2018年高考一轮北师大版数学文科 第1章 第1节 集合
- 格式:doc
- 大小:329.00 KB
- 文档页数:9
1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分也不必要条件.【知识拓展】从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为(1)若A⊆B,则p是q的充分条件;(2)若A ⊇B ,则p 是q 的必要条件; (3)若A =B ,则p 是q 的充要条件; (4)若A B ,则p 是q 的充分不必要条件; (5)若A B ,则p 是q 的必要不充分条件; (6)若A B 且A ⊉B ,则p 是q 的既不充分也不必要条件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)“x 2+2x -3<0”是命题.( × )(2)命题“若p ,则q ”的否命题是“若p ,则綈q ”.( × ) (3)若一个命题是真命题,则其逆否命题也是真命题.( √ ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( √ )(5)当p 是q 的充要条件时,也可说成q 成立当且仅当p 成立.( √ ) (6)若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件.( √ )1.下列命题为真命题的是( ) A .若1x =1y ,则x =yB .若x 2=1,则x =1C .若x =y ,则x =yD .若x <y ,则x 2<y 2答案 A2.(教材改编)命题“若x 2>y 2,则x >y ”的逆否命题是( ) A .若x <y ,则x 2<y 2 B .若x ≤y ,则x 2≤y 2 C .若x >y ,则x 2>y 2 D .若x ≥y ,则x 2≥y 2 答案 B解析 根据原命题和其逆否命题的条件和结论的关系,得命题“若x 2>y 2,则x >y ”的逆否命题是“若x ≤y ,则x 2≤y 2”.3.(教材改编)“(x -1)(x +2)=0”是“x =1”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 由(x -1)(x +2)=0可得x =1或x =-2, ∵{1}{1,-2},∴“(x -1)(x +2)=0”是“x =1”的必要不充分条件.4.(2017·西安一中质检)已知a ,b 是实数,则“a >2且b >2”是“a +b >4且ab >4”的( ) A .必要而不充分条件 B .充分而不必要条件 C .充分必要条件D .既不充分也不必要条件 答案 B解析 ∵⎩⎪⎨⎪⎧ a >2,b >2⇒⎩⎪⎨⎪⎧a +b >4,ab >4,反之不正确,故“a >2且b >2”是“a +b >4且ab >4”的充分不必要条件. 5.(教材改编)下列命题:①“x =2”是“x 2-4x +4=0”的必要不充分条件;②“圆心到直线的距离等于半径”是“这条直线为圆的切线”的充分必要条件; ③“sin α=sin β”是“α=β”的充要条件; ④“ab ≠0”是“a ≠0”的充分不必要条件. 其中为真命题的是________.(填序号) 答案 ②④题型一命题及其关系例1(2016·潍坊一模)有下列四个命题:①若“xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形是全等三角形”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B=B,则A⊆B”的逆否命题.其中真命题为()A.①②B.②③C.①④D.①②③答案 D解析①的逆命题:“若x,y互为倒数,则xy=1”是真命题;②的否命题:“面积不相等的三角形不是全等三角形”是真命题;③的逆否命题:“若x2-2x+m=0没有实数解,则m>1”是真命题;命题④是假命题,所以它的逆否命题也是假命题.故选D.思维升华(1)写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(1)命题“若x>0,则x2>0”的否命题是()A.若x>0,则x2≤0B.若x2>0,则x>0C.若x≤0,则x2≤0D.若x2≤0,则x≤0(2)某食品的广告词为“幸福的人们都拥有”,这句话的等价命题是()A.不拥有的人们会幸福B.幸福的人们不都拥有C.拥有的人们不幸福D.不拥有的人们不幸福答案(1)C(2)D题型二充分必要条件的判定例2(1)(2015·四川)设a,b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的() A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案(1)B(2)A解析(1)∵3a>3b>3,∴a>b>1,此时log a3<log b3正确;反之,若log a3<log b3,则不一定得到3a>3b>3,例如当a=12,b=13时,log a3<log b3成立,但推不出a>b>1.故“3a>3b>3”是“log a3<log b3”的充分不必要条件.(2)由5x-6>x2,得2<x<3,即q:2<x<3.所以q⇒p,p⇏q,所以綈p⇒綈q,綈q⇏綈p,所以綈p是綈q的充分不必要条件,故选A.思维升华充分条件、必要条件的三种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.(1)(2016·四川)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p 是q的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)已知p :x +y ≠-2,q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 (1)A (2)A解析 (1)当x >1,y >1时,x +y >2一定成立,即p ⇒q , 当x +y >2时,可以x =-1,y =4,即q ⇏p , 故p 是q 的充分不必要条件.(2)(等价法)因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以綈p :x +y =-2,綈q :x =-1且y =-1, 因为綈q ⇒綈p 但綈p ⇏綈q , 所以綈q 是綈p 的充分不必要条件, 即p 是q 的充分不必要条件,故选A. 题型三 充分必要条件的应用例3 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 引申探究1.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解, 即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.本例条件不变,若x ∈綈P 是x ∈綈S 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇏P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10. ∴m ≥9,即m 的取值范围是[9,+∞).思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.(1)已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________________.(2)已知命题p :-4<x -a <4,命题q :(x -2)(3-x )>0,若綈p 是綈q 的充分条件,则实数a 的取值范围是________. 答案 (1)(0,3) (2)[-1,6]解析 (1)令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. ∵p 是q 的充分不必要条件,∴M N ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3.故答案为(0,3). (2)由p :-4<x -a <4成立,得a -4<x <a +4; 由q :(x -2)(3-x )>0成立,得2<x <3,所以綈p :x ≤a -4或x ≥a +4,綈q :x ≤2或x ≥3,又綈p 是綈q 的充分条件,所以⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6,故答案为[-1,6].1.等价转化思想在充要条件中的应用典例 (1)(2016·湖北七校联考)已知p ,q 是两个命题,那么“p ∧q 是真命题”是“綈p 是假命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件(2)已知条件p :x 2+2x -3>0;条件q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( ) A .[1,+∞) B .(-∞,1] C .[-1,+∞)D .(-∞,-3]思想方法指导 等价转化是将一些复杂的、生疏的问题转化成简单的、熟悉的问题,在解题 中经常用到.本题可将题目中条件间的关系和集合间的关系相互转化.解析 (1)因为“p 且q 是真命题”等价于“p ,q 都为真命题”,且“綈p 是假命题”等价于 “p 是真命题”,所以“p 且q 是真命题”是“綈p 是假命题”的充分不必要条件. (2)由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件. ∴{x |x >a }{x |x <-3或x >1},∴a ≥1. 答案 (1)A (2)A1.命题“若α=π4,则tan α=1”的否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 A2.命题“如果x ≥a 2+b 2,那么x ≥2ab ”的逆否命题是( ) A .如果x <a 2+b 2,那么x <2ab B .如果x ≥2ab ,那么x ≥a 2+b 2 C .如果x <2ab ,那么x <a 2+b 2 D .如果x ≥a 2+b 2,那么x <2ab 答案 C解析 命题“若p ,则q ”的逆否命题是“若綈q ,则綈p ”,“≥”的否定是“<”.故答案C 正确.3.(2016·山东重点中学模拟)已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( ) A .逆命题 B .否命题 C .逆否命题 D .否定答案 B解析 命题p :“正数a 的平方不等于0”写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.4.(2015·重庆)“x >1”是“log 12(x +2)<0”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案 B解析 由x >1⇒x +2>3⇒log 12(x +2)<0,log 12(x +2)<0⇒x +2>1⇒x >-1,故“x >1”是“log 12(x +2)<0”成立的充分不必要条件.故选B.5.(2016·山东)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案 A解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A.6.已知集合A ={x ∈R |12<2x <8},B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是( ) A .{m |m ≥2} B .{m |m ≤2} C .{m |m >2} D .{m |-2<m <2}答案 C解析 A ={x ∈R |12<2x <8}={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3, 即m >2,故选C.7.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 C解析 由Venn 图易知充分性成立.反之,A ∩B =∅时,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.8.函数f (x )=⎩⎪⎨⎪⎧log2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C.12<a <1 D .a ≤0或a >1答案 A解析 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合,可得a ≤0或a >1.观察选项,根据集合间关系得{a |a <0}{a |a ≤0或a >1},故选A.9.设a ,b 为正数,则“a -b >1”是“a 2-b 2>1”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)答案 充分不必要解析 ∵a -b >1,即a >b +1.又∵a ,b 为正数,∴a 2>(b +1)2=b 2+1+2b >b 2+1,即a 2-b 2>1成立,反之,当a =3,b =1时,满足a 2-b 2>1,但a -b >1不成立.所以“a -b >1”是“a 2-b 2>1”的充分不必要条件.10.有三个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“若a >b ,则a 2>b 2”的逆否命题;③“若x ≤-3,则x 2+x -6>0”的否命题.其中真命题的序号为____________.答案 ①解析 命题①为“若x ,y 互为相反数,则x +y =0”是真命题;因为命题“若a >b ,则a 2>b 2”是假命题,故命题②是假命题;命题③为“若x >-3,则x 2+x -6≤0”,因为x 2+x -6≤0⇔-3≤x ≤2,故命题③是假命题.综上知只有命题①是真命题.11.给定两个命题p 、q ,若綈p 是q 的必要不充分条件,则p 是綈q 的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)答案 充分不必要解析 因为綈p 是q 的必要不充分条件,所以q ⇒綈p 但綈p ⇏q ,其逆否命题为p ⇒綈q 但綈q ⇏p ,所以p 是綈q 的充分不必要条件.12.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________. 答案 [0,2]解析 由已知易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧ -1≤m -1,m +1<3,或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2.13.若“数列a n =n 2-2λn (n ∈N +)是递增数列”为假命题,则λ的取值范围是_____________.答案 [32,+∞) 解析 若数列a n =n 2-2λn (n ∈N +)为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N +都成立,于是可得3>2λ,即λ<32. 故所求λ的取值范围是[32,+∞). 14.(2016·贵州七校联考)以下四个命题中,真命题的个数是________.①“若a +b ≥2,则a ,b 中至少有一个不小于1”的逆命题;②存在正实数a ,b ,使得lg(a +b )=lg a +lg b ;③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”;④在△ABC 中,A <B 是sin A <sin B 的充分不必要条件.答案 2解析 ①原命题的逆命题为:若a ,b 中至少有一个不小于1,则a +b ≥2,而a =2,b =-2满足条件a ,b 中至少有一个不小于1,但此时a +b =0,故①是假命题;②根据对数的运算性质,知当a =b =2时,lg(a +b )=lg a +lg b ,故②是真命题;③“所有奇数都是素数”的否定为“至少有一个奇数不是素数”,故③是真命题;④根据题意,结合边角的转换,以及正弦定理,可知A <B ⇔a <b (a ,b 为角A ,B 所对的边)⇔2R sin A <2R sin B (R 为△ABC 外接圆的半径)⇔sin A <sin B ,故可知A <B 是sin A <sin B 的充要条件,故④是假命题,∴真命题个数是2. 15.已知集合A ={y |y =x 2-32x +1,x ∈[34,2]},B ={x |x +m 2≥1},若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解 y =x 2-32x +1=(x -34)2+716, ∵x ∈[34,2],∴716≤y ≤2. ∴A ={y |716≤y ≤2}. 由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34, 故实数m 的取值范围是(-∞,-34]∪[34,+∞).。
第一章集合与常用逻辑用语[深研高考·备考导航]为教师备课、授课提供丰富教学资源[五年考情][重点关注]综合近5年全国卷高考试题,我们发现高考命题在本章呈现以下规律:1.从考查题型看:一般是一个选择题,个别年份是两个选择题,从考查分值看,在5分左右,题目注重基础,属容易题.2.从考查知识点看:主要考查集合的关系及其运算,有时综合考查一元二次不等式的解法,突出对数形结合思想的考查,对常用逻辑用语考查较少,有时会命制一道小题.3.从命题思路看:(1)集合的运算与一元二次不等式的解法相结合考查.(2)充分条件、必要条件与其他数学知识(导数、平面向量、三角函数、集合运算等)相结合考查.(3)全称命题、特称命题、含逻辑联结词命题与其他数学知识相结合考查.(4)通过对近5年全国卷高考试题分析,可以预测,在2018年,本章内容考查的重点是:①集合的关系及其基本运算;②全称命题、特称命题、含逻辑联结词命题真假的判断;③充分条件,必要条件的判断.[导学心语]根据近5年的全国卷高考命题特点和规律,复习本章时,要注意以下几个方面:1.全面系统复习,深刻理解知识本质(1)重视对集合相关概念的理解,深刻理解集合、空集、五个特殊集合的表示及子集、交集、并集、补集等概念,弄清集合元素的特征及其表示方法.(2)重视充分条件、必要条件的判断,弄清四种命题的关系.(3)重视含逻辑联结词命题真假的判断,掌握特称命题、全称命题否定的含义.2.熟练掌握解决以下问题的方法和规律(1)子集的个数及判定问题.(2)集合的运算问题.(3)充分条件、必要条件的判断问题.(4)含逻辑联结词命题的真假判断问题.(5)特称命题、全称命题的否定问题.3.重视数学思想方法的应用(1)数形结合思想:解决有关集合的运算问题时,可利用Venn图或数轴更直观地求解.(2)转化与化归思想:通过运用原命题和其逆否命题的等价性,进行恰当转化,巧妙判断命题的真假.第一节集合[考纲传真] 1.了解集合的含义,元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算.1.集合的基本概念(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,并且A≠B,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.()(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.()(3)若{x2,1}={0,1},则x=0,1.()(4)若A∩B=A∩C,则B=C.()[解析](1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=[0,+∞);集合C是抛物线y=x2上的点集.因此A,B,C不相等.(3)错误.当x=1时,不满足互异性.(4)错误.当A=∅时,B,C可为任意集合.[答案](1)×(2)×(3)×(4)×2.(教材改编)若集合A={x∈N|x≤10},a=22,则下列结论正确的是()【导学号:66482000】A.{a}⊆A B.a⊆AC.{a}∈A D.a∉AD[由题意知A={0,1,2,3},由a=22,知a∉A.]3.(2016·全国卷Ⅰ)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=() A.{1,3} B.{3,5}C.{5,7} D.{1,7}B[集合A与集合B的公共元素有3,5,故A∩B={3,5},故选B.]4.(2016·全国卷Ⅲ)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8}B.{0,2,6}C.{0,2,6,10} D.{0,2,4,6,8,10}C[∵集合A={0,2,4,6,8,10},B={4,8},∴∁A B={0,2,6,10}.]5.已知集合A={(x,y)|x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y=x},则A∩B的元素个数为________.2[集合A表示圆心在原点的单位圆上的点,集合B表示直线y=x上的点,易知直线y=x和圆x2+y2=1相交,且有2个交点,故A∩B中有2个元素.](1)∈A}中元素的个数是()A.1B.3C.5D.9(2)若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=()A.92B.98C.0 D.0或9 8(1)C(2)D[(1)当x=0,y=0,1,2时,x-y=0,-1,-2;当x=1,y=0,1,2时,x-y=1,0,-1;当x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知,B的元素为-2,-1,0,1,2,共5个.(2)若集合A中只有一个元素,则方程ax2-3x+2=0只有一个实根或有两个相等实根.当a=0时,x=23,符合题意;当a≠0时,由Δ=(-3)2-8a=0得a=9 8,所以a的取值为0或9 8.][规律方法] 1.研究集合问题,首先要抓住元素,其次看元素应满足的属性;特别地,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性,如题(1).2.由于方程的不定性导致求解过程用了分类讨论思想,如题(2).[变式训练1]已知集合A={x∈R|ax2+3x-2=0},若A=∅,则实数a的取值范围为________.【导学号:66482001】⎝ ⎛⎭⎪⎫-∞,-98 [∵A =∅,∴方程ax 2+3x -2=0无实根, 当a =0时,x =23不合题意;当a ≠0时,Δ=9+8a <0,∴a <-98.](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.(1)B (2)(-∞,4] [(1)易知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 因此B A .(2)当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎨⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.][规律方法] 1.B ⊆A ,应分B =∅和B ≠∅两种情况讨论.2.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、韦恩(Venn)图化抽象为直观进行求解.[变式训练2](1)(2017·长沙雅礼中学质检)若集合A={x|x>0},且B⊆A,则集合B可能是()【导学号:66482002】A.{1,2} B.{x|x≤1}C.{-1,0,1} D.R(2)(2017·湖南师大附中模拟)已知集合A={x|x=x2-2,x∈R},B={1,m},若A⊆B,则m的值为()A.2 B.-1C.-1或2 D.2或 2(1)A(2)A[(1)因为A={x|x>0},且B⊆A,再根据选项A,B,C,D 可知选项A正确.(2)由x=x2-2,得x=2,则A={2}.因为B={1,m},且A⊆B,所以m=2.]☞角度(1)(2015·全国卷Ⅰ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2(2)(2017·郑州调研)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1](1)D(2)A[(1)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.共2个元素.(2)M={x|x2=x}={0,1},N={x|lg x≤0}={x|0<x≤1},M∪N=[0,1].]☞角度2集合的交、并、补的混合运算(1)(2016·山东高考)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=()A.{2,6} B.{3,6}C.{1,3,4,5} D.{1,2,4,6}(2)(2017·太原一模)已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则阴影部分表示的集合是()图1-1-1A.[-1,1) B.(-3,1]C.(-∞,-3)∪[-1,+∞) D.(-3,-1)(1)A(2)D[(1)∵A={1,3,5},B={3,4,5},∴A∪B={1,3,4,5}.又U={1,2,3,4,5,6},∴∁U(A∪B)={2,6}.(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁N)=(-3,-1).]U[规律方法] 1.求集合的交集和并集时首先应明确集合中元素的属性,然后利用交集和并集的定义求解.2.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.易错警示:在解决有关A∩B=∅,A⊆B等集合问题时,往往忽视空集的情况,一定要先考虑∅是否成立,以防漏解.[思想与方法]1.在解题时经常用到集合元素的互异性,一方面利用集合元素的互异性能顺利找到解题的切入点;另一方面,对求出的字母的值,应检验是否满足集合元素的互异性,以确保答案正确.2.求集合的子集(真子集)个数问题,需要注意的是:首先,过好转化关,即把图形语言转化为符号语言;其次,当集合的元素个数较少时,常利用枚举法解决.3.对于集合的运算,常借助数轴、Venn图求解.(1)对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围,关键在于转化成关于参数的方程或不等式关系.(2)对离散的数集间的运算,或抽象集合间的运算,可借助Venn图,这是数形结合思想的又一体现.[易错与防范]1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,以防漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.。