ch17非线性电路介绍
- 格式:ppt
- 大小:628.50 KB
- 文档页数:32
数码管驱动及键盘控制芯片CH455中文手册版本:1E1、概述CH455是数码管显示驱动和键盘扫描控制芯片。
CH455内置时钟振荡电路,可以动态驱动4位数码管或者32只LED;同时还可以进行28键的键盘扫描;CH455通过SCL和SDA组成的2线串行接口与单片机等交换数据。
2、特点●内置显示电流驱动级,段电流不小于25mA,字电流不小于160mA。
●动态显示扫描控制,支持8×4或者7×4,直接驱动4位数码管或者32只发光管LED。
●内部限流,通过占空比设定提供8级亮度控制。
●内置28键键盘控制器,基于7×4矩阵键盘扫描。
●内置按键状态输入的下拉电阻,内置去抖动电路。
●提供低电平有效的键盘中断,提供按键释放标志位,可供查询按键按下与释放。
●高速2线串行接口,时钟速度从0到4MHz,兼容两线I2C总线,节约引脚。
●内置上电复位,支持2.7V~5V电源电压。
●支持低功耗睡眠,节约电能,可以被按键唤醒或者被命令操作唤醒。
●内置时钟振荡电路,不需要外部提供时钟或者外接振荡元器件,更抗干扰。
●提供DIP18、SOP18和SOP16三种无铅封装,兼容RoHS,功能和引脚部分兼容CH450芯片。
3、封装封装形式宽度引脚间距封装说明订货型号DIP18 7.62mm 300mil 2.54mm 100mil 标准18脚双列直插CH455K SOP18 7.62mm 300mil 1.27mm 50mil 标准的宽18脚贴片CH455H SOP16 3.9mm 150mil 1.27mm 50mil 标准的16脚贴片CH455G4、引脚引脚号引脚名称类型引脚说明DIP18/SOP18 SOP1611 14 VCC 电源正电源,持续电流不小于150mA4 8 GND 电源公共接地,持续电流不小于150mA9、10 12、13 14、15 16 12、1315、161、23SEG0~SEG6三态输出及输入数码管的段驱动,高电平有效,键盘扫描输入,高电平有效,内置下拉17 4 SEG7 输出数码管的小数点段驱动输出,高电平有效,7段模式下的键盘中断输出,低电平有效1、5 6、75、910、11DIG0~DIG3输出数码管的字驱动,低电平有效,键盘扫描输出,高电平有效3 7 SDA 内置上拉开漏输出及输入2线串行接口的数据输入和输出,内置上拉电阻2 6 SCL 输入2线串行接口的数据时钟,内置上拉电阻18 无INT# 内置上拉开漏输出键盘中断输出,低电平有效8 无ISET 输入段电流上限调整,悬空为默认设置5、功能说明5.1. 一般说明本手册中的数据,以B结尾的为二进制数,以H结尾的为十六进制数,否则为十进制数,标注为x的位表示该位可以是任意值。
非线性电路的应用——混沌电路摘要本文给出了一种含有由两个运算放大器组成的非线性负电阻的蔡氏混沌电路,如图一所示。
利用非线性电阻电路,设计了如图二所示的非线性伏安特性曲线。
图二即为在示波器中得到的伏安特性曲线。
在实现图二的伏安特性曲线的基础上,设计了图三所示的混沌电路。
使用示波器,连续改变混沌电路的敏感参数(如图中的可变电阻由2K欧姆逐渐减小到零),得到了各种情况下的涡旋现象,得到双涡旋到大极限环变化时的参数,从理论分析与仿真实验两个角度分别研究蔡氏电路的混沌行为,研究结果表明在相同的混沌行为预期下,仿真实验与理论分析结论十分吻合,仿真实验能准确地观测到混沌吸引子的行为特征.通过利用Mutisim7.0进行仿真,观察到由直流平衡态经周期倍增分岔到Hopf分岔形成类似于Rossler吸引子,然后再过渡到双涡卷状的蔡氏吸引子大极限环的全过程。
关键词蔡氏电路;非线性伏安特性曲线;Mutisim7.0仿真;双涡卷混沌吸引子;倍周期分岔引言蔡式电路是美国贝克莱大学的蔡少棠教授设计的能产生混沌行为的最简的一种自治电路。
该典型电路并不唯一。
蔡式电路在非线性系统及混沌研究中,占有极为严重的地位。
许多非线性动力系统的特性曲线不是跟踪简单、有规则和可预测的轨线,而是围绕像随机且似乎不规则但是明确的形式滑动。
只要有关的过程是非线性的,甚至简单的严格确定性的模型可能发展这样复杂的行为。
这行为被理解或接受为混沌,而且它已经导致非线性科学和动力系统工程的惊人发展。
混沌理论是近年来国际上兴起的新理论,它广泛应用于电路系统,并具有很强的抽象性,不容易被接受.本文通过对一种含由两个运算放大器组成的非线性电阻的RLC电路混沌现象实验分析,让人们从感性上更加清晰地了解混沌现象产生的机理,熟悉混沌现象产生的条件,掌握电路中混沌状态的基本规律,使人们对电路中的混沌现象具有更具体、更形象的认识。
正文电路中存在混沌现象已经是在理论和实验中证明了的不争的事实。
非线性电路一、非线性电路非线性电阻:若非线性电阻元件两端的电压是其电流的单值函数,这种电阻就是电流控制型电阻,同理,若其两端电流时其电压的单值函数,这种电阻就是电压控制型电阻。
在电路计算中,基尔霍夫定律对于线性电路和非线性电路均适用,但对于含有非线性储能元件的动态电路列出的方程是一组非线性微分方程。
非线性微分方程的解可能不唯一,其解析解一般都是难以求得的,但可以用计算机用数值计算方法求得数值解。
非线性电路的另一种重要的方法为小信号分析法,另外还有分段线性化方法等。
二、均匀传输线均匀传输线:即使沿传输线的原参数(单位长度的电阻、电感、电容、电导)到处相等,则称为均匀传输线。
分布电路中,电压和电流不仅随时间变化,同时也随距离变化,这是分布电路和集总电路的一个显著区别。
均匀传输线有两个重要参数,特性阻抗(波阻抗)Zc,和传播常数r,两个参数都是复数。
一般架空线的特性阻抗为6~8倍电缆的特性阻抗。
当传输线所接的负载阻抗Z2=Zc时,电压电流波中均没有反射波。
称为终端阻抗与传输线阻抗的匹配。
在通信线路和设备连接时,均要求匹配。
避免反射。
如果传输线的原参数中(单位长度中的电阻,电导)均为零。
这种传输线就称为无损耗线。
在无线电工程中,由于频率高,导致00L R ω>> ,00C G ω>>,常将损耗略去,也可看成无损耗线。
无损耗线的特性阻抗是一个纯电阻且与频率无关。
在高频领域中,常用长度小于4λ的开路无损耗线用来代替电容 ,长度小于4λ的短路无损耗线用来代替电感。
长度小于4λ的无损耗线还可以作为传输线和负载之间的匹配元件,作用相当于阻抗变换器。
在超高频技术中的“金属绝缘子”也就是长度为4λ的短路传输线作为支架。
c17基准电路文件C17基准电路文件C17基准电路文件是一种重要的电子设备文件,用于描述和记录C17基准电路的相关信息。
C17基准电路是一种常用的电路设计模块,用于在电子设备中提供稳定的电压和电流输出。
本文将从不同角度介绍C17基准电路文件的相关内容。
第一部分:C17基准电路的概述在C17基准电路文件中,首先需要对C17基准电路进行概述。
C17基准电路是一种基于特定电子元件组成的电路模块,用于提供稳定的电压和电流输出。
它通常由多个电子元件组成,包括电容器、电感器和电阻器等。
C17基准电路的设计目的是为了满足电子设备对电源的稳定性和可靠性要求。
第二部分:C17基准电路的组成在C17基准电路文件中,需要详细描述C17基准电路的组成。
C17基准电路通常由多个电子元件组成,每个元件的参数和功能都需要在文件中进行详细说明。
例如,电容器用于储存电荷,电感器用于储存能量,而电阻器则用于限制电流。
通过合理地组合这些元件,C17基准电路可以实现稳定的电压和电流输出。
第三部分:C17基准电路的工作原理在C17基准电路文件中,需要对C17基准电路的工作原理进行解释。
C17基准电路的工作原理是基于电子元件之间的相互作用和相互影响。
当输入电流通过C17基准电路时,电子元件会根据其特定的参数和功能,对电流进行处理和调节,从而实现稳定的电压和电流输出。
第四部分:C17基准电路的应用领域在C17基准电路文件中,需要说明C17基准电路的应用领域。
C17基准电路广泛应用于各种电子设备中,例如通信设备、计算机设备和工业控制设备等。
通过使用C17基准电路,可以提供稳定的电源,保证电子设备的正常运行。
第五部分:C17基准电路的设计考虑在C17基准电路文件中,需要介绍C17基准电路的设计考虑。
C17基准电路的设计需要考虑多个因素,包括电压和电流的需求、元件的选择和布局、以及电路的稳定性和可靠性等。
通过合理地考虑这些因素,可以设计出高性能和可靠的C17基准电路。