大学物理第6章-机械振动
- 格式:ppt
- 大小:3.40 MB
- 文档页数:66
《大学物理》期末复习试卷B第6章 机械振动基础§6.1-1简谐振动 振幅 周期和频率 相位一.选择题和填空题1. 一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A). (B) . (C) . (D) φωcos A . [ ]3.一物体作简谐振动,其振动方程为 )23cos(04.0π-π=t x(SI) .(1) 此简谐振动的周期T =__________________;2.一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.§6.1-2简谐运动的能量5. 一作简谐振动的振动系统,振子质量为2 kg ,系统振动频率为1000 Hz ,振幅为0.5 cm ,则其振动能量______________.§6.1-3旋转矢量3. 已知一质点沿y轴作简谐振动,其振动方程为)4/3cos(π+=t A y ω.与之对应的振动曲线是 [ ]-院系: 专业班级: 姓名: 学号:装 订 线6. 用余弦函数描述一简谐振子的振动.若其速度~时间(v ~t )关系曲线如图所示,则振动的初相位为(A) π/6. (B) π/3. (C) π/2. (D) 2π/3.(E) 5π/6. [](1) 振子在负的最大位移处,则初相为______________;(2) 振子在平衡位置向正方向运动,则初相为_____________; (3) 振子在位移为A /2处,且向负方向运动,则初相为______. 8.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________;ω =________________;φ =_______________.二.计算题1. 一质点作简谐振动,其振动方程为x = 0.24)3121cos(π+πt (SI),试用旋转矢量法求出质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间∆t .3. 两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.§6.2简谐运振动的合成一.填空题 二.计算题 一质点同时参与两个同方向的简谐振动,其振动方程分别为x 1 =5×10-2cos(4t + π/3) (SI) , x 2 =3×10-2sin(4t - π/6) (SI) 画出两振动的旋转矢量图,并求合振动的振动方程.第7章 机械波 §7.1机械波的产生 波长 波线及波面 波速 一.选择题和填空题 1. 在下面几种说法中,正确的说法是:[ ] (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同. (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).--1. 一个沿x 轴正向传播的平面简谐波(用余弦函数表示)在t = 0时的波形曲线如图所示.(1) 在 x = 0,和x = 2,x = 3各点的振动初相各是多少?(2) 画出t = T / 4时的波形曲线.§7.2平面简谐波一.选择题1. 一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如图所示,则原点O 的振动方程为 [ ](A) )21(cos 50.0ππ+=t y , (SI). (B) )2121(cos 50.0ππ-=t y , (SI).(C) )2121(cos 50.0ππ+=t y , (SI).(D) )2141(cos 50.0ππ+=t y , (SI).2.如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为[ ](A)])/(cos[0φω+-=u x t A y . (B) )]/([cos u x t A y +=ω.(C) })]/([cos{0φω+-=u x t A y . (D) })]/([cos{0φω++=u x t A y . 二.计算题1. 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式.2. 如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为t y π⨯=-4cos 1032 (SI).(1) 以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式.§7.3波的能量一. 选择题与填空题1. 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是 [ ](A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零.2. 在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是 (A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4 [ ]3. 当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?[ ] (A) 媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒.(B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同. (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等.(D) 媒质质元在其平衡位置处弹性势能最大.4. 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则 [ ](A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播. (C) B 点处质元的振动动能在减小.(D) 各点的波的能量密度都不随时间变化.A B xu(C) o ',d . (D) b ,f .6. 一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中(A) 它的势能转换成动能.(B) 它的动能转换成势能.(C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.(D )它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小. [ ]7. 一平面简谐机械波在媒质中传播时,若一媒质质元在t 时刻的总机械能是10 J ,则在)(T t +(T 为波的周期)时刻该媒质质元的振动动能是___________.8.一个波源位于O 点,以O 为圆心作两个同心球面,它们的半径分别为R 1和R 2,在两个球面上分别取相等的面积∆S 1和∆S 2,则通过它们的平均能流之比=21P /P ___________________.§7.4 惠更斯原理 §7.5 波的干涉(A) )22cos(2π-π=t A y . (B) )2cos(2π-π=t A y .(C) )212cos(2π+π=t A y(D) )1.02cos(22π-π=t A y .[ ]3. 如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为(A) λk r r =-12.(B)π=-k 212φφ.(C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ. [ ]4.已知波源的振动周期为4.00×10-2s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________. 5. 频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为_____________. 二.计算题在均匀介质中,有两列余弦波沿Ox 轴传播,波动表达式分别为)]/(2cos[1λνx t A y -π= 与)]/(2cos[22λνx t A y +π= ,试求Ox 轴上合振幅最大与合振幅最小的那些点的位置.三.问答题设P 点距两波源S 1和S 2的距离相等,若P 点的振幅保持为零,则由S 1和S 2分别发出的两列简谐波在P 点引起的两个简谐振动应满足什么条件?§7.6、7.7 驻波、多普勒效应一.选择题和.填空题3. 若在弦线上的驻波表达式是 t x y ππ=20cos 2sin 20.0.则形成该驻波的两个反向进行的行波为:[ ](A)]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π++π=x t y (SI). (B) ]50.0)10(2cos[10.01π--π=x t y ]75.0)10(2cos[10.02π++π=x t y (SI).(C) ]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π-+π=x t y (SI).(D )]75.0)10(2cos[10.01π+-π=x t y ]75.0)10(2cos[10.02π++π=x t y (SI).5. 一列机械横波在t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置是: [ ](A) o ',b ,d ,f . (B) a ,c ,e ,g . S4. 电磁波的电场强度E 、磁场强度 H 和传播速度 u的关系是:[ ](A) 三者互相垂直,而E 和H 位相相差π21.(B) 三者互相垂直,而且E 、H 、 u构成右旋直角坐标系.(C) 三者中E 和H 是同方向的,但都与 u垂直.(D) 三者中E 和H 可以是任意方向的,但都必须与 u垂直.5.一机车汽笛频率为750 Hz ,机车以时速90公里远离静止的观察者.观察者听到的声音的频率是(设空气中声速为340 m/s ).[ ](A) 810 Hz . (B) 699 Hz . (C) 805 Hz . (D) 695 Hz .6. 两列波在一根很长的弦线上传播,其表达式为y 1 = 6.0×10-2cos π(x - 40t ) /2 (SI)y 2 = 6.0×10-2cos π(x + 40t ) /2 (SI) 则合成波的表达式为_________;在x = 0至x = 10.0 m 内波节的位置是_________________________________________________;波腹的位置是_______________________________________________________.7. 电磁波在媒质中传播速度的大小是由媒质的____________________决定的.8. 一静止的报警器,其频率为1000 Hz ,有一汽车以79.2 km 的时速驶向和背离报警器时,坐在汽车里的人听到报警声的频率分别是___________________和______________(设空气中声速为340 m/s ).。
大学物理-机械振动习题-含答案一、选择题1. 质点作简谐振动,距平衡位置 2。
0cm 时, ,则该质点从一端运动到 C )C:2.2s --- 加速度 a=4.0cm /s 另一端的时间为( A:1.2s B: 2.4sD:4.4sX ,22.2s.2上 2 42 •—个弹簧振子振幅为2 10 2m 当t 0时振子在x 1.0 10 2m 处,且向 正方向运动,则振子的振动方 程是:[A ]A : 1.2题图22 10 cos( t )m ;3’6)m; 3)m;2 10 2 cos( t2 10 2 cos( tD :2x 2 10 cos( t —)m;解:由旋转矢量可 以得出振动的出现初相为:?3 •用余弦函数描述一简谐振动,若其速度与时间 -1v (m.s )1.3题图t (s )—►o 1 —v 2 m vm如图示,则振动的初相位为: (v —t )关系曲线[A ]A: e ; B : 3 ; C : 2 ;D : 2- ;E :「3丁6解:振动速度为:V V max Si n( t 0)t 0时,sin 01,所以。
-或。
2 6由知1.3图,t 0时,速度的大小是在增加,由旋转矢量图知,旋转矢量在 第一象限内,对应质点的运动是由正最大 位移向平衡位置运动,速度是逐渐增加的, 旋转矢量在第二象限内,对应质点的运动 是由平衡位置向负最大位移运动,速度是 逐渐减小的,所以只有。
-是符合条件的。
64 •某人欲测钟摆摆长,将钟摆摆锤上移 1毫 米,测得此钟每分快0。
1秒,则此钟摆的 ) B:30cm C:45cm丄理丁 160mm 30cm2 dT 2 ( 0.1):、填空题1 •有一放置在水平 面上的弹簧振子。
振幅A = 2.0 X 0_2m 周期摆长为( A:15cm D:60cm 解:单摆周期 有: 他2 . g,两侧分别对「和l 求导,j*T = 0.50s ,根据所给初始条件,作出简谐振动的矢量图,并写出振动方程式或初位相。
13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相=3π/4。
试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。
13-1分析 弹簧振子的振动是简谐运动。
振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A 、ϕ已知外,ω可通过关系式Tπω2=确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解 因Tπω2=,则运动方程()⎪⎭⎫⎝⎛+=+=ϕπϕωt T t A t A x 2cos cos根据题中给出的数据得]75.0)2cos[()100.2(12ππ+⨯=--t s m x振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+⋅⨯-==---t s s m dt dx vπππ75.0)2cos[()108(/112222+⋅⨯-==---t s s m dt x d ax-t 、v-t 及a-t 图如图13-l 所示13-2 若简谐运动方程为⎥⎦⎤⎢⎣⎡+=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s 时的位移、速度和加速度。
13-2分析 可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。
解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()ϕω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相πϕ25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。
(2)t= 2s 时的位移、速度、加速度分别为mm x 21007.7)25.040cos()10.0(-⨯=+=ππ)25.040sin()2(/1πππ+⋅-==-s m dt dx v )25.040cos()40(/2222πππ+⋅-==-s m dt x d a13-3 设地球是一个半径为R 的均匀球体,密度ρ5.5×103kg •m -3。