18高考数学大一轮复习第六章不等式、推理与证明课时跟踪检测(三十三)一元二次不等式及其解法练习文
- 格式:doc
- 大小:71.02 KB
- 文档页数:5
第六章第二讲A组基础巩固一、选择题1.(2016·全国卷Ⅲ)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=导学号30071672(D)A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞) D.(0,2]∪[3,+∞)[解析]集合S=(-∞,2]∪[3,+∞),结合数轴,可得S∩T=(0,2]∪[3,+∞).2.(2017·山东省济南一中期中数学试题)在R上定义运算⊗:a⊗b=ab+2a+b,则满足x ⊗(x-2)<0的实数x的取值范围为导学号30071673(B)A.(0,2) B.(-2,1)C.(-∞,-2)∪(1,+∞) D.(-1,2)[解析]根据规定的新定义运算法则先把不等式化简,然后利用一元二次不等式求解集的方法求出x的范围即可.解:∵x⊙(x-2)=x(x-2)+2x+x-2<0,∴化简得x2+x-2<0即(x-1)(x+2)<0,得到x-1<0且x+2>0①或x-1>0且x+2<0②,解出①得-2<x<1;解出②得x >1且x<-2无解.∴-2<x<1.故选B.3.(2016·浙江模拟)设关于x的不等式(ax-1)(x+1)<0(a∈R)的解集为{x|-1<x<1},则a 的值是导学号30071674(D)A.-2 B.-1C.0 D.1[解析]∵关于x的不等式(ax-1)(x+1)<0(a∈R)的解集为{x|-1<x<1},∴对应一元二次方程(ax-1)(x+1)=0的两个实数根为-1和1,∴x=1a=1,或x=-1,∴a=1,即a的值是1,故选D.4.(2016·天津模拟)已知2a+1<0,关于x的不等式x2-4ax-5a2>0的解集是导学号30071675(C)A.{x|x>5a或x<-a} B.{x|-a<x<5a}C .{x |x <5a 或x >-a }D .{x |5a <x <-a }[解析] 不等式x 2-4ax -5a 2>0可化为(x -5a )(x +a )>0.∵方程(x -5a )(x +a )=0的两根为x 1=5a ,x 2=-a ,且2a +1<0,a <-12,∴5a <-a ,∴在不等式的解集为{x |x <5a ,或x >-a },故选C .5.(2016·湖北模拟)关于x 的不等式ax -b >0的解集是(-∞,1),则关于x 的不等式(ax +b )(x -3)>0的解集是导学号 30071676( B )A .(-∞,-1)∪(3,+∞)B .(-1,3)C .(1,3)D .(-∞,1)∪(3,+∞)[解析] 由题意关于x 的不等式ax -b >0的解集是(-∞,1)可得ba =1,且a <0,(ax +b )(x-3)>0可变为(x -3)(x +ba)<0,即得(x -3)(x +1)<0,所以-1<x <3,所以不等式的解集是(-1,3),故选B .6.已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为导学号 30071677( A )A .{x |-1<x <12}B .{x |x <-1或x >12}C .{x |-2<x <1}D .{x |x <-2或x >1}[解析] 由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由韦达定理⎩⎨⎧-1+2=-ba .(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1. ∴不等式2x 2+bx +a <0,即2x 2+x -1<0. 可知x =-1,x =12是对应方程的根,∴选A .7.(2016·皖南八校第二次联考) 若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则a 的取值范围为导学号 30071678( A )A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5][解析] x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.故选A .[解法总结] (1)解决恒成立问题一定要分清主元与参数,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数;(2)对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.8.(2016·黄山模拟)已知下列不等式①x 2-4x +3<0;②x 2-6x +8<0;③2x 2-9x +a <0,且使不等式①②成立的x 也满足③,则实数a 的取值范围是导学号 30071679( C )A .a ≥94B .a ≤10C .a ≤9D .a ≥-4[解析] 联立①②得⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0即⎩⎨⎧1<x <32<x <4,解得2<x <3,∴2<x <3也满足③2x 2-9x +a <0,∴③的解集非空且(2,3)是③解集的子集. 由f (x )=2x 2-9x +a <0,得f (2)=8-18+a ≤0, 且f (3)=18-27+a ≤0,解得a ≤9,故选C .另解:或a <-2x 2+9x =-2(x -94)2+818,x ∈(2,3)恒成立.记g (x )=-2x 2+9x ,x ∈(2,3) 由g (x )>9可知a ≤9,故选C . 二、填空题9.(2016·潍坊模拟)若不等式2kx 2+kx -38≥0的解集为空集,则实数k 的取值范围是(-3,0].导学号 30071680[解析] 根据题意,得:当k =0时,不等式化为-38≥0,解集为空集,满足题意;当k ≠0,应满足⎩⎨⎧k <0Δ<0,即⎩⎪⎨⎪⎧k <0k 2-4·2k ·(-38)<0, 解得⎩⎪⎨⎪⎧k <0-3<k <0,∴-3<k <0.综上,k 的取值范围是(-3,0].10.(2016·西安模拟)关于x 的不等式x 2-2ax -3a 2<0(a <0)的解集为(x 1,x 2),且x 2-x 1=12,则实数a 的值等于-3.导学号 30071681[解析] 因为关于x 的不等式x 2-2ax -3a 2<0(a <0)的解集为(x 1,x 2),所以x 1+x 2=2a ,x 1x 2=-3a 2,又x 2-x 1=12,(x 2-x 1)2=(x 2+x 1)2-4x 1·x 2,所以144=4a 2+12a 2=16a 2,解得a =±3,因为a <0,所以a =-3.11.(2017·上海市长宁区延安中学高三上学期期中数学试题)对一切实数x ,不等式x 2+a |x |+1≥0恒成立,则实数a 的取值范围是[-2,+∞).导学号 30071682[解析] 根据题意,分x =0与x ≠0两种情况讨论,①x =0时,易得原不等式恒成立,②x ≠0时,原式可变形为a ≥-(|x |+1|x |),由基本不等式的性质,易得a 的范围,综合两种情况可得答案.解:根据题意,分2种情况讨论;①x =0时,原式为1≥0,恒成立,则a ∈R ;②x ≠0时,原式可化为a |x |≥-(x 2+1),即a ≥-(|x |+1|x |);又由|x |+1|x |≥2,则-(|x |+1|x |)≤-2;要使不等式x 2+a |x |+1≥0恒成立,需有a ≥-2即可; 综上可得,a 的取值范围是[-2,+∞); 故答案为:[-2,+∞).[点拨] 本题考查了函数的恒成立问题,难度一般,关键是掌握分类讨论的思想解题. 三、解答题12.已知函数f (x )=ax 2+2ax +1的定义域为R .导学号 30071683 (1)求a 的取值范围; (2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. [答案] (1)[0,1] (2)(-12,32)[解析] (1)∵函数f (x )=ax 2+2ax +1的定义域为R , ∴ax 2+2ax +1≥0恒成立, 当a =0时,1≥0恒成立.当a ≠0时,则有⎩⎪⎨⎪⎧a >0,Δ=(2a )2-4a ≤0, 解得0<a ≤1,综上可知,a 的取值范围是[0,1].(2)∵f (x )=ax 2+2ax +1=a (x +1)2+1-a , ∵a >0,∴当x =-1时,f (x )min =1-a , 由题意得,1-a =22,∴a =12,∴不等式x 2-x -a 2-a <0可化为 x 2-x -34<0.解得-12<x <32,所以不等式的解集为(-12,32).13.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).导学号 30071684(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.[答案] (1)a >0时{x |x <-1或x >2},a <0时{x |-1<x <2} (2)f (x )<m [解析] (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0. 那么当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}. (2)由函数F (x )=f (x )-x 的两个零点为m ,n ,得f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .B 组能力提升1.(2016·莆田模拟)二次函数f (x )=ax 2+bx +c (a >0)的零点为2和3,那么不等式ax 2+bx +c <0的解集为导学号 30071685( A )A .{x |2<x <3}B .{x |-3<x <-2}C .{x |13<x <12}D .{x |-12<x <-13}[解析] ∵二次函数f (x )=ax 2+bx +c (a >0)的零点为2和3,∴对应一元二次方程ax 2+bx +c =0的两个实数根为2和3,又∵a >0,∴不等式ax 2+bx +c <0的解集为{x |2<x <3},故选A .2.已知f (x )=ax 2-x -c ,不等式f (x )>0的解集为{x |-2<x <1},则函数y =f (-x )的图象为导学号 30071686( B )[解析] 由根与系数的关系知1a =-2+1,-ca =-2,得a =-1,c =-2,f (-x )=-x 2+x +2的图象为B .3.(2016·江苏模拟)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为9.导学号 30071687[解析] 由题意知f (x )=x 2+ax +b =(x +a 2)2+b -a 24.∵f (x )的值域为[0,+∞).∴b -a 24=0. 即b =a 24.∴f (x )=(x +a2)2.又∵f (x )<c .∴(x +a2)2<c .即-a 2-c <x <-a2+c .∴⎩⎨⎧-a2-c =m .①-a2+c =m +6.②②-①,得2c =6,∴c =9.4.若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之间,则k 的取值范围为12<k <23.导学号 30071688[解析] 由题意得应满足⎩⎪⎨⎪⎧f (0)>0f (1)<0f (2)>0解得12<k <23.5.设函数f (x )=mx 2-mx -1.导学号 30071689(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. [答案] (1)-4<m ≤0 (2){m |m <67}[解析] (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇒-4<m <0. 所以-4<m ≤0.(2)要使f (x )<-m +5在x ∈[1,3]上恒成立,即m (x -12)2+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:方法一 令g (x )=m (x -12)2+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述:m 的取值范围是{m |m <67}.方法二 因为x 2-x +1=(x -12)2+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6(x -12)2+34在[1,3]上的最小值为67,所以只需m <67即可. 所以,m 的取值范围是{m |m <67}.[点拨] (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.。
(时间:40分钟)1.用数学归纳法证明1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A .7B .8C .9D .10 答案 B解析 左边=1+12+14+…+12n -1=1-12n1-12=2-12n -1,代入验证可知n 的最小值是8.故选B.2.一个关于自然数n 的命题,如果验证当n =1时命题成立,并在假设当n =k (k ≥1且k ∈N *)时命题成立的基础上,证明了当n =k +2时命题成立,那么综合上述,对于( )A .一切正整数命题成立B .一切正奇数命题成立C .一切正偶数命题成立D .以上都不对 答案 B解析 本题证的是对n =1,3,5,7,…命题成立,即命题对一切正奇数成立. 3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n n 2+3时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是( )A .(k +1)2+2k 2B .(k +1)2+k 2C .(k +1)2 D.13(k +1) 答案 B解析 由n =k 到n =k +1时,左边增加(k +1)2+k 2,故选B.4.用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n·1·2…(2n -1)”(n ∈N +)时,从“n =k 到n =k +1”时,左边的式子之比是( )A.12k +1 B.2k +3k +1C.2k +1k +1D.1k+答案 D解析 当n =k 时,左边为(k +1)(k +2)…2k ,当n =k +1时,左边为(k +2)(k +3)…2k (2k +1)(2k +2),所以从“n =k 到n =k +1”时,左边的式子之比是k +k +k k +k +kk +k +=k +1k +k +=1k +,选D.5.用数学归纳法证明1+2+3+ (2)=2n -1+22n -1(n ∈N +)时,假设n =k 时命题成立,则当n =k +1时,左端增加的项数是( )A .1项B .k -1项C .k 项D .2k项 答案 D解析 运用数学归纳法证明 1+2+3+ (2)=2n -1+22n -1(n ∈N +).当n =k 时,则有1+2+3+ (2)=2k -1+22k -1(k ∈N +),左边表示的为2k项的和.当n =k +1时,则左边=1+2+3+…+2k +(2k +1)+…+2k +1,表示的为2k +1项的和,增加了2k +1-2k=2k项.6.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是________.答案1k +k +解析 不等式的左边增加的式子是12k +1+12k +2-1k +1=1k +k +,故填1k +k +.7.用数学归纳法证明:(n +1)+(n +2)+…+(n +n )=n n +2(n ∈N *)的第三步中,当n =k +1时等式左边与n =k 时的等式左边的差等于________.答案 3k +2解析 n =k +1比n =k 时左边变化的项为(2k +1)+(2k +2)-(k +1)=3k +2. 8.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =________________________________________________________________________.答案nn +1解析 由(S 1-1)2=S 21,得S 1=12;由(S 2-1)2=(S 2-S 1)S 2,得S 2=23;由(S 3-1)2=(S 3-S 2)S 3,得S 3=34.猜想S n =nn +1.9.用数学归纳法证明:(3n +1)·7n-1(n ∈N *)能被9整除. 证明 ①当n =1时,(3×1+1)×7-1=27能被9整除,命题成立; ②假设当n =k (k ∈N *,k ≥1)时命题成立, 即(3k +1)·7k-1能被9整除,则当n =k +1时, ·7k +1-1=(3k +1)·7k +1-1+3·7k +1=(3k +1)·7k-1+6(3k +1)·7k+3·7k +1=(3k +1)·7k-1+9·(2k +3)·7k.由于(3k +1)·7k -1和9·(2k +3)·7k 都能被9整除,所以(3k +1)·7k-1+9·(2k +3)·7k 能被9整除,即当n =k +1时,命题也成立,故(3n +1)·7n -1(n ∈N *)能被9整除.10.用数学归纳法证明不等式:2+12·4+14·…·2n +12n >n +1.证明 ①当n =1时,左式=32,右式=2,左式>右式,所以结论成立.②假设n =k (k ≥1,k ∈N *)时结论成立, 即2+12·4+14·…·2k +12k>k +1,则当n =k +1时, 2+12·4+14·…·2k +12k ·2k +3k +>k +1·2k +3k +=2k +32k +1, 要证当n =k +1时结论成立,只需证2k +32k +1≥k +2,即证2k +32≥k +k +, 由基本不等式2k +32=k ++k +2≥k +k +成立,故2k +32k +1≥k +2成立.所以,当n =k +1时,结论成立.由①②可知n ∈N *时,不等式2+12·4+14·…·2n +12n>n +1成立.(时间:20分钟)11.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( )A .n +1B .2n C.n 2+n +22D .n 2+n +1答案 C解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n n +2=n 2+n +22个区域.12.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3答案 A解析 假设当n =k 时,原式能被9整除, 即k 3+(k +1)3+(k +2)3能被9整除.当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可.13.已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n(n ∈N *),则a 3=________,a 1·a 2·a 3·…·a 2015=________.答案 -123解析 ①a 2=1+a 11-a 1=-3,a 3=1+a 21-a 2=-12.②求出a 4=13,a 5=2,可以发现a 5=a 1,且a 1·a 2·a 3·a 4=1,故a 1·a 2·a 3·…·a 2015=a 1a 2a 3=3. 14.数列{a n }满足S n =2n -a n (n ∈N *).(1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ; (2)用数学归纳法证明(1)中的猜想. 解 (1)当n =1时,a 1=S 1=2-a 1,∴a 1=1. 当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32.当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74.当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4, ∴a 4=158.由此猜想a n =2n-12n -1(n ∈N *).(2)证明:①当n =1时,左边=a 1=1, 右边=21-120=1,左边=右边,结论成立.②假设n =k (k ≥1且k ∈N *)时,结论成立, 即a k =2k-12k -1,那么当n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1,∴2a k +1=2+a k ,∴a k +1=2+a k 2=2+2k-12k -12=2k +1-12k, 这表明n =k +1时,结论成立, 由①②知猜想a n =2n-12n -1(n ∈N *)成立.。
理数 第6章 不等式、推理与证明 6-1a[A 级 基础达标](时间:40分钟)1.[2017·浙江抽测]已知a ,b ∈R ,则“b ≥0”是“a 2+b ≥0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 当b ≥0时,a 2+b ≥0,反之不一定成立,因此“b ≥0”是“a 2+b ≥0”的充分不必要条件.2.[2017·烟台模拟]如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( )A .ab >acB .bc >acC .cb 2<ab 2D .ac (a -c )<0 答案 C解析 因为c <b <a ,且ac <0,所以a >0,c <0.所以ab -ac =a (b -c )>0,bc -ac =(b -a )c >0,ac (a -c )<0,所以A ,B ,D 均正确.因为b 可能等于0,也可能不等于0,所以cb 2<ab 2不一定成立.3.设a >b >0,下列各数小于1的是( )A .2a -b B.⎝ ⎛⎭⎪⎫a b 12C.⎝ ⎛⎭⎪⎫a b a -bD.⎝ ⎛⎭⎪⎫b a a -b 答案 D解析 解法一:(特殊值法)取a =2,b =1,代入验证.解法二:y =a x (a >0且a ≠1).当a >1,x >0时,y >1;当0<a <1,x >0时,0<y <1.∵a >b >0,∴a -b >0,a b >1,0<b a <1.由指数函数性质知,D 成立.4.设a =log 12 3,b =⎝ ⎛⎭⎪⎫130.2,c =⎝ ⎛⎭⎪⎫12- 12 ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 A解析 因为a =log 12 3<log 122=-1,0<b =⎝ ⎛⎭⎪⎫130.2<1,c =2>1,所以a <b <c .5.[2017·重庆一中调研]设a >1>b >-1,则下列不等式中恒成立的是( )A .a >b 2B.1a >1bC.1a <1b D .a 2>2b 答案 A解析 对于A ,∵-1<b <1,∴0≤b 2<1,又∵a >1,∴a >b 2,故A正确;对于B ,若a =2,b =12,此时满足a >1>b >-1,但1a <1b ,故B错误;对于C ,若a =2,b =-12,此时满足a >1>b >-1,但1a >1b ,故C 错误;对于D ,若a =98,b =34,此时满足a >1>b >-1,但a 2<2b ,故D 错误.6.已知-π2<α<β<π,则α-β2的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-3π4,0 解析 由-π2<α<β<π,得-π2<α<π,-π<-β<π2,∴-3π2<α-β<3π2,即-3π4<α-β2<3π4.又∵α-β<0,∴-3π4<α-β2<0,故α-β2的取值范围是⎝ ⎛⎭⎪⎫-3π4,0. 7.[2017·西安模拟]已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是________.答案 (-∞,-1)解析 ∵ab 2>a >ab ,∴a ≠0,当a >0时,有b 2>1>b ,即⎩⎪⎨⎪⎧ b 2>1,b <1,解得b <-1; 当a <0时,有b 2<1<b ,即⎩⎪⎨⎪⎧b 2<1,b >1,无解. 综上可得b <-1.8.[2017·遵义模拟]已知下列结论:①若a >|b |,则a 2>b 2;②若a >b ,则1a <1b ;③若a >b ,则a 3>b 3;④若a <0,-1<b <0,则ab 2>a .其中正确的是________(只填序号即可).答案 ①③④解析 对于①,因为a >|b |≥0,所以a 2>b 2,即①正确;对于②,当a =2,b =-1时,显然不正确;对于③,显然正确;对于④,因为a <0,-1<b <0,ab 2-a =a (b 2-1)>0,所以ab 2>a ,即④正确.9.[2017·大连段考]若a >b >0,c <d <0,e <0.求证:e a -c 2>e b -d 2. 证明 ∵c <d <0,∴-c >-d >0.又∵a >b >0,∴a -c >b -d >0,∴(a -c )2>(b -d )2>0,∴0<1 a -c 2<1 b -d 2. 又∵e <0,∴e a -c 2>e b -d 2. 10.[2017·昆明模拟]设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,求f (-2)的取值范围.解 解法一:设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b .于是得⎩⎪⎨⎪⎧ m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1, ∴f (-2)=3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.解法二:由⎩⎪⎨⎪⎧f -1 =a -b ,f 1 =a +b , 得⎩⎪⎨⎪⎧ a =12[f -1 +f 1 ],b =12[f 1 -f -1 ],∴f (-2)=4a -2b =3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4, ∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.[B 级 知能提升](时间:20分钟)11.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .不确定答案 B解析 M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=(a 1-1)(a 2-1),又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0,∴M >N .12.[2017·广西模拟]若a ,b 为实数,则1a <1b 成立的一个充分而不必要的条件是( )A .b <a <0B .a <bC .b (a -b )>0D .a >b答案 A解析 由a >b ⇒1a <1b 成立的条件是ab >0,即a ,b 同号时,若a >b ,则1a <1b ;a ,b 异号时,若a >b ,则1a >1b .13.[2017·汕头模拟]若x >y ,a >b ,则在①a -x >b -y ,②a +x >b+y ,③ax >by ,④x -b >y -a ,⑤a y >b x 这五个式子中,恒成立的不等式的序号是 ________.答案 ②④解析 令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5,∴a -x =b -y ,因此①不成立.∵ax =-6,by =-6,∴ax =by ,因此③也不成立.∵a y =3-3=-1,b x =2-2=-1, ∴a y =b x ,因此⑤不成立.由不等式的性质可推出②④成立.14.已知1≤lg (xy )≤4,-1≤lg x y ≤2,求lg x 2y 的取值范围.解 由1≤lg (xy )≤4,-1≤lg x y ≤2,得1≤lg x +lg y ≤4,-1≤lg x -lg y ≤2,而lg x 2y =2lg x -lg y =12(lg x +lg y )+32(lg x -lg y ),所以-1≤lg x 2y ≤5,即lg x 2y 的取值范围是[-1,5].理数 第6章 不等式、推理与证明 6-2a[A 级 基础达标](时间:40分钟)1.[2017·潍坊模拟]函数f (x )=1ln -x 2+4x -3的定义域是( )A .(-∞,1)∪(3,+∞)B .(1,3)C .(-∞,2)∪(2,+∞)D .(1,2)∪(2,3)答案 D 解析 由题意知⎩⎪⎨⎪⎧ -x 2+4x -3>0,-x 2+4x -3≠1,即⎩⎪⎨⎪⎧1<x <3,x ≠2,故函数 f (x )的定义域为(1,2)∪(2,3).2.[2017·青海质检]不等式x 2-4>3|x |的解集是( )A .(-∞,-4)∪(4,+∞)B .(-∞,-1)∪(4,+∞)C .(-∞,-4)∪(1,+∞)D .(-∞,-1)∪(1,+∞)答案 A解析 ∵|x |2-3|x |-4>0,∴(|x |-4)(|x |+1)>0,∴|x |>4,x >4或x <-4,选A 项.3.[2017·江西模拟]下列选项中,使不等式x <1x <x 2成立的x 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞) 答案 A解析 当x >0时,原不等式可化为x 2<1<x 3,解得x ∈∅,当x <0时,原不等式可化为⎩⎪⎨⎪⎧x 2>1,x 3<1,解得x <-1,选A. 4.[2017·郑州模拟]已知关于x 的不等式ax -1x +1>0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞,则a 的值为( ) A .-1 B.12 C .1 D .2答案 D解析 由题意可得a ≠0且不等式等价于a (x +1)·⎝⎛⎭⎪⎫x -1a >0,由解集的特点可得a >0且1a =12,故a =2.故选D. 5.已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ -1<x <12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-1或x >12 C .{x |-2<x <1}D .{x |x <-2或x >1}答案 A解析 由题意知x =-1,x =2是方程ax 2+bx +2=0的根,且a <0.由韦达定理⎩⎪⎨⎪⎧ -1+2=-b a ,-1 ×2=2a ⇒⎩⎪⎨⎪⎧a =-1,b =1. ∴不等式2x 2+bx +a <0,即2x 2+x -1<0,可知x =-1,x =12是对应方程的根,∴选A.6.[2017·甘肃模拟]不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是________.答案 (-2,2]解析 当a -2=0,即a =2时,不等式即为-4<0,对一切x ∈R 恒成立,当a ≠2时,则有⎩⎪⎨⎪⎧ a -2<0,Δ=4 a -2 2+16 a -2 <0, 即⎩⎪⎨⎪⎧a <2,-2<a <2,∴-2<a <2. 综上,可得实数a 的取值范围是(-2,2].7.[2017·上海模拟]不等式x +1x ≤3的解集为________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <0或x ≥12解析 x +1x ≤3,即x +1-3x x≤0, 1-2x x ≤0⇔⎩⎨⎧ x 1-2x ≤0,x ≠0⇔⎩⎨⎧ x 2x -1 ≥0,x ≠0.解得x ≥12或x <0.故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <0或x ≥12. 8.[2017·西安质检]在R 上定义运算:⎪⎪⎪⎪⎪⎪a b c d =ad -bc .若不等式⎪⎪⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________. 答案 32解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54, 所以-54≥a 2-a -2,解得-12≤a ≤32.9.已知关于x 的不等式kx 2-2x +6k <0(k ≠0).(1)若不等式的解集为{x |x <-3或x >-2},求k 的值;(2)若不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R ,x ≠1k ,求k 的值; (3)若不等式的解集为R ,求k 的取值范围;(4)若不等式的解集为∅,求k 的取值范围.解 (1)由不等式的解集为{x |x <-3或x >-2}可知k <0,且-3与-2是方程kx 2-2x +6k =0的两根,∴(-3)+(-2)=2k ,解得k =-25.(2)由不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R ,x ≠1k 可知⎩⎪⎨⎪⎧ k <0,Δ=4-24k 2=0,解得k =-66. (3)依题意知⎩⎪⎨⎪⎧ k <0,Δ=4-24k 2<0,解得k <-66. (4)依题意知⎩⎪⎨⎪⎧k >0,Δ=4-24k 2≤0,解得k ≥66. 10.[2017·池州模拟]已知函数f (x )=ax 2+2ax +1的定义域为R .(1)求a 的取值范围;(2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0.解 (1)∵函数f (x )=ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立,当a =0时,1≥0恒成立.当a ≠0时,则有⎩⎪⎨⎪⎧a >0,Δ= 2a 2-4a ≤0,解得0<a ≤1, 综上,a 的取值范围是[0,1].(2)∵f (x )=ax 2+2ax +1=a x +1 2+1-a ,∵a >0,∴当x =-1时,f (x )min =1-a ,由题意,得1-a =22,∴a =12.∴x 2-x -⎝ ⎛⎭⎪⎫122-12<0,即(2x +1)(2x -3)<0,-12<x <32.故不等式的解集为⎝ ⎛⎭⎪⎫-12,32. [B 级 知能提升](时间:20分钟)11.[2017·重庆模拟]关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A.52 B.72 C.154 D.152答案 A解析 由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2.故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52,故选A. 12.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间 答案 C解析 设销售价定为每件x 元,利润为y ,则:y =(x -8)·[100-10(x -10)],依题意有(x -8)[100-10(x -10)]>320,即x 2-28x +192<0,解得12<x <16,所以每件销售价应定为12元到16元之间.13.若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________.答案 (-∞,0]解析 因为4x -2x +1-a ≥0在[1,2]上恒成立,所以4x -2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x +1-1=(2x -1)2-1.因为1≤x ≤2,所以2≤2x ≤4.由二次函数的性质可知:当2x =2,即x =1时,y 有最小值0,所以a 的取值范围为(-∞,0].14.已知函数f (x )=ax 2+(b -8)x -a -ab ,当x ∈(-∞,-3)∪(2,+∞)时,f (x )<0.当x ∈(-3,2)时,f (x )>0.(1)求f (x )在[0,1]内的值域;(2)若ax 2+bx +c ≤0的解集为R ,求实数c 的取值范围.解 (1)因为当x ∈(-∞,-3)∪(2,+∞)时,f (x )<0,当x ∈(-3,2)时,f (x )>0,所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根,可得⎩⎨⎧-3+2=-b -8a ,-3×2=-a -ab a ,所以a =-3,b =5,f (x )=-3x 2-3x +18=-3⎝ ⎛⎭⎪⎫x +122+18.75,函数图象关于x =-12对称,且抛物线开口向下,所以在区间[0,1]上f (x )为减函数,所以函数的最大值为f (0)=18,最小值为f (1)=12,故f (x )在[0,1]内的值域为[12,18].(2)由(1)知,不等式ax 2+bx +c ≤0化为-3x 2+5x +c ≤0,因为二次函数y =-3x 2+5x +c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需⎩⎪⎨⎪⎧a =-3<0,Δ=b 2-4ac ≤0,即25+12c ≤0⇒c ≤-2512,所以实数c 的取值范围为⎝ ⎛⎦⎥⎤-∞,-2512.理数 第6章 不等式、推理与证明 6-3a[A 级 基础达标](时间:40分钟)1.[2016·北京高考]若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5答案 C解析 画出可行域,如图中阴影部分所示,令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4.故选C.2.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,43 B.⎝ ⎛⎭⎪⎫-∞,13 C.⎝ ⎛⎭⎪⎫-∞,-23 D.⎝⎛⎭⎪⎫-∞,-53 答案 C解析 图中阴影部分表示可行域,要求可行域内包含y =12x -1上的点,只需要可行域的边界点(-m ,m )在y =12x -1下方,也就是m <-12m -1,即m <-23.故选C.3.已知z =2x +y ,x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥m ,且z 的最大值是最小值的4倍,则m 的值是( )A.17B.16C.15D.14 答案D解析 画出线性约束条件 ⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥m的可行域,如图阴影部分所示.由可行域知:目标函数z =2x +y 过点(m ,m )时有最小值,z min =3m ;过点(1,1)时有最大值,z max =3,因为z 的最大值是最小值的4倍,所以3=12m ,即m =14.4.[2017·江西模拟]某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50 答案B解析 设种植黄瓜x 亩,种植韭菜y 亩,因此,原问题转化为在条件⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0下,求z =0.55×4x +0.3×6y -1.2x -0.9y =x +0.9y 的最大值.画出可行域如图.利用线性规划知识可知,当x ,y 取⎩⎪⎨⎪⎧x +y =50,1.2x +0.9y =54的交点(30,20)时,z 取得最大值.故选B.5.变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1} 答案 B解析 作出不等式组所表示的平面区域,如图所示.易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最大值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3.6.[2014·安徽高考]不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.答案 4解析 作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.7.[2017·厦门模拟]设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.答案 3解析 画出不等式组所确定的可行域(如图阴影部分).由z =x +2y ,得y =-12x +12z ,作直线l :y =-12x ,平移l ,由图形可知当l 经过可行域中的点A (1,1)时,z 取最小值,所以z min =1+2×1=3.8.[2017·辽宁模拟]设变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y的最大值为________.答案55解析 不等式组表示的区域如图所示,令z =2x +3y ,目标函数变为y =-23x +z3,因此截距越大,z 的取值越大,故当直线z =2x +3y 经过点A 时,z 最大,由于⎩⎪⎨⎪⎧ x +y =20,y =15⇒⎩⎪⎨⎪⎧x =5,y =15,故点A 的坐标为(5,15),代入z =2x +3y ,得到z max =55,即2x +3y 的最大值为55.9.当x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≤x ,2x +y +k ≤0,(k 为负常数)时,能使z =x +3y 的最大值为12,试求k 的值. 解 在平面直角坐标系中画出不等式组所表示的平面区域(如图所示).当直线y =-13x +13z 经过区域中的点A 时,截距最大.由⎩⎪⎨⎪⎧y =x ,2x +y +k =0,得x =y =-k 3.∴点A 的坐标为⎝ ⎛⎭⎪⎫-k3,-k 3, 则z 的最大值为-k 3+3⎝⎛⎭⎪⎫-k 3=-43k ,令-4k3=12,得k =-9. ∴所求实数k 的值为-9.10.变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)设z =yx ,求z 的最小值; (2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.解 由约束条件 ⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧ x =1,3x +5y -25=0, 解得A ⎝⎛⎭⎪⎫1,225. 由⎩⎪⎨⎪⎧x =1,x -4y +3=0,解得C (1,1). 由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2).(1)因为z =y x =y -0x -0,所以z 的值即是可行域中的点与原点O 连线的斜率.观察图形可知z min =k OB =25.(2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29,所以2≤z ≤29.(3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是可行域上的点到点(-3,2)的距离的平方.结合图形可知,可行域上的点到(-3,2)的距离中,d min =1-(-3)=4,d max = -3-5 2+ 2-2 2=8.所以16≤z ≤64.[B 级 知能提升](时间:20分钟)11.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥2,3x -y ≥1,y ≥x +1,则下列不等式恒成立的是( )A .x ≥3B .y ≥4C .x +2y -8≥0D .2x -y +1≥0答案 C解析 不等式组表示的平面区域如图中阴影部分所示.由图象可知x ≥2,y ≥3,A 、B 错误;点(3,8)在可行域内,但不满足2x -y +1≥0,D 错误;设z =x +2y ,y =-12x +12z ,由图象可知当其经过点(2,3)时,z 取得最小值8.12.[2017·太原模拟]设不等式组⎩⎪⎨⎪⎧2x +y ≥2,x -2y ≥-4,3x -y ≤3所表示的平面区域为M ,若函数y =k (x +1)+1的图象经过区域M ,则实数k 的取值范围是( )A .[3,5]B .[-1,1]C .[-1,3] D.⎣⎢⎡⎦⎥⎤-12,1 答案D解析 画出不等式组 ⎩⎪⎨⎪⎧2x +y ≥2,x -2y ≥-43x -y ≤3,所表示的平面区域M ,如图中阴影部分所示,函数y =k (x +1)+1的图象表示一条经过定点P (-1,1)的直线,当直线经过区域M 内的点A (0,2)时斜率最大,为1,当直线经过区域M 内的点B (1,0)时斜率最小,为-12,故实数k 的取值范围是⎣⎢⎡⎦⎥⎤-12,1,选D.13.[2017·山西质检]若变量x ,y 满足⎩⎪⎨⎪⎧|x |+|y |≤1,xy ≥0,则2x +y 的取值范围为________.答案 [-2,2]解析 作出满足不等式组的平面区域,如图中阴影部分所示,平移直线2x +y =0,经过点(1,0)时,2x +y 取得最大值2×1+0=2,经过点(-1,0)时,2x +y 取得最小值2×(-1)+0=-2,所以2x +y 的取值范围为[-2,2].14.[2016·天津高考]某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.解 (1)由已知,x ,y 满足的数学关系式为 ⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.该二元一次不等式组所表示的平面区域为图1中的阴影部分:(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3,这是斜率为-23,随z 变化的一族平行直线.z 3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24).所以z max =2×20+3×24=112.答:生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.理数 第6章 不等式、推理与证明 6-4a[A 级 基础达标](时间:40分钟)1.已知x ,y ∈R +,则“xy =1”是“x +y ≥2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 若xy =1,由基本不等式,知x +y ≥2xy =2;反之,取x =3,y =1,则满足x +y ≥2,但xy =3≠1,所以“xy =1”是“x +y ≥2”的充分不必要条件.故选A.2.[2015·湖南高考]若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A. 2 B .2 C .2 2 D .4 答案 C 解析 由ab ≥22ab ,得ab ≥22,当且仅当1a =2b 时取“=”,选C.3.已知a >0,b >0,2a +b =1,则2a +1b 的最小值是( ) A .4 B.92 C .8 D .9 答案 D解析 ∵2a +b =1,又a >0,b >0, ∴2a +1b =⎝⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a +2a b ≥5+22b a ×2ab =9,当且仅当⎩⎨⎧2b a =2a b ,2a +b =1,即a =b =13时等号成立.故选D. 4.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2答案 A解析 ∵x >1,∴x -1>0. ∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2 x -1 +3x -1= x -1 2+2 x -1 +3x -1=x -1+3x -1+2≥2x -1 ⎝ ⎛⎭⎪⎫3x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时取等号.5.[2017·浙江考试院抽测]若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( )A.23B.223C.33D.233 答案 B解析 对于x 2+3xy -1=0可得y =13⎝⎛⎭⎪⎫1x -x ,∴x +y =2x 3+13x≥229=223(当且仅当x =22时等号成立).6.[2017·广州模拟]已知实数x ,y 满足x 2+y 2-xy =1,则x +y的最大值为________.答案 2解析 因为x 2+y 2-xy =1, 所以x 2+y 2=1+xy .所以(x +y )2=1+3xy ≤1+3×⎝ ⎛⎭⎪⎫x +y 22, 即(x +y )2≤4,解得-2≤x +y ≤2. 当且仅当x =y =1时等号成立, 所以x +y 的最大值为2.7.函数y =2x +1x -1(x >1)的最小值为________.答案 22+2解析 因为y =2x +1x -1(x >1),所以y =2x +1x -1=2(x -1)+1x -1+2≥2+22 x -1 1x -1=22+2.当且仅当x =1+22时取等号,故函数y =2x +1x -1(x >1)的最小值为22+2.8.函数f (x )= x +1 1-2x ( -1<x <12 )的最大值为________.答案324解析 f (x )= x +1 1-2x =12 2x +2 1-2x , 因为-1<x <12,所以2x +2>0,1-2x >0,且(2x +2)+(1-2x )=3. 由基本不等式可得(2x +2)+(1-2x )≥2 2x +2 1-2x ( 当且仅当2x +2=1-2x ,即x =-14时等号成立 ),即 2x +2 1-2x ≤32. 所以f (x )=12 2x +2 1-2x ≤12×32=324.9.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.解 (1)由2x +8y -xy =0,得8x +2y =1, 又x >0,y >0,则1=8x +2y ≥28x ·2y =8xy ,得xy ≥64,当且仅当x =16,y =4时,等号成立.所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x≥10+22x y ·8yx =18.当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18.10.[2016·郑州模拟]若a >0,b >0,且1a +1b =ab . (1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解 (1)因为a >0,b >0,且1a +1b =ab , 所以ab =1a +1b ≥21ab ,所以ab ≥2,当且仅当a =b =2时取等号. 因为a 3+b 3≥2 ab 3≥223=42, 当且仅当a =b =2时取等号, 所以a 3+b 3的最小值为4 2. (2)由(1)可知,2a +3b ≥22a ·3b =26ab ≥43>6,故不存在a ,b ,使得2a +3b =6成立.[B 级 知能提升](时间:20分钟)11.[2017·安庆模拟]设实数m ,n 满足m >0,n <0,且1m +1n =1,则4m +n ( )A .有最小值9B .有最大值9C .有最大值1D .有最小值1 答案 C解析 因为1m +1n =1,所以4m +n =(4m +n )( 1m +1n )=5+4m n +n m ,又m >0,n <0,所以-4m n -nm ≥4,当且仅当n =-2m 时取等号,故5+4m n +n m ≤5-4=1,当且仅当m =12,n =-1时取等号,故选C.12.设a >0,b >1,若a +b =2,则2a +1b -1的最小值为( )A .3+2 2B .6C .4 2D .2 2 答案 A解析 由题可知a +b =2,a +b -1=1,∴2a +1b -1=⎝ ⎛⎭⎪⎫2a +1b -1(a+b -1)=2+2 b -1 a +ab -1+1≥3+22,当且仅当2 b -1 a =ab -1,即a =2-2,b =2时等号成立,故选A. 13.已知a >b >0,则a 2+16b a -b的最小值是________.答案 16解析 因为a >b >0,所以b (a -b )≤⎝⎛⎭⎪⎫b +a -b 22=a 24,当且仅当a =2b 时等号成立.所以a 2+16b a -b≥a 2+16a 24=a 2+64a 2≥2a 2·64a 2=16,当且仅当a =22时等号成立.所以当a =22,b =2时,a 2+16b a -b 取得最小值16.14.已知lg (3x )+lg y =lg (x +y +1). (1)求xy 的最小值; (2)求x +y 的最小值.解 由lg (3x )+lg y =lg (x +y +1), 得⎩⎪⎨⎪⎧x >0,y >0,3xy =x +y +1.(1)∵x >0,y >0,∴3xy =x +y +1≥2xy +1, ∴3xy -2xy -1≥0,即3(xy )2-2xy -1≥0, ∴(3xy +1)(xy -1)≥0, ∴xy ≥1,∴xy ≥1,当且仅当x =y =1时,等号成立. ∴xy 的最小值为1. (2)∵x >0,y >0,∴x +y +1=3xy ≤3·⎝ ⎛⎭⎪⎫x +y 22, ∴3(x +y )2-4(x +y )-4≥0, ∴[3(x +y )+2][(x +y )-2]≥0,∴x +y ≥2,当且仅当x =y =1时取等号, ∴x +y 的最小值为2.理数 第6章 不等式、推理与证明 6-5a[A 级 基础达标](时间:40分钟)1.下列说法正确的有( )①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”;④演绎推理的结论的正误与大前提、小前提和推理形式有关.A .1个B .2个C .3个D .4个 答案 C解析 只有②是错误的,因为演绎推理的结论的正误受大前提、小前提和推理形式正确与否的影响.2.[2017·上海模拟]某西方国家流传这样一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为( )A.大前提错误 B.小前提错误C.推理形式错误D.非以上错误答案 C解析∵大前提的形式:“鹅吃白菜” 不是全称命题,大前提本身正确;小前提“参议员先生也吃白菜”本身也正确,但是不是大前提下的特殊情况,鹅与人不能类比.∴不符合三段论推理形式,∴推理形式错误.3.[2016·浙江模拟]观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102根据上述规律,13+23+33+43+53+63=()A.192B.202C.212D.222答案 C解析因为13+23=32,13+23+33=62,13+23+33+43=102等式的右端依次为(1+2)2,(1+2+3)2,(1+2+3+4)2,所以13+23+33+43+53+63=(1+2+3+4+5+6)2=212,故选C.4.将自然数0,1,2,…按照如下形式进行摆列:根据以上规律判定,从2016到2018的箭头方向是()答案 A解析从所给的图形中观察得到规律:每隔四个单位,箭头的走向是一样的,比如说,0→1,箭头垂直指下,4→5,箭头也是垂直指下,8→9也是如此,而2016=4×504,所以2016→2017也是箭头垂直指下,之后2017→2018的箭头是水平向右,故选A.5.[2017·湖北八校二联]有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁答案 D解析 根据题意,6名选手比赛结果甲、乙、丙、丁猜测如下表:6.[2017·广东三校联考]已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,…,观察上述结果,可归纳出的一般结论为________.答案 f (2n)≥n +22(n ∈N *) 解析 由题意f (2)=32可化为f (21)=1+22,f (4)>2可化为f (22)>2+22,f (8)>52可化为f (23)>3+22,f (16)>3可化为f (24)>4+22,…,由归纳推理可得f (2n)≥n +22(n ∈N *). 7.[2017·重庆模拟]在等差数列{a n }中,若公差为d ,且a 1=d ,那么有a m +a n =a m +n ,类比上述性质,写出在等比数列{a n }中类似的性质:______________________.答案 在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n解析 等差数列中两项之和类比等比数列中两项之积,故在等比数列中,类似的性质是“在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n .”8.下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n 个图形中小正方形的个数是 .答案 n n +1 2解析 由题图知第n 个图形的小正方形个数为1+2+3+…+n .∴总个数为n n +1 2. 9.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C .证明 ∵△ABC 为锐角三角形,∴A +B >π2,∴A >π2-B ,∵y =sin x 在⎝ ⎛⎭⎪⎫0,π2上是增函数, ∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B , 同理可得sin B >cos C ,sin C >cos A ,∴sin A +sin B +sin C >cos A +cos B +cos C .10.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5.求:(1)a 18的值;(2)该数列的前n 项和S n .解 (1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2,…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n=(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n )当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述,S n =⎩⎪⎨⎪⎧ 52n ,n 为偶数,52n -12,n 为奇数.[B 级 知能提升](时间:20分钟)11.[2017·重庆模拟]某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55答案 D解析因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.12.[2016·北京高考]袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒,重复上述过程,直到袋中所有球都被放入盒中,则() A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多答案 B解析若袋中有两个球,则红球、黑球各一个,若红球放在甲盒,则黑球放在乙盒,丙盒中没有球,此时乙盒中黑球多于丙盒中黑球,乙盒中黑球比丙盒中红球多,故可排除A、D;若袋中有四个球,则红球、黑球各两个,若取出两个红球,则红球一个放在甲盒,余下一个放在乙盒,再取出余下的两个黑球,一个放在甲盒,则余下一个放在丙盒,所以甲盒中一红一黑,乙盒中一个红球,丙盒中一个黑球,此时乙盒中红球比丙盒中红球多,排除C.故选B.13.若f(n)为n2+1(n∈N*)的各位数字之和,如:142+1=197,1+9+7=17,则f(14)=17;记f1(n)=f(n),f2(n)=f(f1(n)),f3(n)=f(f2(n)),…,f k+1(n)=f(f k(n)),k∈N*,则f2015(9)=________.答案11解析92+1=82,f1(9)=10;102+1=101,f2(9)=f(f1(9))=f(10)=2;22+1=5,f3(9)=f(f2(9))=f(2)=5;52+1=26,f4(9)=f(f3(9))=f(5)=8;82+1=65,f5(9)=f(f4(9))=f(8)=11;112+1=122,f6(9)=f(f5(9))=f(11)=5,所以{f n(9)}从第3项开始是以3为周期的循环数列,因为2015=2+671×3,所以f2015(9)=f5(9)=11.14.在Rt△ABC中,AB⊥AC,AD⊥BC于D,求证:1AD2=1 AB2+1AC2,那么在四面体A-BCD中,类比上述结论,你能得到怎样的猜想,并说明理由.解如图,由射影定理得AD2=BD·DC,AB2=BD·BC,AC2=DC·BC,故1AB2+1AC2=1BD·BC+1DC·BC=DC+BDBD·DC·BC=1BD·DC=1AD2.在四面体A-BCD中,AB,AC,AD两两垂直,AH⊥底面BCD,垂足为H.则1AH2=1AB2+1AC2+1AD2.证明:连接BH并延长交CD于E,连接AE. ∵AB,AC,AD两两垂直,∴AB⊥平面ACD,又∵AE⊂平面ACD,∴AB⊥AE,在Rt△ABE中,1 AH2=1AB2+1AE2①又易证CD⊥AE,故在Rt△ACD中,1AE2=1AC2+1AD2②把②式代入①式,得1AH2=1AB2+1AC2+1AD2.理数第6章不等式、推理与证明6-6a[A级基础达标](时间:40分钟)1.[2017·绵阳周测]设t=a+2b,s=a+b2+1,则下列关于t和s的大小关系中正确的是()A.t>s B.t≥sC.t<s D.t≤s答案 D解析s-t=b2-2b+1=(b-1)2≥0,∴s≥t,选D项.2.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值()A.恒为负值B.恒等于零C.恒为正值D.无法确定正负答案 A解析由f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,可知f(x)是R上的单调递减函数,由x1+x2>0,可知x1>-x2,f(x1)<f(-x2)=-f(x2),则f(x1)+f(x2)<0.3.[2017·东城模拟]在△ABC中,sin A sin C<cos A cos C,则△ABC 一定是()A.锐角三角形 B.直角三角形C.钝角三角形 D.不确定答案 C解析 由sin A sin C <cos A cos C ,得cos A cos C -sin A sin C >0,即cos(A +C )>0,所以A +C 是锐角,从而B >π2,故△ABC 必是钝角三角形.4.[2017·郑州模拟]设x >0,P =2x +2-x ,Q =(sin x +cos x )2,则( )A .P >QB .P <QC .P ≤QD .P ≥Q答案 A解析 因为2x +2-x ≥22x ·2-x =2(当且仅当x =0时等号成立),而x >0,所以P >2;又(sin x +cos x )2=1+sin2x ,而sin2x ≤1,所以Q ≤2.于是P >Q .故选A.5.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2答案 C解析 因为x >0,y >0,z >0,所以⎝ ⎛⎭⎪⎫y x +y z +( z x +z y )+⎝ ⎛⎭⎪⎫x z +x y =⎝ ⎛⎭⎪⎫y x +x y +⎝ ⎛⎭⎪⎫y z +z y +⎝ ⎛⎭⎪⎫x z +z x ≥6,当且仅当x =y =z 时等号成立,则三个数中至少有一个不小于2,故选C.6.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b ≥2成立的条件的序号是________.答案 ①③④解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④都能使b a +a b ≥2成立.7.[2016·兰州调研]已知a ,b 是不相等的正数,x =a +b 2,y =a +b ,则x ,y 的大小关系是________.答案 x <y解析 ∵a +b 2>ab (a ≠b )⇒a +b >2ab ⇒2(a +b )>a +b +2ab⇒a +b > a +b 22⇒a +b >a +b 2, 即x <y .8.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为________.答案 c n +1<c n解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n ,∴c n 随n 的增大而减小,∴c n +1<c n . 9.[2017·唐山模拟]已知a >0,1b -1a >1,求证:1+a >11-b. 证明 由已知1b -1a >1及a >0可知0<b <1,要证1+a >11-b,只需证1+a ·1-b >1,只需证1+a -b -ab >1, 只需证a -b -ab >0,即a -b ab >1,即1b -1a >1,这是已知条件,所以原不等式得证.10.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解 (1)由已知得⎩⎪⎨⎪⎧a 1=2+1,3a 1+3d =9+32, 则d =2,故a n =2n -1+2,S n =n (n +2).(2)证明:由(1)得b n =S n n =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2),所以(q 2-pr )+2(2q -p -r )=0.因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0, 所以⎝ ⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0. 所以p =r ,这与p ≠r 矛盾,所以数列{b n }中任意不同的三项都不可能成为等比数列.[B 级 知能提升](时间:20分钟)11.若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |答案 D解析 ∵1a <1b <0,∴0>a >b .∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a+b |.12.已知m >1,a =m +1-m ,b =m -m -1,则以下结论正确的是( )A .a >bB .a <bC .a =bD .a ,b 大小不定答案 B解析 ∵a =m +1-m =1m +1+m, b =m -m -1=1m +m -1.而m +1+m >m +m -1>0(m >1), ∴1m +1+m <1m +m -1,即a <b . 13.[2017·邯郸模拟]设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是________.(填序号) 答案 ③解析 若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾, 因此假设不成立,故a ,b 中至少有一个大于1.14.已知a ,b ,m 为非零实数,且a 2+b 2+2-m =0,1a 2+4b 2+1-2m =0.(1)求证:1a 2+4b 2≥9a 2+b2; (2)求证:m ≥72.证明 (1)要证1a 2+4b 2≥9a 2+b2成立, 只需证⎝ ⎛⎭⎪⎫1a 2+4b 2(a 2+b 2)≥9,即证1+4+b 2a 2+4a 2b 2≥9,只需证b 2a 2+4a 2b 2≥4,根据基本不等式,有b 2a 2+4a 2b 2≥2b 2a 2·4a 2b2=4成立.当且仅当2a 2=b 2时等号成立,所以原不等式成立.(2)因为a 2+b 2=m -2,1a 2+4b 2=2m -1,由(1)知(m -2)(2m -1)≥9,即2m 2-5m -7≥0,解得m ≤-1或m ≥72.又a 2+b 2=m -2>0,1a 2+4b 2=2m -1>0,所以m ≥72.理数 第6章 不等式、推理与证明 6-7a[A 级 基础达标](时间:40分钟)1.用数学归纳法证明1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A .7B .8C .9D .10答案 B解析 左边=1+12+14+…+12n -1=1-12n 1-12=2-12n -1,代入验证可知n 的最小值是8.故选B.2.一个关于自然数n 的命题,如果验证当n =1时命题成立,并在假设当n =k (k ≥1且k ∈N *)时命题成立的基础上,证明了当n =k +2时命题成立,那么综合上述,对于( )A .一切正整数命题成立B .一切正奇数命题成立C .一切正偶数命题成立D .以上都不对答案 B解析 本题证的是对n =1,3,5,7,…命题成立,即命题对一切正奇数成立.3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n 2n 2+1 3时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是( )A .(k +1)2+2k 2B .(k +1)2+k 2C .(k +1)2D. 13(k +1)[2(k +1)2+1] 答案 B解析 由n =k 到n =k +1时,左边增加(k +1)2+k 2,故选B.4.[2017·陕西模拟]用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n ·1·2…(2n -1)”(n ∈N +)时,从“n =k 到n =k +1”时,左边的式子之比是( )A.12k +1B.2k +3k +1C.2k +1k +1D.12 2k +1答案 D解析 当n =k 时,左边为(k +1)(k +2)…2k ,当n =k +1时,左边为(k +2)(k +3)…2k (2k +1)(2k +2),所以从“n =k 到n =k +1”时,左边的式子之比是k +1 k +2 ·…·2k k +2 k +3 ·…·2k 2k +1 2k +2= k +1 2k +1 2k +2 =12 2k +1,选D. 5.用数学归纳法证明1+2+3+…+2n =2n -1+22n -1(n ∈N +)时,假设n =k 时命题成立,则当n =k +1时,左端增加的项数是( )A .1项B .k -1项C .k 项D .2k 项答案 D解析 运用数学归纳法证明1+2+3+…+2n =2n -1+22n -1(n ∈N +).当n =k 时,则有1+2+3+…+2k =2k -1+22k -1(k ∈N +),左边表示的为2k 项的和.当n =k +1时,则左边=1+2+3+…+2k +(2k +1)+…+2k +1,表示的为2k +1项的和,增加了2k +1-2k =2k 项.6.[2017·郑州模拟]用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是________.答案 1 2k +1 2k +2解析 不等式的左边增加的式子是12k +1+12k +2-1k +1=1 2k +1 2k +2 ,故填1 2k +1 2k +2. 7.用数学归纳法证明:(n +1)+(n +2)+…+(n +n )=n 3n +1 2(n ∈N *)的第三步中,当n =k +1时等式左边与n =k 时的等式左边的差等于________.答案 3k +2解析 n =k +1比n =k 时左边变化的项为(2k +1)+(2k +2)-(k +1)=3k +2.8.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =______________________ __________________________________________________.答案 n n +1解析 由(S 1-1)2=S 21,得S 1=12; 由(S 2-1)2=(S 2-S 1)S 2,得S 2=23;。
第六章 第三讲A 组基础巩固一、选择题1.(2016·辽宁沈阳四校联考)下列各点中,与点(1,2)位于直线x +y -1=0的同一侧的是导学号 30071709( C )A .(0,0)B .(-1,1)C .(-1,3)D .(2,-3)[解析] 点(1,2)使x +y -1>0,点(-1,3)使x +y -1>0,所以此两点位于x +y -1=0的同一侧.故选C .[解法总结] 作平面区域时要“直线定界,测试点定域”,当不等式无等号时直线画成虚线,有等号时直线画成实线.若直线不过原点,测试点常选取原点.2.(2017·辽宁省铁岭市协作体高三上学期第三次联考数学试题)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≤03x -y +1≥0x -y -1≤0则z =2x +y 的最大值为导学号 30071710( B )A .1B .2C .3D .4[解析] 先根据约束条件画出可行域,再利用几何意义求最值,z =2x +y 表示直线在y 轴上的截距,只需求出可行域直线在y 轴上的截距最大值即可.解:作图易知可行域为一个三角形,其三个顶点为(0,1),(1,0),(-1,-2), 验证知在点(1,0)时取得最大值2当直线z =2x +y 过点A (1,0)时,z 最大是2, 故选B .3.(2017·石家庄高三年级摸底考试)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,x -4y ≤0,x -y +3≥0则下列目标函数中,在点(4,1)处取得最大值的是导学号 30071711( D )A .z =15x -yB .z =-3x +yC .z =15x +yD .z =3x -y[解析] 画⎩⎪⎨⎪⎧x +y ≤5x -4y ≤0x -y +3≥0的线性区域求得A ,B ,C 三点坐标为(4,1)、(1,4)、(-4,-1)由于只在(4,1)处取得最大值否定A 、B 、C ,故选D .4.(2016·浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 的直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=导学号 30071712( C )A .2 2B .4C .3 2D .6[解析] 作出不等式组所表示的平面区域如图中阴影部分所示,过点C ,D 分别作直线x +y -2=0的垂线,垂足分别为A ,B ,则四边形ABDC 为矩形,又C (2,-2),D (-1,1),所以|AB |=|CD |=(2+1)2+(-2-1)2=3 2.故选C .5.(2016·四川成都模拟)某企业拟生产甲、乙两种产品,已知每件甲产品的利润为3万元,每件乙产品的利润为2万元,且甲、乙两种产品都需要在A ,B 两种设备上加工.在每台设备A 、每台设备B 上加工1件甲产品所需工时分别为1 h 和2 h ,加工1件乙产品所需工时分别为2 h 和1 h ,设备A 每天使用时间不超过4 h ,设备B 每天使用时间不超过5 h ,则通过合理安排生产计划,该企业在一天内的最大利润是导学号 30071713( D )A .18万元B .12万元C .10万元D .8万元[解析] 设每天生产甲、乙两种产品分别为x 件,y 件,企业获得的利润为z 万元, 则x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤4,2x +y ≤5,x ,y ∈N ,且z =3x +2y .作出不等式组⎩⎪⎨⎪⎧x +2y ≤4,2x +y ≤5,x ≥0,y ≥0表示的可行域,如图所示.由x ∈N ,y ∈N 可知最优解为(2,1),即生产A 产品2件,B 产品1件,可使企业获得最大利润,最大利润为8万元.故选D .6.(2017·湖南省示范性高中高三上学期百校联考数学试题)已知x ,y 满足⎩⎪⎨⎪⎧x ≥1x +y ≤4ax +by +c ≤0且目标函数z =2x +y 的最大值为7,最小值为1,则a +b +ca=导学号 30071714( D )A .2B .1C .-1D .-2[解析] 先根据约束条件画出可行域,再利用几何意义求最值,z =2x +y 表示直线在y 轴上的截距,只需求出可行域直线在y 轴上的截距最大最小值时所在的顶点即可.解:由题意得:目标函数z =2x +y 在点B 取得最大值为7, 在点A 处取得最小值为1, ∴A (1,-1),B (3,1),∴直线AB 的方程是:x -y -2=0, ∴则a +b +c a=-2.故选D .7.(2016·广东惠州模拟)设x ,y 满足条件⎩⎪⎨⎪⎧x -y +2≥0,3x -y -6≤0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为12,则3a +2b的最小值为导学号 30071715( D )A .256B .83C .113D .4[解析] 不等式组表示的平面区域为如图所示的阴影部分.当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目标函数z =ax +by (a >0,b >0)取得最大值12,∴4a +6b =12,即2a +3b =6.∴3a +2b =(3a +2b )·2a +3b 6=16(12+9b a +4a b)≥4, 当且仅当9b a =4a b ,即a =32,b =1时,等号成立.∴3a +2b 的最小值为4,故选D .8.(2016·湖北鄂州模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y -2≤0,x -2y +2≥0,x +y -1≥0,则s =y +1x +1的取值范围是导学号 30071716( D )A .[1,32]B .[12,1]C .[1,2]D .[12,2][解析] 约束条件⎩⎪⎨⎪⎧2x -y -2≤0,x -2y +2≥0,x +y -1≥0表示的可行域如图所示.s =y +1x +1可以看作是可行域中的一点(x ,y )与点(-1,-1)连结的斜率. 由图可知,当x =1,y =0时,斜率最小,即s =y +1x +1取最小值12.当x =0,y =1时,斜率最大,即s =y +1x +1取最大值2.故s =y +1x +1的取值范围是[12,2],故选D .二、填空题9.(2016·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0x -2y -1≤0x ≤1,则z =2x +3y -5的最小值为-10.导学号 30071717[解析] 作出不等式组表示的平面区域,如图中阴影部分所示,由图知当z =2x +3y -5经过点A (-1,-1)时,z 取得最小值,z min =2×(-1)+3×(-1)-5=-10.10.(2016·江苏)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是[45,13].导学号 30071718[解析] 不等式组所表示的平面区域是以点(0,2),(1,0),(2,3)为顶点的三角形及其内部,如图所示.因为原点到直线2x +y -2=0的距离为25,所以(x 2+y 2)min =45,又当(x ,y )取点(2,3)时,x 2+y 2取得最大值13,故x 2+y 2的取值范围是[45,13].11.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,目标函数z =y -ax (a ∈R ).若z 取最大值时的唯一最优解是(1,3),则实数a 的取值范围是(1,+∞).导学号 30071719[解析] 作出可行域,可行域为三条直线所围成的区域,则它的最大值在三条直线的交点处取得,三个交点分别为(1,3),(7,9),(3,1),所以⎩⎪⎨⎪⎧3-a >9-7a ,3-a >1-3a .所以a >1.三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x -3y ≤-4,3x +5y ≤30.导学号 30071720(1)求目标函数z =2x -y 的最大值和最小值;(2)求目标函数z =2x +y 的最大值和最小值;(3)若目标函数z =ax +y 取得最大值的最优解有无穷多个,求实数a 的值; (4)求z =y +5x +5的取值范围;(5)求z =x 2+y 2的取值范围.[分析] 利用函数性质及几何意义解决目标函数最值的答题模板. 画区域——在平面区域内作出可行域 转化——把所求目标函数转化为关于基本量的函数 得结论——利用函数的性质及几何意义,求得关于目标函数的结论 [解析] (1)作出不等式组表示的可行域如图:作直线l :2x -y =0,并平行移动使它过可行域内的B 点,此时z 有最大值;过可行域内的C 点,此时z 有最小值,解⎩⎪⎨⎪⎧ x -3y =-4,3x +5y =30,得B (5,3). 解⎩⎪⎨⎪⎧x =1,3x +5y =30,得C (1,275).∴z max =2×5-3=7,z min =2×1-275=-175.(2)作直线l :2x +y =0,并平移此直线,当平移直线过可行域内的A 点时,z 取得最小值;当平移直线过可行域内的B 点时,z 取最大值,解⎩⎪⎨⎪⎧x =1,x -3y =-4,得A (1,53).解⎩⎪⎨⎪⎧x -3y =-4,3x +5y =30,得B (5,3). ∴z max =2×5+3=13,z min =2×1+53=113.(3)一般情况下,当z 取得最大值时,直线所经过的点都是唯一的,但若直线平行于边界直线,即直线z =ax +y 平行于直线3x +5y =30时,线段BC 上的任意一点均使z 取得最大值,此时满足条件的点即最优解有无数个.又k BC =-35,∴-a =-35,∴a =35.(4)z =y +5x +5=y -(-5)x -(-5),可看作区域内的点(x ,y )与点D (-5,-5)连线的斜率.由图可知,k BD ≤z ≤k CD .∵k BD =3-(-5)5-(-5)=45,k CD =275-(-5)1-(-5)=2615,∴z =y +5x +5的取值范围是[45,2615].(5)z =x 2+y 2,则z 为(x ,y )与原点(0,0)的距离,结合不等式的区域,易知A 点到原点距离最小为343,最大值为|OB |,|OC |,原点O 到直线3x +5y =30距离三者之一,计算得,最大值为|OB |=34.∴x 2+y 2的取值范围为[349,34].13.(教材改编题)某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料为A ,B 两种规格金属板,每张面积分别为2 m 2与3 m 2.用A 种规格金属板可造甲种产品3个、乙种产品5个;用B 种规格金属板可造甲、乙两种产品各6个.问A ,B 两种规格金属板各取多少张才能完成计划,并使总用料面积最省?导学号 30071721[解析] 设A 、B 两种金属板各取x 张,y 张,总用料面积为z , 则约束条件为⎩⎪⎨⎪⎧3x +6y ≥45,5x +6y ≥55,x ,y ∈N ,目标函数z=2x +3y .作出不等式组的可行域,如图所示.将z =2x +3y 化成y =-23x +z 3,得到斜率为-23,在y 轴上截距为z3,且随z 变化的一组平行直线.当直线z =2x +3y 经过可行域上点M 时,截距最小,z 取得最小值.解方程组⎩⎪⎨⎪⎧5x +6y =55,3x +6y =45,得点M 的坐标为(5,5).此时z min =2×5+3×5=25.所以两种金属板各取5张时,总用料面积最省.B 组能力提升1.(2017·福建省福州外国语学校高三适应性考试三数学试题)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -a ≤0,x -y ≥0,2x +y ≥0,若目标函数z =x +y 的最大值为2,则实数a 的值为导学号 30071722( A )A .2B .1C .-1D .-2[解析] 先作出不等式组⎩⎪⎨⎪⎧x -y ≥02x +y ≥0的图象如图,因为目标函数z =x +y 的最大值为2,所以x +y =2与可行域交于如图A 点,联立⎩⎪⎨⎪⎧x +y =2x -y =0,得A (1,1),由A (1,1)在直线3x -y -a=0上,所以有3-1-a =0,a =2,故选A .2.(改编题)设变量x ,y 满足约束条件:⎩⎪⎨⎪⎧x -y ≤0,x +2y ≤3,4x -y ≥-6,则z =2x4y 的取值范围为导学号 30071723( A )A .[132,4]B .[116,8]C .[4,32]D .[8,16][分析] 作出不等式组所表示的平面区域→对所求目标函数进行转化,确定最大、最小值点→列出方程组求得相应的坐标,代入所求即可求得结论[解析] 如图所示,作出约束条件⎩⎪⎨⎪⎧x -y ≤0,x +2y ≤3,4x -y ≥-6确定的可行域,因为z =2x 4y =2x -2y ,设t=x -2y ,则当直线x -2y -t =0过点C 时,取得最小值,当直线x -2y -t =0过点B 时,取得最大值.由⎩⎪⎨⎪⎧ x +2y -3=0,4x -y +6=0,解得C (-1,2);由⎩⎪⎨⎪⎧x -y =0,4x -y +6=0,解得B (-2,-2). 所以t 的最小值为-1-2×2=-5,最大值为-2-2×(-2)=2.故t ∈[-5,2]. 所以z =2x 4y =2x -2y 的取值范围为[132,4].3.(2016·衡水模拟)已知变量x ,y 满足的不等式组⎩⎪⎨⎪⎧2x -y -2≤0x -2y +2≥0x +y -2≥0表示的区域为D ,B ,C 为区域D 内的任意两点,设OB →,OC →的夹角为θ,则tan θ的最大值是导学号 30071724( C )A .43B .35C .34D .45[解析] 当B ,C 处于如图所示位置时, OB →,OC →的夹角为θ最大, 得到B (23,43),C (43,23),则cos θ=OB →·OC→|OB →||OC →|=23×43+43×23(23)2+(43)2(43)2+(23)2=45. 所以0<θ<π2,且sin θ=35, 因为tan θ在(0,π2)是增函数, 所以tan θ的最大值为sin θcos θ=34,故选C . 4.(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为216_000 元.导学号 30071725[解析] 由题意,设产品A 生产x 件,产品B 生产y 件,利润z =2 100x +900y ,线性约束条件为⎩⎪⎨⎪⎧ 1.5x +0.5y ≤150x +0.3y ≤905x +3y ≤600x ≥0y ≥0,作出不等式组表示的平面区域如图中阴影部分所示,又由x ∈N ,y ∈N ,可知取得最大值时的最优解为(60,100),所以z max =2 100×60+900×100=216000(元). 5.已知函数f (x )=x 3+ax 2+bx +c 的一个零点为x =1,另外两个零点可分别作为一个椭圆、一个双曲线的离心率.导学号 30071726(1)求a +b +c ;(2)求b a的取值范围.[解析] (1)因为f (1)=0,所以a +b +c =-1.(2)因为c =-1-a -b ,所以f (x )=x 3+ax 2+bx -1-a -b =(x -1)[x 2+(a +1)x +a +b +1],从而另两个零点为方程x 2+(a +1)x +a +b +1=0的两根,且一根大于1,一根大于零小于1,设g (x )=x 2+(a +1)x +a +b +1,由根的分布知识画图可得⎩⎪⎨⎪⎧ g (0)>0,g (1)<0, 即⎩⎪⎨⎪⎧a +b +1>0,2a +b +3<0, 作出可行域如图所示.而b a =b -0a -0表示可行域中的点(a ,b )与原点连线的斜率k ,直线OA 的斜率k 1=-12,直线2a +b +3=0的斜率k 2=-2,所以k ∈(-2,-12),即b a ∈(-2,-12).。
(全国通用版)2019版高考数学大一轮复习第六章不等式、推理与证明课时达标32 一元二次不等式及其解法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学大一轮复习第六章不等式、推理与证明课时达标32 一元二次不等式及其解法)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学大一轮复习第六章不等式、推理与证明课时达标32 一元二次不等式及其解法的全部内容。
课时达标第32讲一元二次不等式及其解法[解密考纲]考查一元二次不等式的解法,常利用判别式讨论解集,常以选择题或填空题的形式出现.一、选择题1.不等式错误!<1的解集是(A)A.(-∞,-1)∪(1,+∞)B.(1,+∞)C.(-∞,-1)D.(-1,1)解析∵错误!<1,∴错误!-1<0,即错误!<0,该不等式可化为(x+1)(x-1)>0,∴x<-1或x>1.故选A.2.(2018·湖南株洲期中)在R上定义运算⊙:a⊙b=ab+2a+b,则满足x⊙(x-2)<0的实数x的取值范围为( B)A.(0,2)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)解析根据条件由x⊙(x-2)<0,得(x+2)(x-1)<0,解得-2<x〈1。
故选B.3.函数y=ln错误!+错误!的定义域为( C)A.{x|-1<x<2} B.{x|0〈x〈1}C.{x|0〈x≤1}D.{x|-1<x≤2}解析由题意知错误!解得错误!所以函数y=ln错误!+错误!的定义域为{x|0<x≤1}.故选C.4.(2018·辽宁庄河联考)不等式ax2+bx+2〉0的解集为{x|-1〈x<2},则不等式2x2+bx+a〉0的解集为( A)A.错误!x错误!B.错误!x错误!C.{x|-2〈x<1} D.{x|x〈-2或x〉1}解析∵不等式ax2+bx+2〉0的解集为{x|-1〈x<2},∴ax2+bx+2=0的两根为-1,2,且a<0,即-1+2=-错误!,(-1)×2=错误!,解得a=-1,b=1,则所求不等式可化为2x2+x-1>0,解得x<-1或x>错误!。
课时达标 第32讲[解密考纲]主要考查不等式及其性质,以选择题或填空题的形式出现,位于选择题或填空题的中间位置,难度较易或中等.一、选择题1.设a ,b 为实数,则“a <1b 或b <1a ”是“0<ab <1”的( D )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:可通过举反例说明,当a =b =-10时,a <1b ,b <1a ,但ab =100>1,所以不是充分条件;反之,当a =-1,b =-12时,0<ab <1,但a >1b ,b >1a ,所以不是必要条件.综上可知“a <1b 或b <1a”是“0<ab <1”的既不充分也不必要条件.2.若1a <1b <0,则下列结论不正确的是( D )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:令a =-1,b =-2,代入选项验证可知选项D 错误,故选D .3.(2017·浙江富阳模拟)如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( C )A .ab >acB .bc >acC .cb 2<ab 2D .ac (a -c )<0解析:因为c <b <a ,且ac <0,所以a >0,c <0,所以ab -ac =a (b -c )>0,bc -ac =(b -a )c >0,ac (a -c )<0,所以A ,B ,D 均正确.因为b 可能等于0,也可能不等于0,所以cb 2<ab 2不一定成立.4.(2017·广东实验中学模拟)已知0<a <b <1,则( D ) A .1b >1aB .⎝⎛⎭⎫12a <⎝⎛⎭⎫12 bC .(lg a )2<(lg b )2D .1lg a >1lg b解析:因为0<a <b <1,所以1b -1a =a -b ab <0,可得1b <1a ;⎝⎛⎭⎫12a >⎝⎛⎭⎫12b ;(lg a )2>(lg b )2;lg a <lg b <0,可得1lg a >1lg b.综上可知,只有D 正确.5.(2017·四川成都模拟)已知a ,b 为非零实数,且a <b ,则下列不等式一定成立的是( C )A .a 2<b 2B .ab 2>a 2bC .1ab 2<1a 2bD .b a <a b解析:若a <b <0,则a 2>b 2,故A 错;若0<a <b ,则b a >ab ,故D 错;若ab <0,即a <0,b >0,则a 2b >ab 2,故B 错.6.(2017·陕西西安检测)设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,那么2α-β3的取值范围是( D ) A .⎝⎛⎭⎫0,5π6 B .⎝⎛⎭⎫-π6,5π6 C .(0,π) D .⎝⎛⎭⎫-π6,π 解析:由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π.二、填空题7.(2017·山西四校联考)已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是a b 2+b a 2≥1a +1b .解析:a b 2+ba 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a2 =(a -b )⎝⎛⎭⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2. 因为a +b >0,(a -b )2≥0,所以(a +b )(a -b )2a 2b 2≥0,所以a b 2+b a 2≥1a +1b. 8.(2017·江苏模拟)若-1<a +b <3,2<a -b <4,则2a +3b 的取值范围为⎝⎛⎫-92,132. 解析:设2a +3b =x (a +b )+y (a -b ),则⎩⎪⎨⎪⎧x +y =2,x -y =3,解得⎩⎨⎧x =52,y =-12.又因为-52<52(a +b )<152,-2<-12(a -b )<-1,所以-92<52(a +b )-12(a -b )<132,即-92<2a +3b <132.9.(2017·贵州遵义模拟)已知下列结论: ①若a >|b |,则a 2>b 2;②若a >b ,则1a <1b;③若 a >b ,则a 3>b 3;④若a <0,-1<b <0,则ab 2>a . 其中正确的是①③④(只填序号即可).解析:对于①,因为a >|b |≥0,所以a 2>b 2,即①正确;对于②,当a =2,b =-1时,显然不正确;对于③,显然正确;对于④,因为a <0,-1<b <0, ab 2-a =a (b 2-1)>0,所以ab 2>a ,即④正确. 三、解答题10.若实数a ≠1,比较a +2与31-a 的大小.解析:∵a +2-31-a =-a 2-a -11-a =a 2+a +1a -1,∴当a >1时,a +2>31-a ;当a <1时,a +2<31-a.11.已知x ,y 为正实数,满足1≤lg xy ≤2,3≤lg xy ≤4,求lg(x 4y 2)的取值范围.解析:设a =lg x ,b =lg y ,则lg xy =a +b ,lg xy =a -b ,lg x 4y 2=4a +2b ,设4a +2b =m (a +b )+n (a -b ),∴⎩⎪⎨⎪⎧ m +n =4,m -n =2,解得⎩⎪⎨⎪⎧m =3,n =1.∴lg x 4y 2=3lg xy +lg x y .∵3≤3lg xy ≤6,3≤lg xy≤4,∴6≤lg(x 4y 2)≤10,即lg(x 4y 2)的取值范围是[6,10].12.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c ,求ca 的取值范围.解析:∵f (1)=0,∴a +b +c =0,∴b =-(a +c ). 又a >b >c ,∴a >-(a +c )>c ,且a >0,c <0, ∴1>-a +c a >c a ,即1>-1-c a >ca ,∴⎩⎨⎧2ca<-1,ca >-2,解得-2<c a <-12,即ca 的取值范围是⎝⎛⎭⎫-2,-12.。
课时作业41 直接证明与间接证明一、选择题1.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”过程应用了( ) A.分析法B.综合法C.综合法、分析法综合使用D.间接证明法解析:因为证明过程是“从左往右”,即由条件⇒结论.答案:B2.若a、b∈R,则下面四个式子中恒成立的是( )A.lg(1+a2)>0 B.a2+b2≥2(a-b-1)C.a2+3ab>2b2 D.ab<a+1 b+1解析:在B中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2≥0.∴a2+b2≥2(a-b-1)恒成立.答案:B3.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b ∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下正确的是( ) A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确,②的假设错误D.①的假设错误;②的假设正确解析:反证法的实质是否定结论,对于①,其结论的反面是p+q>2,所以①不正确;对于②,其假设正确.答案:D4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac <3a”索的因应是( )A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析:由题意知b2-ac<3a⇐b2-ac<3a2⇐(a+c)2-ac<3a2⇐a 2+2ac +c 2-ac -3a 2<0 ⇐-2a 2+ac +c 2<0⇐2a 2-ac -c 2>0 ⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0. 答案:C5.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系为( ) A .P >Q B .P =Q C .P <QD .由a 取值决定解析:假设P <Q ,要证P <Q ,只要证P 2<Q 2,只要证2a +7+2a a +<2a +7+2a +a +,只要证a 2+7a <a 2+7a +12,只要证0<12, ∵0<12成立,∴P <Q 成立. 答案:C6.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1. 其中能推出:“a ,b 中至少有一个大于1”的条件是( ) A .②③ B .①②③ C .③D .③④⑤解析:若a =12,b =23,则a +b >1.但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出; 若a =-2,b =-3,则a 2+b 2>2,故④推不出; 若a =-2,b =-3,则ab >1,故⑤推不出; 对于③,即a +b >2.则a ,b 中至少有一个大于1, 反证法:假设a ≤1且b ≤1, 则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1. 答案:C 二、填空题7.设a =3+22,b =2+7,则a ,b 的大小关系为________.解析:a =3+22,b =2+7两式的两边分别平方,可得a 2=11+46,b 2=11+47,显然,6<7.∴a <b .答案:a <b8.用反证法证明命题“若实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,则a ,b ,c ,d 中至少有一个是非负数”时,第一步要假设结论的否定成立,那么结论的否定是:________.解析:“至少有一个”的否定是“一个也没有”,故结论的否定是“a ,b ,c ,d 中没有一个是非负数,即a ,b ,c ,d 全是负数”.答案:a ,b ,c ,d 全是负数9.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.解析:令⎩⎪⎨⎪⎧f-=-2p 2+p +1≤0,f =-2p 2-3p +9≤0,解得p ≤-3或p ≥32,故满足条件的p 的范围为⎝ ⎛⎭⎪⎫-3,32. 答案:⎝ ⎛⎭⎪⎫-3,32三、解答题10.若a >b >c >d >0且a +d =b +c ,求证:d +a <b +c .证明:要证d +a <b +c ,只需证(d +a )2<(b +c )2,即a +d +2ad <b +c +2bc ,因a +d =b +c ,只需证ad <bc ,即ad <bc ,设a +d =b +c =t ,则ad -bc =(t -d )d -(t -c )c =(c -d )(c +d -t )<0,故ad <bc 成立,从而d +a <b +c 成立.11.已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1. (1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.解:(1)证明:由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB . 又AB ∩AD =A , ∴SA ⊥平面ABCD .(2)假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD . ∵BC ∥AD ,BC ⊄平面SAD . ∴BC ∥平面SAD .而BC ∩BF =B , ∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立. ∴不存在这样的点F ,使得BF ∥平面SAD .1.(2016·浙江卷)设函数f (x )=x 3+11+x ,x ∈[0,1],证明:(Ⅰ)f (x )≥1-x +x 2; (Ⅱ)34<f (x )≤32.证明:(Ⅰ)因为1-x +x 2-x 3=1--x 41--x=1-x 41+x, 由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2. (Ⅱ)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=x -x +x ++32≤32, 所以f (x )≤32.由(Ⅰ)得f (x )≥1-x +x 2=(x -12)2+34≥34,又因为f (12)=1924>34,所以f (x )>34.综上,34<f (x )≤32.2.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点;(2)试用反证法证明1a>c .证明:(1)∵f (x )图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2, ∵f (c )=0,∴x 1=c 是f (x )=0的根,又∵x 1x 2=c a,∴x 2=1a (1a≠c ).∴1a 是f (x )=0的一个根.即1a是函数f (x )的一个零点.(2)假设1a <c ,又1a>0,由0<x <c 时,f (x )>0.知f ⎝ ⎛⎭⎪⎫1a >0与f ⎝ ⎛⎭⎪⎫1a =0矛盾,∴1a ≥c .又∵1a≠c ,∴1a>c .课时作业30 数系的扩充与复数的引入一、选择题1.若集合A ={i ,i 2,i 3,i 4}(i 是虚数单位),B ={1,-1},则A ∩B 等于( )A .{-1}B .{1}C .{1,-1}D .∅解析:因为A ={i ,i 2,i 3,i 4}={i ,-1,-i ,1},B ={1,-1},所以A ∩B ={-1,1}. 答案:C2.(2016·山东卷)若复数z =21-i ,其中i 为虚数单位,则z =( )A .1+iB .1-iC .-1+iD .-1-i解析:易知z =1+i ,所以z =1-i ,选B. 答案:B3.(2016·新课标全国卷Ⅱ)设复数z 满足z +i =3-i ,则z =( ) A .-1+2i B .1-2i C .3+2iD .3-2i解析:易知z =3-2i ,所以z =3+2i. 答案:C4.若复数m (3+i)-(2+i)在复平面内对应的点位于第四象限,则实数m 的取值范围为( )A .m >1B .m >23C .m <23或m >1D.23<m <1 解析:m (3+i)-(2+i)=(3m -2)+(m -1)i由题意,得⎩⎪⎨⎪⎧3m -2>0,m -1<0,解得23<m <1.答案:D5.若复数z =a 2-1+(a +1)i(a ∈R )是纯虚数,则1z +a的虚部为( ) A .-25B .-25iC.25D.25i 解析:由题意得⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,所以a =1,所以1z +a =11+2i=1-2i +-=15-25i ,根据虚部的概念,可得1z +a 的虚部为-25.答案:A6.已知复数z =1+2i 1-i,则1+z +z 2+…+z 2 015=( ) A .1+i B .1-i C .iD .0解析:z =1+2i1-i =1++2=i ,∴1+z +z 2+…+z2 015=-z 2 0161-z=1-i 2 0161-i =1-i4×5041-i=0. 答案:D7.(2017·芜湖一模)已知i 是虚数单位,若z 1=a +32i ,z 2=a -32i ,若z 1z 2为纯虚数,则实数a =( )A.32B .-32C.32或-32D .0解析:z 1z 2=a +32i a -32i =⎝⎛⎭⎪⎫a +32i 2⎝⎛⎭⎪⎫a -32i ⎝ ⎛⎭⎪⎫a +32i=⎝⎛⎭⎪⎫a 2-34+3a i a 2+34是纯虚数,∴⎩⎪⎨⎪⎧a 2-34=0,3a ≠0,解得a =±32. 答案:C8.在复平面内,复数11+i ,11-i(i 为虚数单位)对应的点分别为A ,B ,若点C 为线段AB 的中点,则点C 对应的复数为( )A.12 B . 1 C.12i D .i解析:∵11+i=1-i -+=12-12i ,11-i=1+i -+=12+12i ,则A (12,-12),B (12,12),∴线段AB 的中点C (12,0),故点C 对应的复数为12,选A. 答案:A 二、填空题9.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 解析:复数z =(1+2i)(3-i)=5+5i ,其实部是5. 答案:510.(2016·天津卷)已知a ,b ∈R ,i 是虚数单位,若(1+i)(1-b i)=a ,则ab的值为________.解析:(1+i)(1-b i)=1+b +(1-b )i =a ,所以b =1,a =2,a b=2. 答案:2 11.已知a +2ii=b +i(a ,b ∈R ),其中i 为虚数单位,则a +b =________.解析:因为a +2ii=b +i ,所以2-a i =b +i.由复数相等的充要条件得b =2,a =-1,故a +b =1.答案:112.在复平面上,复数3-对应的点到原点的距离为________.解析:解法1:由题意可知⎪⎪⎪⎪⎪⎪3-2=3|2-i|2=35. 解法2:3-2=34-4i +i 2=33-4i=+-+=9+12i 25=925+1225i ,⎪⎪⎪⎪⎪⎪3-2=⎪⎪⎪⎪⎪⎪925+1225i =⎝ ⎛⎭⎪⎫9252+⎝ ⎛⎭⎪⎫12252=35.答案:351.(2017·河北衡水一模)如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,则|z 1+z 2|=( )A .2B .3C .2 2D .3 3解析:z 1=-2-i ,z 2=i ,z 1+z 2=-2,故选A. 答案:A2.设复数z =3+i(i 为虚数单位)在复平面中对应点A ,将OA 绕原点O 逆时针旋转90°得到OB ,则点B 在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:因为复数z 对应点的坐标为A (3,1),所以点A 位于第一象限,所以逆时针旋转π2后对应的点B 在第二象限.答案:B3.已知i 为虚数单位,(z 1-2)(1+i)=1-i ,z 2=a +2i ,若z 1·z 2∈R ,则|z 2|=( ) A .4 B .20 C. 5D .2 5解析:z 1=2+1-i 1+i=2+1-2+-=2-i ,z 1·z 2=(2-i)(a +2i)=2a +2+(4-a )i ,若z 1·z 2∈R ,则a =4,|z 2|=25,选D.答案:D4.已知复数z 1=cos15°+sin15°i 和复数z 2=cos45°+sin45°i,则z 1·z 2=________.解析:z 1·z 2=(cos15°+sin15°i)(cos45°+sin45°i)=(cos15°cos45°-sin15°sin45°)+(sin15°cos45°+cos15°sin45°)i=cos 60°+sin60°i=12+32i.答案:12+32i5.已知复数z =i +i 2+i 3+…+i2 0141+i,则复数z 在复平面内对应的点为________.解析:∵i 4n +1+i4n +2+i4n +3+i4n +4=i +i 2+i 3+i 4=0,而 2 013=4×503+1,2 014=4×503+2,∴z =i +i 2+i 3+…+i 2 0141+i=i +i 21+i =-1+i 1+i =-1+-+-=2i2=i , 对应的点为(0,1).答案:(0,1)。
课时作业37 一元二次不等式及其解法一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]解析:方法1:当x ≤0时,x +2≥x 2, ∴-1≤x ≤0;①当x >0时,-x +2≥x 2,∴0<x ≤1.②由①②得原不等式的解集为{x |-1≤x ≤1}.方法2:作出函数y =f (x )和函数y =x 2的图象,如图,由图知f (x )≥x 2的解集为[-1,1].答案:A2.(2017·梧州模拟)不等式2x +1<1的解集是( ) A .(-∞,-1)∪(1,+∞) B .(1,+∞) C .(-∞,-1) D .(-1,1) 解析:∵2x +1<1,∴2x +1-1<0,即1-x x +1<0,该不等式可化为(x +1)(x -1)>0,∴x <-1或x >1.答案:A3.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集是B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3解析:由题意,A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2}, 则不等式x 2+ax +b <0的解集为{x |-1<x <2}. 由根与系数的关系可知,a =-1,b =-2. 所以a +b =-3,故选A. 答案:A4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,4]D .[0,4]解析:由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以实数a 的取值范围是[0,4].答案:D5.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间解析:设销售价定为每件x 元,利润为y ,则:y =(x -8)[100-10(x -10)], 依题意有,(x -8)[100-10(x -10)]>320,即x 2-28x +192<0,解得12<x <16. 所以每件销售价应为12元到16元之间. 答案:C6.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A .[-4,1] B .[-4,3] C .[1,3]D .[-1,3]解析:原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.答案:B 二、填空题7.若0<a <1,则不等式(a -x )(x -1a)>0的解集是________.解析:原不等式即(x -a )(x -1a)<0,由0<a <1得a <1a,∴a <x <1a.答案:{x |a <x <1a}8.设f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=2a -3a +1,则实数a的取值范围是________.解析:∵f (x +3)=f (x ),∴f (2)=f (-1+3)=f (-1)=-f (1)<-1. ∴2a -3a +1<-1⇔3a -2a +1<0⇔(3a -2)(a +1)<0,∴-1<a <23. 答案:(-1,23)9.若不等式mx 2+2mx -4<2x 2+4x 对任意x 都成立,则实数m 的取值范围是________. 解析:原不等式等价于(m -2)x 2+2(m -2)x -4<0, ①当m =2时,对任意x 不等式都成立;②当m -2<0时,Δ=4(m -2)2+16(m -2)<0,∴-2<m <2. 综合①②,得m ∈(-2,2]. 答案:(-2,2]10.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.解析:因为关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(-2a,4a ).又x 2-2ax -8a 2<0(a >0)解集为(x 1,x 2).则x 1=-2a ,x 2=4a .由x 2-x 1=6a =15得a =52.答案:52三、解答题11.(2017·池州模拟)已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值范围; (2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0.解:(1)∵函数f (x )=ax 2+2ax +1的定义域为R . ∴ax 2+2ax +1≥0恒成立, 当a =0时,1≥0恒成立,当a ≠0时,则有⎩⎪⎨⎪⎧a >0,Δ=a2-4a ≤0,解得0<a ≤1.综上可知,a 的取值范围是[0,1]. (2)∵f (x )=ax 2+2ax +1 =ax +2+1-a ,∵a >0,∴当x =-1时,f (x )min =1-a . 由题意得,1-a =22,∴a =12. ∴x 2-x -⎝ ⎛⎭⎪⎫122-12<0,即(2x +1)(2x -3)<0,-12<x <32.故不等式的解集为⎝ ⎛⎭⎪⎫-12,32. 12.已知关于x 的不等式kx 2-2x +6k <0(k ≠0). (1)若不等式的解集为{x |x <-3或x >-2},求k 的值; (2)若不等式的解集为{x |x ∈R ,x ≠1k},求k 的值;(3)若不等式的解集为R ,求k 的取值范围; (4)若不等式的解集为∅,求k 的取值范围.解:(1)由不等式的解集为{x |x <-3或x >-2}可知k <0,且-3与-2是方程kx 2-2x +6k =0的两根,∴(-3)+(-2)=2k ,解得k =-25.(2)由不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R ,x ≠1k 可知⎩⎪⎨⎪⎧k <0,Δ=4-24k 2=0,解得k =-66. (3)依题意知⎩⎪⎨⎪⎧k <0,Δ=4-24k 2<0,解得k <-66. (4)依题意知⎩⎪⎨⎪⎧k >0,Δ=4-24k 2≤0,解得k ≥66.1.当x >0时,若不等式x 2+ax +1≥0恒成立,则a 的最小值为( ) A .-2 B .-3 C .-1D .-32解析:法1:当Δ=a 2-4≤0,即-2≤a ≤2时,不等式x 2+ax +1≥0对任意x >0恒成立,当Δ=a 2-4>0,则需⎩⎪⎨⎪⎧a 2-4>0,-a2<0,解得a >2.综上得a ≥-2.所以使不等式x 2+ax +1≥0对任意x >0恒成立的实数a 的最小值是-2,故选A.法2:因为不等式x 2+ax +1≥0对任意x >0恒成立,即a ≥-⎝⎛⎭⎪⎫x +1x (x >0)恒成立,又x >0时,-⎝⎛⎭⎪⎫x +1x ≤-2,所以只需a ≥-2,所以实数a 的最小值是-2.故选A. 答案:A2.(2017·河南郑州第一次质量检测)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≥0,x 2-2x ,x <0,若关于x的不等式[f (x )]2+af (x )-b 2<0恰有1个整数解,则实数a 的最大值是( )A .2B .3C .5D .8解析:作出函数f (x )的图象如图实线部分所示,由[f (x )]2+af (x )-b 2<0,得-a -a 2+4b 22<f (x )<-a +a 2+4b22,若b ≠0,则f (x )=0满足不等式,即不等式有2个整数解,不满足题意,所以b =0,所以-a <f (x )<0,且整数解x 只能是3,当2<x <4时,-8<f (x )<0,所以-8≤-a <-3,即a 的最大值为8,故选D.答案:D3.(2017·宿州模拟)若关于x 的不等式4x-2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________.解析:因为不等式4x-2x +1-a ≥0在[1,2]上恒成立,所以4x-2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x+1-1=(2x-1)2-1.因为1≤x ≤2,所以2≤2x≤4.由二次函数的性质可知:当2x=2,即x =1时,y 取得最小值0, 所以实数a 的取值范围为(-∞,0]. 答案:(-∞,0]4.已知函数f (x )=x 2-2ax -1+a ,a ∈R . (1)若a =2,试求函数y =f xx(x >0)的最小值; (2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围. 解:(1)依题意得y =f x x =x 2-4x +1x =x +1x-4.因为x >0,所以x +1x≥2.当且仅当x =1x时,即x =1时,等号成立. 所以y ≥-2. 所以当x =1时,y =f xx的最小值为-2. (2)因为f (x )-a =x 2-2ax -1.所以要使得“∀x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]上恒成立”.不妨设g (x )=x 2-2ax -1则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧g ,g ,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞.。
6.2 一元二次不等式及其解法[课 时 跟 踪 检 测][基 础 达 标]1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]解析:A ={x |x 2+x -6≤0}={x |-3≤x ≤2}, 由x -1>0得x >1,即B ={x |x >1}, 所以A ∩B ={x |1<x ≤2}. 答案:D2.不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解析:由根与系数的关系得1a =-2+1,-c a=-2,得a =-1,c =-2,∴f (x )=-x2-x +2(经检验知满足题意),∴f (-x )=-x 2+x +2,其图象开口向下,顶点为⎝ ⎛⎭⎪⎫12,94.答案:B3.(2018届昆明模拟)不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .[-1,4]B .(-∞,-2)∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]解析:x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.答案:A 4.不等式2x +1<1的解集是( ) A .(-∞,-1)∪(1,+∞) B .(1,+∞) C .(-∞,-1) D .(-1,1)解析:∵2x +1<1,∴2x +1-1<0,即1-x x +1<0,该不等式可化为(x +1)(x -1)>0,∴x <-1或x >1.答案:A5.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是( ) A .{a |0<a <4} B .{a |0≤a <4} C .{a |0<a ≤4}D .{a |0≤a ≤4}解析:集合A ={x |ax 2-ax +1<0}=∅, 等价于ax 2-ax +1<0无解.当a =0时,原不等式可化为1<0,满足条件; 当a ≠0时,由ax2-ax +1<0无解,得⎩⎪⎨⎪⎧a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,a 2-4a ≤0,解得0<a ≤4, 综上可知,0≤a ≤4. 答案:D6.若关于x 的方程3x 2-5x +a =0的一个根大于-2且小于0,另一个根大于1且小于3,则( )A .a <2B .a >-12C .-22<a <0D .-12<a <0解析:设f (x )=3x 2-5x +a ,则由题意有⎩⎪⎨⎪⎧f-,f ,f ,f,即⎩⎪⎨⎪⎧22+a >0,a <0,-2+a <0,12+a >0.解得-12<a <0.故选D. 答案:D7.若不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52D .-3解析:解法一:不等式可化为ax ≥-x 2-1,由于x ∈⎝ ⎛⎦⎥⎤0,12,所以a ≥-⎝ ⎛⎭⎪⎫x +1x .因为f (x )=x +1x 在⎝ ⎛⎦⎥⎤0,12上是减函数,所以⎝⎛⎭⎪⎫-x -1x max =-52.所以a ≥-52. 解法二:令f (x )=x 2+ax +1,对称轴为x =-a2.①⎩⎪⎨⎪⎧-a 2≤0,f⇒a ≥0.(如图1)②⎩⎪⎨⎪⎧ 0<-a 2<12,f -a2⇒-1<a <0.(如图2)③⎩⎪⎨⎪⎧-a 2≥12,f 12⇒-52≤a ≤-1.(如图3)综上①②③,a ≥-52.故选C.答案:C8.已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(1,2)D .(-∞,1)∪(2,+∞)解析:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只需⎩⎪⎨⎪⎧g,g-⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B.答案:B9.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________. 解析:∵不等式x 2+ax +4<0的解集不是空集,∴Δ=a 2-4×4>0,即a 2>16. ∴a >4或a <-4.答案:(-∞,-4)∪(4,+∞)10.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.解析:因为关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(-2a,4a ), 又x 2-2ax -8a 2<0(a >0)解集为(x 1,x 2), 则x 1=-2a ,x 2=4a , 由x 2-x 1=6a =15,得a =52.答案:5211.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3, ∴原不等式可化为a 2-6a -3<0, 解得3-23<a <3+2 3.∴原不等式的解集为{a |3-23<a <3+23}.(2)f (x )>b 的解集为(-1,3)等价于方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,等价于⎩⎪⎨⎪⎧-1+3=a -a3,-1×3=-6-b3,解得⎩⎨⎧a =3±3,b =-3.12.(1)已知函数f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥2恒成立,求a 的取值范围;(2)对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围. 解:(1)解法一:令f (x )在[-2,2]上的最小值为g (a ). 当-a2<-2,即a >4时,g (a )=f (-2)=7-3a ≥2,所以a ≤53,与a >4矛盾,所以a 不存在.当-2≤-a2≤2,即-4≤a ≤4时,g (a )=f ⎝ ⎛⎭⎪⎫-a 2=-a 24-a +3≥2, -22-2≤a ≤22-2, 所以-4≤a ≤22-2.当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥2,所以a ≥-5,所以-5≤a <-4. 综上所述-5≤a ≤22-2.解法二:在x ∈[-2,2]时,f (x )=x 2+ax +3-a ≥2恒成立⇔a (x -1)≥-x 2-1恒成立,当x =1时,a ∈R ;当1<x ≤2时,a ≥-x 2-1x -1;当-2≤x <1时,a ≤-x 2-1x -1.接下来通过恒成立问题的等价转化,变成最值问题即可求解.(2)原不等式转化为(x -1)a +x 2-2x +1>0,设g (a )=(x -1)a +x 2-2x +1,则g (a )在[-2,2]上恒大于0,故有⎩⎪⎨⎪⎧g -,g,即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0,解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.所以x <-1或x >3.[能 力 提 升]1.已知a =(1,x ),b =(x 2+x ,-x ),m 为实数,求使m (a·b )2-(m +1)a·b +1<0成立的x 的范围.解:因为a·b =x 2+x -x 2=x ,所以m (a·b )2-(m +1)a·b +1<0⇔mx 2-(m +1)x +1<0. ①当m =0时,不等式等价于x >1;②当m ≠0时,不等式等价于m ⎝⎛⎭⎪⎫x -1m (x -1)<0.a .m <0时,不等式等价于x >1或x <1m; b .0<m <1时,不等式等价于1<x <1m;c .m =1时,不等式等价于x ∈∅;d .m >1时,不等式等价于1m<x <1.综上所述,原不等式成立的x 的范围为2.已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值范围; (2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)∵函数f (x )=ax 2+2ax +1的定义域为R , ∴ax 2+2ax +1≥0恒成立, 当a =0时,1≥0恒成立. 当a ≠0时,需满足题意,则需⎩⎪⎨⎪⎧a >0,Δ=a2-4a ≤0,解得0<a ≤1,综上可知,a 的取值范围是[0,1]. (2)f (x )=ax 2+2ax +1=a x +2+1-a ,由题意及(1)可知0<a ≤1, ∴当x =-1时,f (x )min =1-a , 由题意得,1-a =22, ∴a =12,∴不等式x 2-x -a 2-a <0可化为x 2-x -34<0.解得-12<x <32,∴不等式的解集为⎝ ⎛⎭⎪⎫-12,32.。
课时作业37 一元二次不等式及其解法一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]解析:方法1:当x ≤0时,x +2≥x 2, ∴-1≤x ≤0;①当x >0时,-x +2≥x 2,∴0<x ≤1.②由①②得原不等式的解集为{x |-1≤x ≤1}.方法2:作出函数y =f (x )和函数y =x 2的图象,如图,由图知f (x )≥x 2的解集为[-1,1].答案:A2.(2017·梧州模拟)不等式2x +1<1的解集是( ) A .(-∞,-1)∪(1,+∞) B .(1,+∞) C .(-∞,-1) D .(-1,1) 解析:∵2x +1<1,∴2x +1-1<0,即1-x x +1<0,该不等式可化为(x +1)(x -1)>0,∴x <-1或x >1.答案:A3.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集是B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3解析:由题意,A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2}, 则不等式x 2+ax +b <0的解集为{x |-1<x <2}. 由根与系数的关系可知,a =-1,b =-2. 所以a +b =-3,故选A. 答案:A4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,4]D .[0,4]解析:由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以实数a 的取值范围是[0,4].答案:D5.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间解析:设销售价定为每件x 元,利润为y ,则:y =(x -8)[100-10(x -10)], 依题意有,(x -8)[100-10(x -10)]>320,即x 2-28x +192<0,解得12<x <16. 所以每件销售价应为12元到16元之间. 答案:C6.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A .[-4,1] B .[-4,3] C .[1,3]D .[-1,3]解析:原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.答案:B 二、填空题7.若0<a <1,则不等式(a -x )(x -1a)>0的解集是________.解析:原不等式即(x -a )(x -1a)<0,由0<a <1得a <1a,∴a <x <1a.答案:{x |a <x <1a}8.设f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=2a -3a +1,则实数a的取值范围是________.解析:∵f (x +3)=f (x ),∴f (2)=f (-1+3)=f (-1)=-f (1)<-1. ∴2a -3a +1<-1⇔3a -2a +1<0⇔(3a -2)(a +1)<0,∴-1<a <23. 答案:(-1,23)9.若不等式mx 2+2mx -4<2x 2+4x 对任意x 都成立,则实数m 的取值范围是________. 解析:原不等式等价于(m -2)x 2+2(m -2)x -4<0, ①当m =2时,对任意x 不等式都成立;②当m -2<0时,Δ=4(m -2)2+16(m -2)<0,∴-2<m <2. 综合①②,得m ∈(-2,2]. 答案:(-2,2]10.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.解析:因为关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(-2a,4a ).又x 2-2ax -8a 2<0(a >0)解集为(x 1,x 2).则x 1=-2a ,x 2=4a .由x 2-x 1=6a =15得a =52.答案:52三、解答题11.(2017·池州模拟)已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值范围; (2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0.解:(1)∵函数f (x )=ax 2+2ax +1的定义域为R . ∴ax 2+2ax +1≥0恒成立, 当a =0时,1≥0恒成立,当a ≠0时,则有⎩⎪⎨⎪⎧a >0,Δ=a2-4a ≤0,解得0<a ≤1.综上可知,a 的取值范围是[0,1]. (2)∵f (x )=ax 2+2ax +1 =ax +2+1-a ,∵a >0,∴当x =-1时,f (x )min =1-a . 由题意得,1-a =22,∴a =12. ∴x 2-x -⎝ ⎛⎭⎪⎫122-12<0,即(2x +1)(2x -3)<0,-12<x <32.故不等式的解集为⎝ ⎛⎭⎪⎫-12,32. 12.已知关于x 的不等式kx 2-2x +6k <0(k ≠0). (1)若不等式的解集为{x |x <-3或x >-2},求k 的值; (2)若不等式的解集为{x |x ∈R ,x ≠1k},求k 的值;(3)若不等式的解集为R ,求k 的取值范围; (4)若不等式的解集为∅,求k 的取值范围.解:(1)由不等式的解集为{x |x <-3或x >-2}可知k <0,且-3与-2是方程kx 2-2x +6k =0的两根,∴(-3)+(-2)=2k ,解得k =-25.(2)由不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R ,x ≠1k 可知⎩⎪⎨⎪⎧k <0,Δ=4-24k 2=0,解得k =-66. (3)依题意知⎩⎪⎨⎪⎧k <0,Δ=4-24k 2<0,解得k <-66. (4)依题意知⎩⎪⎨⎪⎧k >0,Δ=4-24k 2≤0,解得k ≥66.1.当x >0时,若不等式x 2+ax +1≥0恒成立,则a 的最小值为( ) A .-2 B .-3 C .-1D .-32解析:法1:当Δ=a 2-4≤0,即-2≤a ≤2时,不等式x 2+ax +1≥0对任意x >0恒成立,当Δ=a 2-4>0,则需⎩⎪⎨⎪⎧a 2-4>0,-a2<0,解得a >2.综上得a ≥-2.所以使不等式x 2+ax +1≥0对任意x >0恒成立的实数a 的最小值是-2,故选A.法2:因为不等式x 2+ax +1≥0对任意x >0恒成立,即a ≥-⎝⎛⎭⎪⎫x +1x (x >0)恒成立,又x >0时,-⎝⎛⎭⎪⎫x +1x ≤-2,所以只需a ≥-2,所以实数a 的最小值是-2.故选A. 答案:A2.(2017·河南郑州第一次质量检测)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≥0,x 2-2x ,x <0,若关于x的不等式[f (x )]2+af (x )-b 2<0恰有1个整数解,则实数a 的最大值是( )A .2B .3C .5D .8解析:作出函数f (x )的图象如图实线部分所示,由[f (x )]2+af (x )-b 2<0,得-a -a 2+4b 22<f (x )<-a +a 2+4b22,若b ≠0,则f (x )=0满足不等式,即不等式有2个整数解,不满足题意,所以b =0,所以-a <f (x )<0,且整数解x 只能是3,当2<x <4时,-8<f (x )<0,所以-8≤-a <-3,即a 的最大值为8,故选D.答案:D3.(2017·宿州模拟)若关于x 的不等式4x-2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________.解析:因为不等式4x-2x +1-a ≥0在[1,2]上恒成立,所以4x-2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x+1-1=(2x-1)2-1.因为1≤x ≤2,所以2≤2x≤4.由二次函数的性质可知:当2x=2,即x =1时,y 取得最小值0, 所以实数a 的取值范围为(-∞,0]. 答案:(-∞,0]4.已知函数f (x )=x 2-2ax -1+a ,a ∈R . (1)若a =2,试求函数y =f xx(x >0)的最小值; (2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围. 解:(1)依题意得y =f x x =x 2-4x +1x =x +1x-4.因为x >0,所以x +1x≥2.当且仅当x =1x时,即x =1时,等号成立. 所以y ≥-2. 所以当x =1时,y =f xx的最小值为-2. (2)因为f (x )-a =x 2-2ax -1.所以要使得“∀x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]上恒成立”.不妨设g (x )=x 2-2ax -1则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧g ,g ,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞.。
课时跟踪检测 (三十三) 一元二次不等式及其解法一抓基础,多练小题做到眼疾手快1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( ) A .(1,2)B .[1,2]C .[1,2)D .(1,2] 解析:选D A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}.2.不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解析:选B 由根与系数的关系得1a =-2+1,-c a=-2,得a =-1,c =-2,∴f (x )=-x 2-x +2(经检验知满足题意),∴f (-x )=-x 2+x +2,其图象开口向下,顶点为⎝ ⎛⎭⎪⎫12,94. 3.(2017·昆明模拟)不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5] 解析:选A x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.4.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2} 5.若0<a <1,则不等式(a -x )⎝ ⎛⎭⎪⎫x -1a >0的解集是________. 解析:原不等式为(x -a )⎝ ⎛⎭⎪⎫x -1a <0, 由0<a <1得a <1a ,∴a <x <1a. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ a <x <1a 二保高考,全练题型做到高考达标1.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x2+ax+b<0的解集为A∩B,则a+b等于( )A.-3 B.1C.-1 D.3解析:选A 由题意得,A={x|-1<x<3},B={x|-3<x<2},∴A∩B={x|-1<x <2},由根与系数的关系可知,a=-1,b=-2,则a+b=-3.2.不等式2x+1<1的解集是( )A.(-∞,-1)∪(1,+∞) B.(1,+∞) C.(-∞,-1) D.(-1,1)解析:选A ∵2x+1<1,∴2x+1-1<0,即1-xx+1<0,该不等式可化为(x+1)(x-1)>0,∴x<-1或x>1.3.(2017·郑州调研)规定记号“⊙”表示一种运算,定义a⊙b=ab+a+b(a,b为正实数),若1⊙k2<3,则k的取值范围是( )A.(-1,1) B.(0,1)C.(-1,0) D.(0,2)解析:选A 因为定义a⊙b=ab+a+b(a,b为正实数),1⊙k2<3,所以k2+1+k2<3,化为(|k|+2)(|k|-1)<0,所以|k|<1,所以-1<k<1.4.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A.12元B.16元C.12元到16元之间D.10元到14元之间解析:选C 设销售价定为每件x元,利润为y,则y=(x-8)[100-10(x-10)],依题意有,(x-8)[100-10(x-10)]>320,即x2-28x+192<0,解得12<x<16,所以每件销售价应为12元到16元之间.5.若不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集,则a的取值范围是( ) A.[-4,1] B.[-4,3]C .[1,3]D .[-1,3]解析:选B 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.6.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.解析:∵不等式x 2+ax +4<0的解集不是空集,∴Δ=a 2-4×4>0,即a 2>16.∴a >4或a <-4.答案:(-∞,-4)∪(4,+∞)7.若关于x 的不等式ax >b 的解集为⎝⎛⎭⎪⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.解析:由已知ax >b 的解集为⎝ ⎛⎭⎪⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a ,得x 2+b a x -45<0,即x 2+15x -45<0,即5x 2+x -4<0,解得-1<x <45,故所求解集为⎝⎛⎭⎪⎫-1,45. 答案:⎝⎛⎭⎪⎫-1,45 8.(2017·石家庄质检)在R 上定义运算:⎪⎪⎪⎪⎪⎪a b c d =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.解析:原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立, x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54, 所以-54≥a 2-a -2,解得-12≤a ≤32. 答案:329.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解:(1)∵f (x )=-3x 2+a (6-a )x +6,∴f (1)=-3+a (6-a )+6=-a 2+6a +3,∴原不等式可化为a 2-6a -3<0,解得3-23<a <3+23.∴原不等式的解集为{a |3-23<a <3+23}.(2)f (x )>b 的解集为(-1,3)等价于方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, 等价于⎩⎪⎨⎪⎧-1+3=a -a 3,-1×3=-6-b 3,解得⎩⎨⎧ a =3±3,b =-3.10.(2017·北京朝阳统一考试)已知函数f (x )=x 2-2ax -1+a ,a ∈R .(1)若a =2,试求函数y =f x x (x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围.解:(1)依题意得y =f x x =x 2-4x +1x =x +1x -4.因为x >0,所以x +1x ≥2.当且仅当x =1x 时,即x =1时,等号成立.所以y ≥-2.所以当x =1时,y =f x x 的最小值为-2.(2)因为f (x )-a =x 2-2ax -1,所以要使得“∀x ∈[0,2],不等式f (x )≤a 成立”,只要“x 2-2ax -1≤0在[0,2]恒成立”.不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧ g ,g ≤0,即⎩⎪⎨⎪⎧ 0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞.三上台阶,自主选做志在冲刺名校1.(2016·太原模拟)若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C .(-6,+∞)D .(-∞,-6) 解析:选A 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令g (x )=x 2-4x -2,x ∈(1,4),∴g (x )<g (4)=-2,∴a <-2.2.已知函数f (x )=ax 2+2ax +1的定义域为R .(1)求a 的取值范围;(2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0.解:(1)∵函数f (x )=ax 2+2ax +1的定义域为R ,∴ ax 2+2ax +1≥0恒成立,当a =0时,1≥0恒成立.当a ≠0时,需满足题意,则需⎩⎪⎨⎪⎧ a >0,Δ=a 2-4a ≤0,解得0<a ≤1,综上可知,a 的取值范围是[0,1].(2)f (x )=ax 2+2ax +1=a x +2+1-a ,由题意及(1)可知0<a ≤1,∴当x =-1时,f (x )min =1-a ,由题意得,1-a =22,∴a =12,∴不等式x 2-x -a 2-a <0可化为x 2-x -34<0. 解得-12<x <32,∴不等式的解集为⎝ ⎛⎭⎪⎫-12,32.。