含分布式电源配电网可靠性评估的点估计法_芦晶晶
- 格式:pdf
- 大小:989.06 KB
- 文档页数:8
含有分布式电源的配电网可靠性评估研究发布时间:2022-07-24T05:56:04.847Z 来源:《中国电业与能源》2022年5期3月作者:陈晨[导读] 在倡导降低污染、节约能源的当今社会,分布式电源的快速发展已成必然趋势陈晨贵州电网公司六盘水供电局摘要在倡导降低污染、节约能源的当今社会,分布式电源的快速发展已成必然趋势,它的引入给传统配电网的供电可靠性带来了影响。
本文主要是评估含有分布式电源的配电网可靠性,以研究分布式电源接入后对传统配电网可靠性带来的影响。
提出利用混合法进行可靠性评估,以传统配电网IEEE-RBTS BUS6系统F4馈线为例验证所提方法的正确性。
然后,在此基础上考虑分布式电源的特殊性,对原评估方法加以改进,使之适用于含有分布式电源的配电网可靠性评估,将分布式电源接入到IEEE-RBTS BUS6系统F4馈线中进行可靠性评估,进行定量地分析并得出相应的结论。
关键词:配电网分布式电源可靠性评估混合法孤岛划分一、可靠性评估方法1.1传统方法电力系统可靠性评估就是基于元件的可靠性参数来计算其可靠性指标,基本方法有解析法、模拟法。
当配电网中接入有分布式电源时,应充分考虑分布式电源的特殊性,主要表现在分布式电源的模型以及“孤岛运行”方式的出现,需对传统配电网评估方法加以改进。
本文提出的是融合了网络等值法、最小路法及序贯蒙特卡洛模拟法的混合法。
1.2混合法简介二、传统配电网可靠性评估结果利用混合法得到负荷点可靠性指标,见下图所示。
将该结果与其他文献中对应负荷点的可靠性指标计算结果进行比较,以验证该评估方法的正确性:三、分布式电源接入对配电网可靠性影响的算例假设开关设备100%可靠,且分布式电源作为配电网后备,并计及分布式电源故障率,配置足够容量燃气轮机组作为分布式电源,将DG1~DG5按下图依次接入。
计算出负荷点及系统的可靠性指标: 1、由负荷点的可靠性指标可知:分布式电源接入只改变孤岛内负荷的可靠性,由于分布式电源在配电网故障时才向孤岛内负荷供电,因此对孤岛内负荷点的停电次数没有影响。
含分布式电源的配电系统可靠性评估方法研究随着分布式电源(Distributed Generation, DG)技术的迅速发展和推广应用,配电系统的可靠性评估与分析越来越受到重视。
传统的配电系统具有集中式供电方式,一旦主干线发生故障,就会导致整个系统的瘫痪,而分布式电源的引入可以使配电系统具有更好的鲁棒性和抗干扰能力,提高系统的可靠性和可用性。
因此,对于含有分布式电源的配电系统,进行可靠性评估和分析,有重要的现实意义。
1. 可靠性指标的选择在进行可靠性评估时,需要选择合适的可靠性指标,常用的指标包括故障率、平均无故障时间、平均修复时间、可用性、失效率等。
对于含有分布式电源的配电系统,需要考虑分布式电源的故障率和并网率等因素,同时也要考虑传统供电设备的故障率和修复时间等因素。
因此,需要根据具体情况选择合适的可靠性指标,并进行综合考虑。
在进行可靠性分析时,可以采用多种方法,如故障树分析、事件树分析、蒙特卡罗模拟等。
对于含有分布式电源的配电系统,可以采用基于组合概率的可靠性分析方法,利用贝叶斯理论和随机过程分析,考虑不同设备之间的相互关系、联动效应,更加全面、准确地评估系统的可靠性。
3. 基于运行数据的可靠性评估在实际运行过程中,配电系统的运行数据可以提供重要的参考信息,利用这些数据进行可靠性评估,可以更加准确地评估系统的可靠性。
对于含分布式电源的配电系统,需要考虑分布式电源的发电量和负载变化等因素。
因此,可以采用基于数据的可靠性评估方法,对运行数据进行分析,建立预测模型,提高可靠性评估的准确性和可靠性。
可靠性评估结果可以为配电系统的日常维护、规划和优化提供重要的决策支持。
通过对系统的可靠性评估,可以确定关键设备和故障点,制定科学合理的保养计划和应急预案,提高系统的可靠性和抗干扰能力。
同时,针对评估结果,可以进行系统的优化设计,提高系统的性能和经济效益。
综上所述,含分布式电源的配电系统的可靠性评估方法与传统配电系统有所不同,需要考虑分布式电源等因素的影响。
含分布式电源的配电系统可靠性评估方法研究摘要:随着分布式电源接入配电系统,配电系统从一个辐射式的网络变为一个遍布电源与用户互联的网络,从而使可靠性分析的模型和方法发生了变化。
本文针对分布式电源输出功率的不确定性,建立了分布式电源的多状态可靠性模型,同时考虑了实际运行过程中不可避免的元件气候环境的变化和可修复资源随时间变化的因素,结合孤岛运行方式,对传统的最小割集法进行改进,使之适用于含分布式电源的配电系统可靠性分析计算,指出在实际运行过程中,应在考虑各种因素基础上,合理利用分布式电源以提高配电系统的供电可靠性。
关键词:分布式电源;配电系统;可靠性分布式电源不仅能提高能源的利用率,而且有助于缓解电网峰时缺电的矛盾。
电力能源专家认为,大电网与分布式电源相结合是节省投资、降低能耗、提高电力系统可靠性和灵活性的主要方式,是本世纪电力工业的发展方向。
从可持续发展、降低环境污染、国家能源战略以及构建和谐社会的观点看,发展分布式电源技术也是我国的必然选择。
1 分布式电源的特点1.1节能效果好分布式电源不是单纯发电的“小机组”,而是通过优质能源的综合利用,同时提出供冷、热、电多种能源的发电模式,能源利用率可以达到以上,超过常规燃煤火电机组一倍。
环保性能好分布式电源以风力、水力、潮汐、天然气等可再生清洁能源为发电原材料,能减少有害气体和固体废弃物的排放。
而且,就近安装在用户附近的分布式电源减少了大容量远距离高压输电线的建设,不仅减少了高压输电线的电磁污染,也减少了高压输电线的征地面积和线路走廊及线路走廊下树木的砍伐,有利于环保。
1.2节省管网和输配电投资集中供电的输配电损失一般在左右,而分布式电源由于设立在负荷中心附近,因此无需建立昂贵的输送网,也无需建设配电站,输配电损耗很低。
2 配电系统可靠性评估方法概述由于电力系统是一个由多种不同特性的设备组成的庞大系统,对其可靠性的评估极其复杂。
几十年来,各国的有关学者一直在探索强有力的评估方法,总体而言,可分为结合模拟法和解析法的混合方法及其它的一些方法。
含分布式电源的配电网可靠性评估模型研究摘要:对分布式电源配电网可靠性进行研究,研究表明配电网可靠性的评估模型随着分布式电源的普及不断发生变化,并且通过安装断路器和隔离开关,可以提高系统运行的可靠性,对合理利用电能资源具有重要的现实意义。
关键词:分布式电源;配电网;可靠性;评估前言:近年来,分布式电源的应用日益增多,因此,对含分布式电源的配电网供电能力进行准确地分析和评估变得更加复杂和困难,并已引起业界的高度关注。
然而分布式电源形式多样,不同类型电源都有其自身的运行特性,大量分布式电源接入电网尤其是其布局不合理时可能对电网造成一些负面影响,对配电网规划也带来新的挑战。
因此,为了避免分布式电源带来的不利影响,最大限度地利用其优势,在配电网规划时有必要把分布式电源纳入其中,进行合理配置。
1分布式电源概述能源是人类赖以生存和发展的基础,其中电力正是最灵活便利的能源形式。
为克服当前以大机组、大电网、高电压为主的集中式单一供电方式的弊端,分布式发电凭借其发电方式灵活、环境友好、有助于提高用户供电可靠性和电能质量等优点,越来越多地被接入配电系统。
但同时也对配电系统的结构和运行产生了深远的影响,使传统的配电系统从简单的无源网络变成了复杂有源网络,其复杂性主要体现为:①电源、电网、负荷三者全面参与互动;②多元能源系统强随机性难于精准预测;③系统运行状态的不确定性大大增加;④并网运行方式与孤岛运行方式的切换问题,等等。
因此,含分布式电源的复杂配电系统故障恢复和可靠性评估对确保清洁可再生能源大量推广使用和保障用户安全优质用电具有历史意义和迫切性的同时,也面临着巨大的挑战。
2分布式电源对配电网的影响2.1分布式发电技术分布式发电指的是通过规模不大、分布在负荷附近的发电设施实现经济、高效、可靠的发电。
面对目前人均用电量的不断增长,很多地区都受到短时停电的威胁,很多大型用户和商业中心都采用先进的DG技术来保证自身的不间断供电。
计及分布式电源的配电网供电可靠性评估1. 本文概述随着分布式电源(如光伏、风能、储能系统等)在电力系统中的大规模应用,配电网的运行模式和供电可靠性特性正经历深刻变革。
本研究旨在针对这一新趋势,深入探讨并建立一套全面考虑分布式电源影响的配电网供电可靠性评估方法。
文章将回顾现有的供电可靠性评估理论与实践,明确传统评估体系在面对含有大量分布式电源的配电网时存在的局限性。
详细介绍本文所采用的分析框架,包括但不限于分布式电源出力的随机性建模、配电网拓扑结构变化对可靠性的动态影响以及故障发生时分布式电源的响应机制。
本文将阐述预期的研究目标,即通过科学合理的评估模型和指标,准确量化分布式电源对配电网供电可靠性带来的改进和挑战,并提出相应的优化策略,以期提升整个配电网系统的稳定性和服务质量。
通过这一系列研究,期望能够为实际电力系统的规划、运行和管理提供有价值的决策参考依据。
2. 分布式电源概述分布式电源(Distributed Generation,DG)是一种小型模块化的、与环境兼容的独立电源,其功率范围从数千瓦到50MW不等。
这些电源可以由电力部门、电力用户或第三方所有,用以满足电力系统和用户特定的要求,如调峰、为边远用户或商业区和居民区供电,以及节省输变电投资、提高供电可靠性等。
分布式能源系统是建立在自动控制系统、先进的材料技术、灵活的制造工艺等新技术的基础上,具有低污染排放、灵活方便、高可靠性和高效率的新型能源生产系统。
它利用发电产生的废能生成热和电,包括利用现场废气、废热及多余压差来发电的能源循环利用系统。
分布式电源的特点在于其分散性,通常位于用户附近,能够与周围环境很好地兼容。
它利用先进的科学技术,如风能、太阳能、天然气能源等自然能源以及废气废燃料等再生能源的利用。
在电网未覆盖的区域,分布式电源作为独立分散的小型电源起着为周围用户提供电源的重要作用。
分布式电源主要由并网结构和发电系统构成。
并网结构建立配电网络和分布式电源之间的联系,以及用户和分布式电源之间的联系,主要作用是对分布式电源进行监测、控制与调度。