相互独立,其概率分布为则下列式子正确的是:【】A.X-YB.P{X-Y}=0C.P{X-Y}=D.P{X=Y}=1正确答案:C解析:P(X=Y)=P(X=-1,Y=-1)+P(X=1,Y=1) =P(X=-1)P(Y =-1)+P(X=1)P(Y=1) =知识模块:概率论与数理统计8.(93年)设随机变量X的密度函数为φ(χ),且φ(-χ)-φ(χ),F(χ)为X的分布函数,则对任意实数a,有【】A.F(-a)=1-∫0aφ(χ)dχB.F(-a)=-∫0aφ(χ)dχC.F(-a)=F(a)D.F(-a)=2F(a)-1正确答案:B解析:由概率密度的性质和已知,可得故选B.知识模块:概率论与数理统计9.(95年)设随机变量X~N(μ,σ2),则随着σ的增大,概率P(|X-μ|<σ) 【】A.单调增大.B.单调减小.C.保持不变.D.增减不定.正确答案:C解析:由已知X~N(μ,σ),得~N(0,1) 故P{|X-μ|<σ}==(1)Ф-Ф(-1) 故选C.知识模块:概率论与数理统计填空题10.(89年)设随机变量X的分布函数为则A=_______,P{|X|<}=_______.正确答案:1;解析:∵分布函数是右连续的,故得1=Asin ∴A=1 这时,F(χ)在(-∞,+∞)上都连续,于是知识模块:概率论与数理统计11.(91年)设随机变最X的分布函数为则X的概率分布为_______.正确答案:解析:F(χ)为一阶梯状函数,则X可能取的值为F(χ)的跳跃点:-1,1,3.P(X=-1)=F(-1)-F(-1-0)=0.4 P(X=1)=F(1)-F(1-0)=0.8-0.4=0.4 P(X=3)=F(3)-F(3-0)=1-0.8=0.2 知识模块:概率论与数理统计12.(94年)设随机变量X的概率密度为以Y表示对X的三次独立重复观察中事件{X≤}出现的次数P{Y=2}=_______.正确答案:解析:由题意,Y~B(3,p).其中p=故知识模块:概率论与数理统计13.(00年)设随机变量X的概率密度为若k使得P{X≥k}=,则k的取值范围是_______.正确答案:[1,3]解析:∵P(X≥k)=∫k+∞f(χ)dχ.可见:若k≤0,则P(X≥k)=1 若0<k<1,则P(X≥k)=若k>6,则P(X≥k)=0 若3<k≤6,则P(X ≥k)=若1≤k≤3,则P(X≥k)=综上,可知K∈[1,3].知识模块:概率论与数理统计14.(05年)从数1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P(Y=2}=_______.正确答案:解析:由题意,X的概率分布为而P(Y=2|X=1)=0,P(Y=2|X=2)=,P(Y=2|X=3)=,P(Y=2|X=4)=,故由全概率公式得知识模块:概率论与数理统计15.(05年)设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=_______,b=_______.正确答案:0.4;0.1.解析:由题意知0.4+a+b+0.1=1,∴a+b=0.5 而P{X=0}=0.4+a,P{X+Y=1}=P{X=0,Y=1}+P{X=1,Y=0}=a+b=0.5,P{X =0,X+Y=1}=P{X=0,Y=1}=a 由P{X=0,X+Y=1)=P{X=0)P{X +Y=1} ∴a=(0.4+a)0.5,得a=0.4,从而b=0.1.知识模块:概率论与数理统计16.(06年)设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max(X,Y)≤1}=_______.正确答案:解析:由题意知X与Y的概率密度均为:则P(X≤1}=P{Y≤1}=∫-∞1f(χ)dχ=故P{max(X,Y)≤1}=P{X≤1,y≤1}=P{X≤1}P{y≤1}=知识模块:概率论与数理统计17.(99年)设随机变量Xij(i=1,2,…,n;n≥2)独立同分布,Eij=2,则行列式Y=的数学期望EY=_______.正确答案:0解析:由n阶行列式的定义知Y=,P1,…,Pn为(1,…,n)的排列,τ(p1p2…pn)为排列p1p2…pn的逆序数.而Xij(i,j=1,2,…,n)独立同分布且EXij=2,故知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。
2024年全国硕士研究生入学统一考试数学(三)试题考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)已知函数21()lim 1n n x f x nx →∞+=+,则( ) 【答案】D(2)积分sin a k a x dx π+∫( )【答案】B (3)交换积分次序12sin 6(,)x dx f x y dy ππ∫∫则( ) 【答案】A(4)已知0ln(2)n n n x a x ∞=+=∑,则20n n na ∞==∑( ) (A )16−(B )13−(C )16(D )13【答案】A (5)设二次型在正交变换下的标准型为222123123(,,)23f x x x y y y =−+,则( ) 【答案】C (行列式为-6,迹为2)(6)【答案】C (7)【答案】C(30,2a a ==)(8)3[()]E X Ex −=( )【答案】0(9)【答案】B (2112p p >>)(10)设随机变量,X Y 相互独立,且均服从参数为λ的指数分布,令Z X Y =−,则下列随机变量与Z 同分布的是( )(A )X Y +(B )2X Y+(C )2X (D )X【答案】D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)【答案】3(12)422534x x +∞=+−∫________ 【答案】1ln 328π−(13)函数324(,)2961224f x y x x y x y =−−++的极值点是________【答案】(1,1)(14)【答案】50(15)【答案】16(16)【答案】23三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)已知区域D 是第一象限内的有界区域,它由11,3,,333xy xy y x y x ====围成, 计算(1)Dx y dxdy +−∫∫ 【答案】8ln 33(18)(本题满分12分)已知(,)z z x y =由方程2ln(1)0x z e y z +++=确定,求2222(0,0)z z x y ∂∂+ ∂∂ 【答案】12ln 2−−(19)(本题满分12分)已知0t >,曲线2x y xe −=与,2x t x t ==及x 轴所围的面积为()S t ,求()S t 的最大值 【答案】ln 231664+ (20)(本题满分12分)设函数()f x 有2阶导数,(0)(1)f f ′′=,()1f x ′′≤(1)当(0,1)x ∈时,(1)()(0)(1)(1)2x x f x f x f x −−−−≤(2)10(0)(1)1()212f f f x dx +−≤∫ 【答案】(1)泰勒公式展开(2)分部积分或泰勒公式(21)(本题满分12分)【答案】(1)Ax α=是Bx β=的解 (2)1a =(22)(本题满分12分)设总体X 服从[0,]θ上的均匀分布,12,,,n X X X 为总体的简单随机样本,记()12max{,,,}n n X X X X = ,()c n T cX =(1)求c ,使得()c E T θ=(2)记2()()c h c E T θθ−,求c ,使得()h c 最小【答案】(1)1n c n +=(2)21n c n +=+。
考研数学三(线性代数)历年真题试卷汇编4(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(99年)设n阶矩阵A与B相似,E为n阶单位矩阵,则【】A.λE-A=λE-B.B.A与B有相同的特征值和特征向量.C.A和B都相似于一个对角矩阵.D.对任意常数t,tE-A与tE-B相似正确答案:D解析:由已知条件,存在可逆矩阵P,使得P-1AP=B 所以P-1(tE -A)P=tE-P-1AP=tE-B 这说明tE-A与tE-B相似,故D正确.知识模块:线性代数2.(02年)设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是【】A.P-1αB.PTαC.PαD.(P-1)Tα正确答案:B解析:由条件有AT=A,Aα=λα,故有(P-1AP)T(PTα)=PTA(PT)-1PTα=PTAα=PTλα=λ(PTα) 因为PTa≠0(否则PTα=0,两端左乘(PT)-1,得α=0,这与特征向量必为非零向量矛盾),故由特征值与特征向量的定义,即知非零向量PTα是方阵(PTAP)T的属于特征值λ的特征向量.因此,B正确.知识模块:线性代数3.(05年)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是【】A.λ1=0B.λ2=0C.λ1≠0D.λ2≠0正确答案:D解析:由条件知α1,α2线性无关.向量组α1,A(α1+α2),即向量组α1,λ1α1+λ2α2,显然等价于向量组α1,λ2α2,当λ2=0时,α1,λ2α2线性相关,当λ2≠0时,α1,λ2α2线性无关,故向量组α1,A(α1+α2)线性无关向量组α1,λ2α2线性无关≠0,只有选项D正确.知识模块:线性代数4.(10年)设A为4阶实对称矩阵,且A2+A=O.若A的秩为3,则A 相似于【】A.B.C.D.正确答案:D解析:设A按列分块为A=[α1 α2 α3 α4],由r(A)=3,知A的列向量组的极大无关组含3个向量,不妨设α1,α2,α3是A的列向量组的极大无关组.由于A2=-A,即A[α1 α2 α3 α4]=-[α1 α2 α3 α4],即[Aα1 Aα2 Aα3 Aα4]=[-α1-α2-α3-α4],得Aαj=-αj,j=2,3,4.由此可知-1是A的特征值值且α1,α2,α3为对应的3个线性无关的特征向量,故-1至少是A的3重特征值.而r(A)=3<4,知0也是A的一个特征值.于是知A的全部特征值为:-1,-1,-1,0,且每个特征值对应的线性无关特征向量个数正好等于该特征值的重数,故A相似于对角矩阵D =diag(-1,-1,-1,0),故选项D正确.知识模块:线性代数5.(13年)矩阵相似的充分必要条件为【】A.a=0,b=2.B.a=0,b为任意常数.C.a=2,b=0.D.a=2,b为任意常数.正确答案:B解析:B为对角矩阵,B的特征值为其主对角线元素2,6,0.若A与B相似,则由相似矩阵有相同的特征值,知2为A的一个特征值,从而有由此得a=0.当a=0时,矩阵A的特征多项式为由此得A的全部特征值为2,b,0.以下可分两种情形:若b为任意实数,则A为实对称矩阵,由于实对称矩阵必相似于对角矩阵,且对角矩阵的主对角线元素为该实对称矩阵的全部特征值,所以此时A必相似于B.综上可知,A与B相似的充分必要条件为a=0,b为任意常数.所以只有选项B正确.知识模块:线性代数6.(16年)设A,B是可逆矩阵,且A与B相似,则下列结论错误的是【】A.AT与BT相似.B.A-1与B-1相似.C.A+AT与B+BT相似.D.A+A-1与B+B-1相似.正确答案:C解析:由已知条件知,存在可逆矩阵P,使得P-1AP=B……(1).由(1)两端取转置,得PTAT(PT)-1=BT,可见AT与BT相似,因此选项A正确;由(1)两端取逆矩阵,得P-1A-1P=B-1……(2),可见A-1与B-1相似,因此选项B 正确;将(1)与(2)相加,得P-1(A+A-1)P=B+B-1,可见A+A-1与B+B-1相似,因此选项D正确.故只有选项C错误.知识模块:线性代数7.(07年)设矩阵,则A与B 【】A.合同,且相似.B.合同,但不相似.C.不合同,但相似.D.既不合同,也不相似.正确答案:B解析:由A的特征方程得A的全部特征值为λ1=λ2=3,λ3=0,由此知A不相似于对角矩阵B(因为A的相似对角矩阵的主对角线元素必是A的全部特征值3,3,0),但由A的特征值知3元二次型f(χ1,χ2,χ3)=χTAχ的秩及正惯性指数均为(二次型f=χTAχ经适当的正交变换可化成标准形f=3y12+3y22,再经可逆线性变换可化成规范形f=z12+z22,而f的矩阵A与f 的规范形的矩阵B=diag(1,1,0)是合同的).知识模块:线性代数8.(08年)设A=则在实数域上与A合同的矩阵为【】A.B.C.D.正确答案:D解析:记(D)中的矩阵为D,则由知A与D有相同的特征值3与-1,它们又都是实对称矩阵,因此存在正交矩阵P与Q,使PTAP==QTDQ,QPTAPQT=D,或(PQT)A(PQT)=D,其中PQT可逆,所以A与D合同.知识模块:线性代数9.(15年)设二次型f(χ1,χ2,χ3)在正交变换χ=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(χ1,χ2,χ3)在正交变换χ=Qy,下的标准形为【】A.2y12-y22+y32.B.2y12+y22-y32.C.2y12-y22-y32.D.2y12+y22+y32.正确答案:A解析:设二次型的矩阵为A,则由题意知矩阵P的列向量e1,e2,e3是矩阵A的标准正交的特征向量.对应的特征值依次是2,1,-1.即有Ae1=2e1,Ae2=2e2,Ae3=2e3 从而有AQ=a(e1,-e3,e2)=(Ae1,-Ae3,Ae2)=(2e1,-(-e3),e2) =(e1,-e3,e2) 矩阵Q的列向量e1,-e3,e2仍是A的标准正交的特征向量,对应的特征值依次是2,-1,1.矩阵Q是正交矩阵,有Q-1=QT,上式两端左乘Q-1,得Q-1AQ=QTAQ=从而知厂在正交变换χ=Py下的标准形为f=2y12-y22+y32.于是选A.知识模块:线性代数10.(16年)设二次型f(χ1,χ2,χ3)=a(χ12+χ22+χ32)+2χ1χ2+2χ2χ3+2χ1χ3的正、负惯性指数分别为1,2,则【】A.a>1B.a<-2C.-2<a<1D.a=1或a=-2正确答案:C解析:先来求二次型的矩阵A的特征值,由得A的全部特征值为λ1=λ2=a-1,λ3=a+2,由题设条件知有两个特征值小于零,有一个特征值大于零,所以a-1<0<a+2,由此得-2<a<1,故只有选项C正确.知识模块:线性代数填空题11.(04年)二次型f(χ1,χ2,χ3)=(χ1+χ2)2+(χ2-χ3)2+(χ3+χ1)2的秩为_______.正确答案:2解析:f的矩阵A=的秩为2,所以f的秩为2.知识模块:线性代数12.(11年)设二次型f(χ1,χ2,χ3)=χTAχ的秩为1,A的各行元素之和为3,则f在正交变换χ=Qy下的标准形为_______.正确答案:3y12解析:由f的秩为1,知f的矩阵A只有一个不为零的特征值,A的另外两个特征值均为零.再由A的各行元素之和都等于3,即,知A的全部特征值为λ1=3,λ2=λ3=0.于是f经正交变换化成的标准形为f=λ1y12+λ2y22+λ3y32=3y12.知识模块:线性代数13.(14年)设二次型f(χ1,χ2,χ3)=χ12-χ22+2aχ1χ3+4χ2χ3的负惯性指数为1,则a的取值范围是_______.正确答案:[-2,2]解析:对f配方,可得f(χ1+aχ3)2-(χ2-2χ3)2+(4-a2)χ32 于是f可经可逆线性变换化成标准形f=z12-z22+(4-a2)z32 若4-a2<0,则f的负惯性指数为2,不合题意;若4-a2≥0,则f的负惯性指数为1.因此,当且仅当4-a2≥0,即|a|≤2时,f的负惯性指数为1.知识模块:线性代数14.(07年)设矩阵A=,则A3的秩为_______.正确答案:1解析:利用矩阵乘法,容易计算得由于A3中非零子式的最高阶数为1,故由矩阵的秩的定义,即知r(A3)=1.知识模块:线性代数15.(09年)设α=(1,1,1)T,β=(1,0,k)T.若矩阵αβT相似于,则k=_______.正确答案:2解析:矩阵A=αβT=由A的特征方程得A的特征值为λ1=λ2=0,λ3=k+1.又由A与对角矩阵相似,知A的特征值为3,0,0.比较得k+1=3,所以k=2.知识模块:线性代数16.(97年)若二次型f(χ1,χ2,χ3)=2χ12+χ22+χ32+2χ1χ2+t χ2χ3是正定的,则t的取值范围是_______.正确答案:解析:f的矩阵为因为,f正定甘A的顺序主子式全为正,显然A的1阶和2阶顺序主子式都大于零,故f正定知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三(概率论与数理统计)历年真题试卷汇编13(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设随机变量X~N(0,1),y~N(1,4),且相关系数ρXY=1,则A.P{Y=-2X-1}=1B.P{Y=2X-1}=1C.P{Y=-2X+1}=1D.P{Y=2X+1}=1正确答案:D解析:如果选项A或C成立,则应ρXY=1,矛盾;如果选项B成立,那么EY=2EX-1=-1,与本题中EY=1矛盾.只有选项D成立时,ρXY=1,EY=2EX+1=1,DY=4DX=4,符合题意,故选D.知识模块:概率论与数理统计2.设随机变量X与Y相互独立,且X~N(1,2),Y~N(1,4),则D(XY)=A.6.B.8.C.14.D.15.正确答案:C解析:由题意知:EX=1,DX=2,EY=1,DY=4,于是E(X2)=DX+(EX)2=2+12=3,E(Y2)=DY+(EY)2=4+12=5,注意到X2与y2是独立的,于是D(XY)=E(XY)2-E[(XY)]2 =E(X2Y2)-[EX.EY]2 =E(X2).EY2-(EX)2(EY)2 =3×5-12×12=14 故选C.知识模块:概率论与数理统计3.设”个随机变量X1,X2,…,Xn独立同分布,DX1=σ2,,则A.S是σ的无偏估计量.B.S是σ的最大似然估计量.C.S是σ的相合估计量(即一致估计量).D.S与相互独立.正确答案:C 涉及知识点:概率论与数理统计4.设一批零件的长度服从正态分布N(μ,σ2),其中μ,σ2均未知.现从中随机抽取16个零件,测得样本均值=20(cm),样本标准差s=1(cm),则μ的置信度为0.90的置信区间是A.(20-t0.05(16),20+t0.05(16))B.(20-t0.1(16),20+t0.1(16))C.(20-t0.05(15),20+t0.05(15))D.(20-t0.1(15),20+t0.1(15))正确答案:C 涉及知识点:概率论与数理统计填空题5.设随机变量X的概率分布为P{X=-2}=,P{X=1}=a,P(X=3}=b.若EX=0,则DX=_______.正确答案:解析:由题知:+a+b=1,0=EX=(-2)×+1×a+3×b=a+3b-1 联立得a=b=所以DX=E(X2)-(EX)2=E(X2)=(-2)2×.知识模块:概率论与数理统计6.设X为随机变量且EX=μ,DX=σ2.则由切比雪夫不等式,有P{|X-μ|≥3σ}≤_______.正确答案:解析:由题意及切比雪夫不等式,得:P{|X-μ|≥3σ}≤.知识模块:概率论与数理统计7.在天平上重复称量一重为a的物品.假设各次称量结果相互独立且服从正态分布N(a,0,2*).若以表示n次称量结果的算术平均值,则为使n的最小值应不小于自然数_______.P{|-a|<0.1}≥0.95正确答案:16解析:设第i次称量结果为Xi,i=1,2,…,n.由题意:,且X1,…,Xn独立同分布,X1~N(a,0.22).由题意得2Ф()-1≥0.95,∴Ф()≥0.075 查表得≥1.96,∴n≥4×(1.96)2=15.36 故n的最小值应不小于自然数16.知识模块:概率论与数理统计8.设随机变量X和Y的数学期望分别为一2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有P{|X+Y|≥6}≤_______.正确答案:解析:若记ξ=X+Y,则Eξ=EX+EY=-2+2=0,而Dξ=D(X ×Y)=DX+DY+2cov(X,Y)=DX+DY+2.ρ(χ,y) =1+4+2×(-0.5).=3 其中ρ(χ,y) 知识模块:概率论与数理统计9.设总体X的方差为1,根据来自X的容量为100的简单随机样本,测得样本均值为5.则X的数学期望的置信度近似等于0.95的置信区间为________.正确答案:(4.804,5.196) 涉及知识点:概率论与数理统计10.设由来自正恣总体X~N(μ,0.92)容量为9的简单随机样本,得样本均值=5.则未知参数μ的置信度为0.95的置信区间是_______.正确答案:(4.412,5.588) 涉及知识点:概率论与数理统计11.设总体X的概率密度为而X1,X2,…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为_______.正确答案:Xi-1-1解析:知识模块:概率论与数理统计12.设总体X的概率密度为f(χ)=e-|χ|(-∞<χ<+∞),X1,X2,…,Xn为总体X的简单随机样本,其样本方差为S2,则ES2_______.正确答案:2解析:EX=∫-∞+∞χf(χ)dχ=∫-∞+∞χ.e|-χ|dχ=0 DX =E(X2)-(EX)2=E(X2)=∫-∞+∞χ2f(χ)dχ=∫-∞+∞χ2.e|-χ|d χ=∫0+∞χ2e-χdχ=2 而E(S2)=DX,故ES2=2.知识模块:概率论与数理统计13.设X1,…,Xn是来自正态总体N(μ,σ2)的简单随机样本,其中参数μ,σ2未知.记则假设H0:μ=0的t检验使用的统计量t=_______.正确答案:解析:由题意可得:又有~χ2(n-1),且Q2与相互独立,故由t分布的构成得:当H0成立(即μ=0)时,成舍~t(n-1).故填知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三(线性代数)历年真题试卷汇编8(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.行列式=( )A.(ad一bc)2。
B.一(ad一bc)2。
C.a2d2一b2c2。
D.一a2d2+b2c2。
正确答案:B解析:由行列式的展开定理展开第一列。
=一ad(ad一bc)+bc(ad—bc)=一(ad一bc)2。
故选B。
知识模块:线性代数2.设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则( )A.E一A不可逆,E+A不可逆。
B.E—A不可逆,E+A可逆。
C.E—A可逆,E+A可逆。
D.E—A可逆,E+A不可逆。
正确答案:C解析:(E—A)(E+A+A2)=E一A3=E,(E+A)(E—A+A2)=E+A3=E。
故E—A,E+A均可逆。
知识模块:线性代数3.设α是n维单位列向量,E为n阶单位矩阵,则( )A.E一ααT不可逆。
B.E+ααT不可逆。
C.E+2ααT不可逆。
D.E一2ααT不可逆。
正确答案:A解析:由α是n维单位列向量可知(ααT)α=α(αTα)=α,且1≤r(ααT)≤r(α)=1,即1是矩阵ααT的特征值,且r(ααT)=1,所以ααT的特征值为0(n一1重)和1。
矩阵E一ααT的特征值为1(n一1重)和0,则E一ααT不可逆。
E+ααT的特征值为1(n一1重)和2,E+2ααT的特征值为1(n 一1重)和3,E一2ααT的特征值为1(n一1重)和一1,三者的矩阵行列式均不为零,因此均可逆。
不可逆的只有A选项。
知识模块:线性代数4.设矩阵A=(aij)3×3满足A*=AT,其中A*是A的伴随矩阵,AT为A 的转置矩阵。
若a11,a12,a13为三个相等的正数,则a11为( ) A.。
B.3。
C.。
D.。
正确答案:A解析:由A*=AT及AA*=A*A=|A|E,有aij=Aij,i,j=1,2,3,其中Aij,为aij的代数余子式,且AAT=|A|E→|A|2=|A|3→|A|=0或|A|=1。
且喜平常度,切忌神慌乱。
畅游题海后,金榜题君名。
考试在即,祝你成功。
2023年考研数学三真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上. 1. 已知函数(,)ln(|sin |)f x y y x y =+,则( ).A.(0,1)f x ∂∂不存在,(0,1)fy∂∂存在B.(0,1)f x ∂∂存在,(0,1)fy∂∂不存在C. (0,1)f x ∂∂存在,(0,1)fy∂∂存在D. (0,1)f x ∂∂不存在,(0,1)fy∂∂不存在【答案】A.【解析】由已知(,)ln(|sin |)f x y y x y =+,则(,1)ln(1|sin1|)f x x =+,(0,)ln f y y =.当0x >时,(,1)ln(1sin1)f x x =+,(0,1)0(,)d (,1)sin1d x f x y f x x x =∂==∂;当0x <时,(,1)ln(1sin1)f x x =-,(0,1)0(,)d (,1)sin1d x f x y f x x x =∂==-∂;所以(0,1)(,)f x y x ∂∂不存在.又(0,1)1(,)d (0,)1d y f x y f y y y=∂==∂,存在.故选A.2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3. 若0y ay by '''++=的通解在(,)-∞+∞上有界,则( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D.【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e(cos sin )22a x y x C x C x -=+;②若240a b ->,则通解为2212()eea a x x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.4. 设n n a b <,且1nn a∞=∑与1nn b∞=∑收敛,1nn a∞=∑绝对收敛是1nn b∞=∑绝对收敛的( ).A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分又非必要条件【解析】由已知条件可知1()nn n ba ∞=-∑为收敛的正项级数,进而1()n n n b a ∞=-∑绝对收敛.设1nn a∞=∑绝对收敛,则由n n n n n n n b b a a b a a =-+≤-+与比较判别法,得1nn b∞=∑绝对收玫;设nb∞∑绝对收敛,则由n n n n n n n a a b b b a b =-+≤-+与比较判别法,得1nn a∞=∑绝对收敛.故选A.5.,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A BC.****||||⎛⎫- ⎪⎝⎭B A B A OA BD.****|||⎛⎫- ⎪⎝⎭A B A B OB |A 【答案】B. 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O A B O O B O B O B O E OA B ,故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E AB O O B O B O A B 1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A .故选B.. 6.222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,211210||134(7)131143141λλλλλλλ---=--=+-----A E210(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.7.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ B. 35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C. 11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D. 15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D.【解析】设11223142k k k k =+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得T T T T 1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.8.设X 服从参数为1的泊松分布,则(|()|)E X E X -=( ).A.1eB.12C.2eD.1【答案】C.【解析】方法一:由已知可得,1e {}(0,1,2,)!P X k k k -===L ,()1E X =,故111100|1|(1)(|()|)(|1|)e e e e!!k k k k E X E X E X k k ∞∞----==---=-==++∑∑12=2e (1)eE X -+-=. 故选C.方法二:由于0e !k xk x k ∞==∑,于是1111e 1(1)!(1)!k k x k k x x x k x k x +∞∞==--==++∑∑于是 1121111e 1(1)e 1(1)!(1)!(1)!k k k x x k k k kx x x x x k k x k x x -+∞∞∞==='''⎛⎫⎛⎫⎛⎫---+==== ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∑∑∑. 由已知可得,1e {}(0,1,2,)!P X k k k -===L ,()1E X =,故 111(1)(|()|)(|1|)e e !k k E X E X E X k ∞--=--=-=+∑111=e e (1)!k k k ∞--=++∑1121(1)e 1=e e x x x x --=-++112e e e --=+=. 111(|()|)(||)[e ()]e ()1e E X E X E Y E Y E X ----==+=+-=.故选C.9.设12,,,n X X X L 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y L 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11ni i X X n ==∑,11m i i Y Y m ==∑,22111()1n i i S X X n ==--∑,22211()1m i i S Y Y m ==--∑,则( ) A. 2122(,)S F n m S : B. 2122(1,1)S F n m S --: C. 21222(,)S F n m S : D. 21222(1,1)S F n m S --: 【答案】D.【解析】由两样本相互独立可得212(1)n S σ-与222(1)2m S σ-相互独立,且 2212(1)(1)n S n χσ--:,2222(1)(1)2m S m χσ--:, 因此2122122222(1)(1)2(1,1)(1)(1)2n S n S F n m m S S m σσ--=----:,故选D.10. 已知总体X 服从正态分布2(,)N μσ,其中0σ>为未知参数,1X ,2X 为来自总体X的简单随机样本,记12ˆ||a X X σ=-,若µ()E σσ=,则a =( ).A.2B.2【答案】A.【解析】由与1X ,2X 为来自总体X 的简单随机样本,1X ,2X 相互独立,且21(,)X N μσ:,22(,)X N μσ:,因而212~(0,2)X X N σ-,令12Y X X =-,所以Y 的概率密度为2222()ey Y f y σ-⋅=,所以22222240(||)|ed 2ed y y E Y y y y σσ--+∞+∞⋅-∞===⎰⎰,由12ˆ()(||)E aE X X σσ=-=,即(||)aE Y a σ==,解得a =A.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.求极限211lim 2sincos x x x x x →∞⎛⎫--= ⎪⎝⎭____________. 【答案】23. 【解析】1220sin 2cos 11lim 2sincos limx tx t tt t x x x x t=→∞→--⎛⎫-- ⎪⎝⎭222230000sin 111cos sin 2limlimlim lim t t t t t ttt t t t t t t →→→→---=+=+1126=+ 23=. 12.已知函数(,)f x y 满足22d d d (,)x y y xf x y x y -=+,且(1,1)4f π=,则f =____________.【答案】3π. 【解析】由已知22(,)f x y y x x y ∂-=∂+,22(,)f x y xy x y ∂=∂+,则 22(,)d arctan ()y x f x y x y x y yϕ-==-++⎰, 所以22(,)()f x y xy y x yϕ∂'=+∂+,即()0y ϕ'=,()y C ϕ=, 从而(,)arctanxf x y C y=-+,又(1,1)4f π=,解得2C π=,故(,)arctan2x f x y yπ=-,arctan 233f ππ=-=.13.20(2)!nn x n ∞==∑____________.【答案】e e 2x x-+.【解析】令20()(2)!nn x S x n ∞==∑,则(0)1S =,且211()(21)!n n x S x n -∞='=-∑,(0)0S '=, 22210()()(22)!(2)!n nn n x x S x S x n n -∞∞==''===-∑∑,从而可得微分方程()()0S x S x ''-=,解得12()e e x xS x C C -=+,又(0)1S =,(0)0S '=,解得1212C C ==,故 20e e ()(2)!2n x xn x S x n -∞=+==∑. 14.某公司在t 时刻的资产为()f t ,则从0时刻到t 时刻的平均资产等于()f t t t-,假设()f t 连续且(0)0f =,则()f t =____________.【答案】2(e 1)t t --.【解析】由已知可得()d ()tf t t f t t tt=-⎰,整理变形20()d ()t f t t f t t =-⎰,等式两边求导()()2f t f t t '=-,即()()2f t f t t '-=,解得一阶线性微分方程通解为()2(1)e t f t t C =-++,又(0)0f =,解得2C =,故()2(e 1)tf t t =--.15. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a= ,则11120a a ab =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.16. 设随机变量X 与Y 相互独立,且()1,X B p :,()2,Y B p :,(0,1)p ∈则X Y+与XY -的相关系数为____________.【答案】13-【解析】由题意可得,()(1)D X p p =-,()2(1)D Y p p =-,又由X 与Y 相互独立可知,()()()D X Y D X D Y ±=+,故(,)X Y X Y ρ+-==()()(1)2(1)1()()(1)2(1)3D X D Y p p p p D X D Y p p p p ----===-+-+-三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)已知函数()y y x =满足2e ln(1)cos 0xa y y x yb ++-++=,且(0)0,(0)0y y '==.(1)求,a b 的值;(2)判断0x =是否为函数()y y x =的极值点.【解】(1)将(0)0y =代入2e ln(1)cos 0x a y y x y b ++-++=得0a b +=. 方程2e ln(1)cos 0x a y y x y b ++-++=两边对x 求导得1e 2cos ln(1)sin 01x a yy y y x y y x'''++-++⋅=+, 将(0)0y '=代入上式得10a -=,解得1,1a b ==-.(2)由(1)知1e 2cos ln(1)sin 01xyy y y x y y x'''++-++⋅=+,上式两边再对x 求导得 22111e 2()2cos sin sin ln(1)cos ln(1)sin (1)11x y yy y y y y y x y y y x y y x x x ⎡⎤''''''''+++++⋅+++⋅++⋅⎢⎥+++⎣⎦将(0)0,(0)0y y '==代入上式得(0)2y ''=-,所以0x =是函数()y y x =的极大值点.18.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成得旋转体的体积 【解】(1)222144sec 1d d tan sec sin t S x t t t t tππππ+∞===⎰⎰⎰222244sin 1d d cos sin 1cos t t t tt ππππ==--⎰⎰241cos 11ln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰. 19.(本题满分12分)已知22{(,)|(1)1}D x y x y =-+≤,求1|d d Dx y -⎰⎰.【解】令22221{(,)|(1)1,1}D x y x y x y =-+≤+≤,则|1|d d Dx y ⎰⎰)(111d d 1d d D D D x y x y -=+⎰⎰⎰⎰)(11d d 21d d DD x y x y =+⎰⎰⎰⎰2cos 122232cos 234327d d 2d d 39ππθππθππρρθπρρθ---=-+=⎰⎰⎰⎰20.(本题满分12分)设函数()f x 在[,]a a -上有二阶连续导数.(1)证明:若(0)0f =,存在(,)a a ξ∈-,使得21()[()()]f f a f a aξ''=+-; (2)若()f x 在(,)a a -上存在极值,证明:存在(,)a a η∈-,使得21|()||()()|2f f a f a a η''≥--. 【证明】(1)将()f x 在00x =处展开为22()()()(0)(0)(0)2!2!f x f x f x f f x f x δδ''''''=++=+,其中δ介于0与x 之间.分别令x a =-和x a =,则21()()(0)()2!f a f a f a ξ'''-=-+,10a ξ-<<,22()()(0)()2!f a f a f a ξ'''=+,20a ξ<<,两式相加可得212()()()()2f f f a f a a ξξ''''+-+=,又函数()f x 在[,]a a -上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a a ξξ⊂-,使得12()()()2f f f ξξξ''''+=,即21()[()()]f f a f a a ξ=-+. (2)设()f x 在0x 处取得极值,则0()0f x '=.将()f x 在0x 处展开为22000000()()()()()()()()()2!2!f x x f x x f x f x f x x x f x δδ''''--'=+-+=+, 其中δ介于0x 与x 之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<, 2200()()()()2!f a x f a f x η''-=+,02x a η<<, 两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-, 所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=-221020|()|()|()|()22f a x f a x ηη''''+-≤+220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=,即21|()||()()|2f f a f a aη''≥--.21.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A . (1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ.【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A , 即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A . (2)111101||211(2)20011011λλλλλλλλ---=--=+-----A E ,(2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭α;1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α;211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α,令123041(,,)130112-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα ,则1200020001--⎛⎫⎪== ⎪ ⎪-⎝⎭P AP Λ.22.(本题满分12分)设随机变量X 的概率密度函数为2e (),(1e )xx f x x =-∞<<+∞+,令e X Y =. (1)求X 的分布函数; (2)求Y 的概率密度函数; (3)判断Y 的数学期望是否存在.【解】(1)设X 的分布函数为()X F x ,由分布函数的定义可得2e 1(){}()d d 1,(1e )1et xxX t t F x P X x f x x t x -∞-∞=≤===--∞<<+∞++⎰⎰. (2)设Y 的分布函数为()Y F y ,概率密度为()Y f y ,由分布函数的定义可得(){}{e }X Y F y P Y y P y =≤=≤,当0y ≤时,()0Y F y =; 当0y >时,1(){}{ln }(ln )11Y X F y P Y y P X y F y y=≤=≤==-+. 综上,00,()110.1Y y F y y y ≤⎧⎪=⎨->⎪+⎩,, 故Y 的概率密度函数200,()10.(1)Y y f y y y ≤⎧⎪=⎨>⎪+⎩,,(3)由(2)知,220011()()d d d (1)(1)Y yy E Y yf y y y y y y +∞+∞+∞-∞+-===++⎰⎰⎰20011d d 1(1)y y y y +∞+∞=-++⎰⎰ 01ln(1)=1y y +∞⎡⎤=+++∞⎢⎥+⎣⎦, 故Y 的数学期望不存在.。
历年考研数学三真题及答案解析2012年全国硕士研究生入学统一考试数学三试题选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线221x xyx+=-渐近线的条数为()(A)0 (B)1 (C)2 (D)3(2)设函数2()(1)(2)x x nxf x e e e n=--…(-),其中n为正整数,则(0)f'=()(A)1(1)(1)!n n---(B)(1)(1)!n n--(C)1(1)!n n--(D)(1)!n n-(3)设函数()f t连续,则二次积分22202cos()d f r rdrπθθ⎰⎰=()(A)222() dx x y dy+⎰(B)222() dx f x y dy+⎰(C)2221() dx x y dy+⎰⎰(D)2221() dx x y dy+⎰⎰(4)已知级数11(1)inα∞=-∑绝对收敛,21(1)ninα∞-=-∑条件收敛,则α范围为()(A)0<α12≤(B)12< α≤1(C)1<α≤32(D)32<α<2(5)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234c c c c ,,,为任意常数,则下列向量组线性相关的是() (A )123ααα,, (B )124ααα,,(C )134ααα,,(D )234ααα,,(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且P-1AP=112⎛⎫⎪ ⎪ ⎪⎝⎭, 123=P ααα(,,),1223=Q αααα(+,,)则1=Q AQ -()(A )121⎛⎫⎪ ⎪ ⎪⎝⎭(B )112⎛⎫⎪ ⎪ ⎪⎝⎭ (C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭(D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭ (7)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,则+P X Y ≤22{1}( )(A )14(B )12(C )8π(D )4π(8)设1234X X X X ,,,为来自总体N σσ>2(1,)(0)的简单随机样本,则统计量1234|+-2|X X X X -的分布()(A )N (0,1)(B )(1)t(C )2(1)χ (D )(1,1)F二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)1cos sin 4lim(tan )x xx x π-→(22)(本题满分10分)已知随机变量X,Y 以及XY 的分布律如下表所示:求(1)P(X=2Y); (2)cov(,)XY X Y Y -ρ与.(23)(本题满分10分) 设随机变量X和Y相互独立,且均服从参数为1的指数分布,min(,),=max(,).V X Y U X Y =求(1)随机变量V 的概率密度; (2)()E U V +.2011年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
请将所选项前的字母填在答题纸指定位置上。
(1) 已知当0x →时,函数()3sin sin 3f x x x =-与是k cx 等价无穷小,则(A) 1,4k c == (B) 1,4k c ==- (C) 3,4kc == (D) 3,4k c ==-(2) 已知()f x 在0x =处可导,且(0)0f =,则2330()2()limx x f x f x x →-= (A) '2(0)f - (B) '(0)f - (C) '(0)f (D) 0(3) 设{}n u 是数列,则下列命题正确的是(A) 若1nn u∞=∑收敛,则2121()n n n uu ∞-=+∑收敛(B) 若2121()n n n uu ∞-=+∑收敛,则1nn u ∞=∑收敛(C) 若1nn u∞=∑收敛,则2121()n n n uu ∞-=-∑收敛(D) 若2121()n n n uu ∞-=-∑收敛,则1nn u ∞=∑收敛(4) 设40ln(sin )I x dx π=⎰,4ln(cot )J x dx π=⎰,40ln(cos )K x dx π=⎰ 则I ,J ,K 的大小关系是(A) IJ K << (B) I K J << (C) J I K << (D) K J I <<(5) 设A 为3阶矩阵,将A 的第2列加到第1列得矩阵B ,再交换B 的第2行与第3行得单位矩阵记为1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A = (A)12P P (B)112P P - (C)21P P (D) 121PP - (6) 设A 为43⨯矩阵,1η, 2η , 3η 是非齐次线性方程组Ax β=的3个线性无关的解,1k ,2k 为任意常数,则Ax β=的通解为(A)23121()2k ηηηη++-(B) 23221()2k ηηηη-+-(C) 23131221()()2k k ηηηηηη++-+-(D) 23221331()()2k k ηηηηηη-+-+-(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x , 1()f x 是连续函数,则必为概率密度的是(A) 12()()f x f x (B)212()()f x F x(C)12()()f x F x (D) 1221()()()()f x F x f x F x +(8) 设总体X服从参数λ(0)λ>的泊松分布,11,,(2)n X X X n ≥为来自总体的简单随即样本,则对应的统计量111n i i T X n ==∑,121111n i n i T X X n n -==+-∑(A)1212,ET ET DT DT >> (B)1212,ET ET DT DT ><(C)1212,ET ET DT DT <> (D) 1212,ET ET DT DT <<二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 设()lim (13)xtt f x x t →=+,则'()f x =______.(10) 设函数(1)xyx z y=+,则(1,1)|dz =______.(11) 曲线tan()4y x y e π++=在点(0,0)处的切线方程为______.(12)曲线y =,直线2x =及x 轴所围成的平面图形绕x 轴旋转所成的旋转体的体积______.(13) 设二次型123(,,)T f X X X x Ax =的秩为1,A 中行元素之和为3,则f在正交变换下x Qy =的标准型为______.(14) 设二维随机变量(,)X Y 服从22(,;,;0)N μμσσ,则2()E XY =______.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分)求极限01limln(1)x x x x →-+.(16) (本题满分10分) 已知函数(,)f u v 具有连续的二阶偏导数,(1,1)2f =是(,)f u v 的极值,[](),(,)z f x y f x y =+。
求2(1,1)|zx y∂∂∂.(17) (本题满分10分)求(18) (本题满分10分)证明44arctan 03x x π-+=恰有2实根。
(19) (本题满分10分)()f x 在[]0,1有连续的导数,(0)1f =,且'()()ttD D fx y dxdy f t dxdy+=⎰⎰⎰⎰,{(,)|0,0,0}(01)t D x y x t y t x y t t =≤≤≤≤≤+≤<≤,求()f x 的表达式。
(20) (本题满分11分) 设3维向量组11,0,1T α=(),20,1,1T α=(),31,3,5T α=()不能由11,,1Ta β=(),21,2,3T β=(),31,3,5Tβ=()线性标出。
求:(Ⅰ)求a ;(Ⅱ)将1β,2β,3β由1α,2α,3α线性表出. (21) (本题满分11分)已知A 为三阶实矩阵,()2R A =,且111100001111A -⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求:(Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求A(22) (本题满分11分) 已知且22P()1XY ==,求:(Ⅰ)()X Y ,的分布;(Ⅱ)ZXY =的分布;(Ⅲ)XY ρ. (23) (本题满分11分)设(,)X Y 在G 上服从均匀分布,G 由0x y -=,2x y +=与0y =围成。
求:(Ⅰ)边缘密度()X f x ;(Ⅱ)|(|)X Y f x y 。
2010年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的,请把所选项前的字母填在答题纸指定位置上.(1) 若011lim()1x x a e x x →⎡⎤--=⎢⎥⎣⎦,则a 等于(A )0 (B )1 (C )2 (D )3 (2) 设1y ,2y 是一阶线性非齐次微分方程'()()y p x y q x x +=的两个特解,若常数λ,u 使12y uy λ+是该方程的解,12y uy λ-是该方程对应的齐次方程的解,则()(A )1122λμ==, (B )1122λμ=-=-, (C )2133λμ==, (D )2233λμ==,(3) 设函数()f x ,()g x 具有二阶导数,且"()0g x <。
若0()=g x a 是()g x 的极值,则[]()f g x 在0x 取极大值的一个充分条件是()(A )'()0f a < (B )'()0f a > (C )"()0f a < (D )"()0f a > (4) 设10()ln f x x =,()g x x =,10()xh x e=,则当x 充分大时有()(A )()()()g x h x f x << (B )()()()h x g x f x <<(C )()()()f x g x h x << (D )()()()g x f x h x <<(5) 设向量组Ⅰ:12r ααα,,可由向量组Ⅱ:12s βββ,,线性表示,下列命题正确的是(A )若向量组Ⅰ线性无关,则r s ≤ (B )若向量组Ⅰ线性相关,则r s >(C )若向量组Ⅱ线性无关,则r s ≤ (D )若向量组Ⅱ线性相关,则r s >(6) 设A 为4阶实对称矩阵,且20A A +=,若A 的秩为3,则A 相似于(A )1110⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ (B )1110⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦ (C )1110⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦ (D )1110-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦ (7) 设随机变量的分布函数01()01211x x F x x ex -<⎧⎪⎪=≤<⎨⎪-≥⎪⎩,则{}1P X ==(A )0 (B )12(C )112e -- (D )11e -- (8) 设1()f x 为标准正态分布的概率密度,2()f x 为[]1,3-上的均匀分布的概率密度,若12()0()(0,0)()0af x x f x a b bf x x ≤⎧=>>⎨>⎩为概率密度,则,a b 应满足(A )234a b += (B )324a b += (C )1a b += (D )2a b +=二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 设可导函数()y y x =由方程220sin x yxt e dt x t dt +-=⎰⎰确定,则x dydx ==______.(10)设位于曲线)y e x =≤<+∞下方,x 轴上方的无界区域为G ,则G 绕x 轴旋转一周所得空间区域的体积是______.(11) 设某商品的收益函数为()R p ,收益弹性为31p +,其中p为价格,且(1)1R =,则()R p =______.(12) 若曲线321y x ax bx =+++有拐点(1,0)-,则b =______.(13) 设A ,B 为3阶矩阵,且3A =,2B =,12A B -+=,则1A B -+=______.(14) 设1x ,2x ,n x 为来自整体2(,)(0)N μσσ>的简单随机样本,记统计量211n ii T X n ==∑,则ET=______.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分) 求极限11ln lim (1)xxx x →+∞-(16) (本题满分10分) 计算二重积分3()Dx y dxdy +⎰⎰,其中D 由曲线x =与直线x +=及0x -=围成。