推荐学年高中数学第一章集合与函数概念1.1.3.1并集交集课时作业新人教版必修1
- 格式:doc
- 大小:46.00 KB
- 文档页数:4
§1.1习题课课时目标1.巩固和深化对基础知识的理解与掌握.2.重点掌握好集合间的关系与集合的基本运算.1.若A={x|x+1>0},B={x|x-3<0},则A∩B等于()A.{x|x>-1}B.{x|x<3}C.{x|-1<x<3}D.{x|1<x<3}2.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于() A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}3.设集合A={x|x≤13},a=11,那么()A.a A B.a∉AC.{a}∉A D.{a}A4.设全集I={a,b,c,d,e},集合M={a,b,c},N={b,d,e},那么(∁M)∩(∁I N)等于()IA.∅B.{d}C.{b,e}D.{a,c}5.设A={x|x=4k+1,k∈Z},B={x|x=4k-3,k∈Z},则集合A与B的关系为____________.6.设A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∪(B∩C);(2)A∩(∁A(B∪C)).一、选择题1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2B.3C.4D.53.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是()A.M=P B.M PC.P M D.M与P没有公共元素4.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩S)∩(∁S P) D.(M∩P)∪(∁V S)5.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的范围是()A.{a|3<a≤4}B.{a|3≤a≤4}C.{a|3<a<4}D.∅题号1234 5二、填空题6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.7.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为____.8.已知全集U={3,7,a2-2a-3},A={7,|a-7|},∁U A={5},则a=________.9.设U=R,M={x|x≥1},N={x|0≤x<5},则(∁U M)∪(∁U N)=________________.三、解答题10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.11.某班50名同学参加一次智力竞猜活动,对其中A,B,C三道知识题作答情况如下:答错A者17人,答错B者15人,答错C者11人,答错A,B者5人,答错A,C者3人,答错B,C者4人,A,B,C都答错的有1人,问A,B,C都答对的有多少人?能力提升12.对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有几个?13.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合U={x|0≤x≤1}的子集,定义b-a为集合{x|a≤x≤b}的“长度”,求集合M∩N 的长度的最小值.1.在解决有关集合运算题目时,关键是准确理解交、并、补集的意义,并能将题目中符号语言准确转化为文字语言.2.集合运算的法则可借助于Venn图理解,无限集的交集、并集和补集运算可结合数轴,运用数形结合思想.3.熟记一些常用结论和性质,可以加快集合运算的速度.4.在有的集合题目中,如果直接去解可能比较麻烦,若用补集的思想解集合问题可变得更简单.§1.1习题课双基演练1.C[∵A={x|x>-1},B={x|x<3},∴A∩B={x|-1<x<3},故选C.]2.A[画出数轴,将不等式-3<x≤5,x<-5,x>5在数轴上表示出来,不难看出M∪N={x|x<-5或x>-3}.]3.D4.A[∵∁I M={d,e},∁I N={a,c},∴(∁I M)∩(∁I N)={d,e}∩{a,c}=∅.]5.A=B解析4k-3=4(k-1)+1,k∈Z,可见A=B.6.解∵A={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}(1)又∵B∩C={3},∴A∪(B∩C)={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)又∵B∪C={1,2,3,4,5,6},∴∁A(B∪C)={-6,-5,-4,-3,-2,-1,0}∴A∩(∁A(B∪C))={-6,-5,-4,-3,-2,-1,0}.作业设计1.B[Q={x|-2<x<2},可知B正确.]2.B[集合P内除了含有元素a外,还必须含b,c中至少一个,故P={a,b},{a,c},{a,b,c}共3个.]3.B[∵a∈N*,∴x=a2+1=2,5,10,….∵b∈N*,∴y=b2-4b+5=(b-2)2+1=1,2,5,10,….∴M P.]4.C [阴影部分是M ∩S 的部分再去掉属于集合P 的一小部分,因此为(M ∩S )∩(∁S P ).]5.B [根据题意可画出下图.∵a +2>a -1,∴A ≠∅.有⎩⎨⎧a -1≤3,a +2≥5.解得3≤a ≤4.] 6.a ≤2解析 如图中的数轴所示,要使A ∪B =R ,a ≤2.7.1解析 当x =1时,x -1=0∉A ,x +1=2∈A ;当x =2时,x -1=1∈A ,x +1=3∈A ;当x =3时,x -1=2∈A ,x +1=4∉A ;当x =5时,x -1=4∉A ,x +1=6∉A ;综上可知,A 中只有一个孤立元素5.8.4解析 ∵A ∪(∁U A )=U ,由∁U A ={5}知,a 2-2a -3=5,∴a =-2,或a =4.当a =-2时,|a -7|=9,9∉U ,∴a ≠-2.a =4经验证,符合题意.9.{x |x <1或x ≥5}解析 ∁U M ={x |x <1},∁U N ={x |x <0或x ≥5},故(∁U M )∪(∁U N )={x |x <1或x ≥5}或由M ∩N ={x |1≤x <5},(∁U M )∪(∁U N )=∁U (M ∩N )={x |x <1或x ≥5}.10.解 (1)∵B ={x |x ≥2},∴A ∩B ={x |2≤x <3}.(2)∵C={x|x>-a2},B∪C=C⇔B⊆C,∴-a2<2,∴a>-4.11.解由题意,设全班同学为全集U,画出Venn图,A表示答错A的集合,B 表示答错B的集合,C表示答错C的集合,将其集合中元素数目填入图中,自中心区域向四周的各区域数目分别为1,2,3,4,10,7,5,因此A∪B∪C中元素数目为32,从而至少错一题的共32人,因此A,B,C全对的有50-32=18人.12.解依题意可知,“孤立元”必须是没有与k相邻的元素,因而无“孤立元”是指在集合中有与k相邻的元素.因此,符合题意的集合是:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.13.解在数轴上表示出集合M与N,可知当m=0且n=1或n-13=0且m+34=1时,M∩N的“长度”最小.当m=0且n=1时,M∩N={x|23≤x≤34},长度为34-23=112;当n=13且m=14时,M∩N={x|14≤x≤13},长度为13-14=112.综上,M∩N的长度的最小值为1 12.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
1.1.1 集合的含义与表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.4关系概念记法读法元素与集合的关系属于如果________的元素,就说a属于集合Aa∈A a属于集合A不属于如果________中的元素,就说a不属于集合Aa∉A a不属于集合A5.名称自然数集正整数集整数集有理数集实数集符号________________________一、选择题1.下列语句能确定是一个集合的是( )A.著名的科学家B.留长发的女生C.2010年广州亚运会比赛项目D.视力差的男生2.集合A只含有元素a,则下列各式正确的是( )A.0∈A B.a∉AC.a∈A D.a=A3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( ) A.直角三角形 B.锐角三角形C.钝角三角形 D.等腰三角形4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是( ) A.1 B.-2 C.6 D.25.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为( ) A.2 B.3C.0或3 D.0,2,3均可6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有( )A.2个元素 B.3个元素C.4个元素 D.5个元素题号12345 6答 案二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________.9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素; (4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章集合与函数概念§1.1集合1.1.1 集合的含义与表示第1课时集合的含义知识梳理1.(1)研究对象小写拉丁字母a,b,c,…(2)一些元素组成的总体大写拉丁字母A,B,C,… 2.确定性互异性无序性3.一样 4.a是集合A a不是集合A 5.N N*或N+Z Q R作业设计1.C [选项A、B、D都因无法确定其构成集合的标准而不能构成集合.]2.C [由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”,故选C.]3.D [集合M 的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A 中含有3个元素,即a 2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾;若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]6.A [方法一 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素.方法二 令x =2,则以上实数分别为: 2,-2,2,2,-2,由元素互异性知集合最多含2个元素.]7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a ∈A ,则11-a∈A . 又∵2∈A ,∴11-2=-1∈A . ∵-1∈A ,∴11--1=12∈A . ∵12∈A ,∴11-12=2∈A .∴A中另外两个元素为-1,1 2 .(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.。
第1课时并集与交集知识点一并集自然语言一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集符号语言A∪B={x|x∈A或x∈B}(读作“A并B”)图形语言自然语言一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集符号语言A∩B={x|x∈A且x∈B}(读作“A交B”)图形语言(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合,因为A与B 可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)并集定义中的“或”就是“和”.( )(2)A∪B表示由集合A和集合B中元素共同组成.( )(3)A∩B是由属于A且属于B的所有元素组成的集合.( )答案:(1)×(2)×(3)√2.已知集合M={-1,0,1},N={0,1,2},则M∪N=( )A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}解析:M∪N表示属于M或属于N的元素组成的集合,故M∪N={-1,0,1,2}.答案:B3.设集合A ={x |(x -1)(x -3)<0},B ={x |2x -3>0},则A ∩B =( ) A.⎝ ⎛⎭⎪⎫-3,-32 B.⎝ ⎛⎭⎪⎫-3,32 C.⎝ ⎛⎭⎪⎫1,32 D.⎝ ⎛⎭⎪⎫32,3 解析:∵(x -1)(x -3)<0,∴1<x <3,∴A ={x |1<x <3}.∵2x -3>0,∴x >32,∴B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32. ∴A ∩B ={x |1<x <3}∩⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪32<x <3.故选D. 答案:D4.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是( ) A .1 B .3 C .4 D .8解析:因为A ={1,2},A ∪B ={1,2,3}.所以B ={3}或{1,3}或{2,3}或{1,2,3},故选C.答案:C类型一 并集概念及简单应用例1 (1)设集合A ={1,2,3}, B ={2,3,4}, 则A ∪B =( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4} D .{1,3,4}(2)已知集合P ={x |-1<x <1},Q ={x |0<x <2},那么P ∪Q =( ) A .{x |-1<x <2} B .{x |0<x <1} C .{x |-1<x <0} D .{x |1<x <2}(3)点集A ={(x ,y )|x <0},B ={(x ,y )|y <0},则A ∪B 中的元素不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【解析】 (1)由题意A ∪B ={1,2,3,4}.(2)因为P ={x |-1<x <1},Q ={x |0<x <2},画数轴如图, 所以P ∪Q ={x |-1<x <2}.(3)由题意得,A ∪B 中的元素是由横坐标小于0或纵坐标小于0的点构成的集合,所以A ∪B 中的元素不可能在第一象限.【答案】 (1)A (2)A (3)A(1)找出集合A ,B 中出现的所有元素,写出A∪B. (2)画数轴,根据条件确定P∪Q.(3)先明确集合A ,B 都是点集,再判断A∪B 中的元素的特征. 方法归纳此类题目首先应看清集合中元素的范围,简化集合,若是用列举法表示的数集,可以根据并集的定义直接观察或用Venn 图表示出集合运算的结果;若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.,跟踪训练1 (1)设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}(2)已知集合M ={x |-3<x ≤5},N ={x |x <-5或x >5},则M ∪N =( ) A .{x |x <-5或x >-3} B .{x |-5<x <5} C .{x |-3<x <5} D .{x |x <-3或x >5} 解析:(1)先确定两个集合的元素,再进行并集运算. 集合M ={0,-2},N ={0,2},故M ∪N ={-2,0,2},选D.(2)在数轴上表示集合M ,N ,如图所示.则M ∪N ={x |x <-5或x >-3}.答案:(1)D (2)A ,先解方程,求出集合M ,N .求M∪N 时要注意两点:(1)把集合M ,N 的元素放在一起;(2)使M ,N 的公共元素在并集中只出现一次.类型二 交集概念及简单应用例2 (1)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎨⎧⎭⎬⎫xx <32 B .A ∩B =∅C .A ∪B =⎩⎨⎧⎭⎬⎫xx <32 D .A ∪B =R(2)已知集合U =R ,集合M ={x |-2≤x <2}和N ={y |y =2k -1,k ∈Z }的关系的Venn 图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .0个(3)已知集合M ={x |x ≤a },N ={x |-2<x <0},若M ∩N =∅,则a 的取值范围为( ) A .a >0 B .a ≥0 C .a <-2 D .a ≤-2,【解析】 (1)由3-2x >0,得x <32,所以B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32,又因为A ={x |x <2},所以A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32,A ∪B ={x |x <2}. (2)由题意得,阴影部分所示的集合为M ∩N ,由N ={y |y =2k -1,k ∈Z }知N 表示奇数集合,又由M ={x |-2≤x <2}得,在-2≤x <2内的奇数为-1,1.所以M ∩N ={-1,1},共有2个元素. (3)画数轴可知,当M ∩N =∅时,a 的取值范围是{a |a ≤-2}. 【答案】 (1)A (2)B (3)D(1)先解不等式确定集合B ,再根据交集、并集的定义分别确定A∩B 和A∪B. (2)先判断集合N 中元素的特征,再判断Venn 图中阴影部分表示的集合M∩N,最后求元素个数.(3)画数轴,根据M∩N=∅,求a 的取值范围. 方法归纳(1)在利用集合的交集、并集性质解题时,常常会遇到A ∩B =A ,A ∪B =B 等这类问题,解答时常借助于交、并集的定义及上节学习的集合间的关系去分析,如A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B 等,解答时应灵活处理.(2)当集合B⊆A时,如果集合A是一个确定的集合,而集合B不确定,运算时要考虑B =∅的情况,切不可漏掉.,跟踪训练2 (1)若集合P={x|x2=1},集合M={x|x2-2x-3=0},则P∩M=________,P∪M=________;(2)已知集合M={x|-3<x≤5},N={x|-5<x<-2或x>5},则M∪N=________,M∩N =________;(3)已知集合M={y|y=x2-4x+3,x∈Z},集合N={y|y=-x2-2x,x∈Z},求M∩N.解析:(1)P={x|x2=1}={-1,1},M={x|x2-2x-3=0}={-1,3},所以P∩M={-1},P∪M={-1,1,3}.(2)借助数轴可知:M∪N={x|x>-5},M∩N={x|-3<x<-2}.(3)∵y=x2-4x+3=(x-2)2-1,x∈Z,∴M={-1,0,3,8,15,…}.又∵y=-x2-2x=-(x+1)2+1,x∈Z,∴N={1,0,-3,-8,-15,…},∴M∩N={0}.答案:(1){-1}{-1,1,3}(2){x|x>-5}{x|-3<x<-2}(3){0}先求出集合P、M,再求P∩M , P∪M.集合M ,N是函数的值域.类型三交集、并集性质的运用例3 已知A={x|x2-ax+a2-19=0},B={x|x2-5x+8=2},C={x|x2+2x-8=0},若∅(A∩B),且A∩C=∅,求a的值.【解析】A={x|x2-ax+a2-19=0},B={2,3},C={-4,2}.因为∅(A∩B),且A∩C=∅,那么3∈A,故9-3a+a2-19=0.即a2-3a-10=0.所以a=-2或a=5.当a=-2时A={x|x2+2x-15=0}={3,-5},符合题意.当a=5时A={x|x2-5x+6=0}={2,3},不符合A∩C=∅.综上知,a=-2.审结论(明解题方向)审条件(挖解题信息) 求a的值,需建立关于a的方程(1)集合A,B,C是由相应方程的解构成的,先要解方程求B,C.(2)由∅(A∩B),知A∩B≠∅,结合A∩C=∅,可确定集合A中的元素,建立关于a的方程.建关系——找解题突破口∅(A∩B),A∩C=∅→确定集合A中的元素→建立关于a的方程→检验集合中元素的互异性.方法归纳(1)连续数集求交、并集借助数轴采用数形结合法.(2)利用A∩B=A⇔A⊆B,A∪B=A⇔B⊆A可实现交、并运算与集合间关系的转化.注意事项:(1)借助数轴求交、并集时注意端点的实虚.(2)关注Venn图在解决复杂集合关系中的作用.跟踪训练3 已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若A∩B=B,求实数a的取值范围.解析:①当B=∅时,只需2a>a+3,即a>3;②当B≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧a+3≥2a,a+3<-1或⎩⎪⎨⎪⎧a+3≥2a,2a>4,解得a<-4或2<a≤3.综上可得,实数a的取值范围为{a|a<-4或a>2}.,由A∩B=B得B⊆A,B分2类,B=∅,B≠∅,再利用数轴求.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知集合A ={x |x ≥-3},B ={x |-5≤x ≤2},则A ∪B =( ) A .{x |x ≥-5} B .{x |x ≤2} C .{x |-3<x ≤2} D.{x |-5≤x ≤2} 解析:结合数轴(图略)得A ∪B ={x |x ≥-5}. 答案A2.已知集合M ={0,1,2},N ={x |x =2a -1,a ∈N *},则M ∩N =( ) A .{0} B .{1,2} C .{1} D .{2}解析:因为N ={1,3,5,…},M ={0,1,2},所以M ∩N ={1}. 答案:C3.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|2x -y =-4},则A ∩B 等于( ) A .{x =-1,y =2} B .(-1,2) C .{-1,2} D .{(-1,2)}解析:由⎩⎪⎨⎪⎧x +y =1,2x -y =-4得⎩⎪⎨⎪⎧x =-1,y =2.所以A ∩B ={(-1,2)},故选D. 答案:D4.已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( ) A .{1} B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}解析:B ={x |(x +1)(x -2)<0,x ∈Z }={x |-1<x <2,x ∈Z }={0,1},又A ={1,2,3},所以A ∪B ={0,1,2,3}.答案:C5.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( ) A .a <2 B .a >-2 C .a >-1 D .-1<a ≤2解析:在数轴上表示出集合A ,B 即可得a 的取值范围为a >-1.答案:C二、填空题(每小题5分,共15分)6.设集合A ={x |2≤x <5},B ={x |3x -7≥8-2x },则A ∩B =________. 解析:∵A ={x |2≤x <5},B ={x |3x -7≥8-2x }={x |x ≥3}, ∴A ∩B ={x |3≤x <5}. 答案:{x |3≤x <5}7.设集合A ={1,2,a },B ={1,a 2},若A ∩B =B ,则实数a 允许取的值有________个. 解析:由题意A ∩B =B 知B ⊆A ,所以a 2=2,a =±2, 或a 2=a ,a =0或a =1(舍去),所以a =±2,0,共3个.答案:38.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围为________. 解析:由A ∪B =R ,得A 与B 的所有元素应覆盖整个数轴.如图所示:所以a 必须在1的左侧,或与1重合,故a ≤1. 答案:{a |a ≤1}三、解答题(每小题10分,共20分)9.设A ={x |-1<x <2},B ={x |1<x <3},求A ∪B ,A ∩B . 解析:如图所示:A ∪B ={x |-1<x <2}∪{x |1<x <3}={x |-1<x <3}. A ∩B ={x |-1<x <2}∩{x |1<x <3}={x |1<x <2}.10.已知集合A ={x |x 2+x -6=0},B ={x |mx +1=0},若B ⊆A ,求实数m 的取值范围. 解析:由x 2+x -6=0,得A ={-3,2}, ∵B ⊆A ,且B 中元素至多一个, ∴B ={-3},或B ={2},或B =∅.(1)当B ={-3}时,由(-3)m +1=0,得m =13;(2)当B ={2}时,由2m +1=0,得m =-12;(3)当B =∅时,由mx +1=0无解,得m =0. ∴m =13或m =-12或m =0.[能力提升](20分钟,40分)11.设A ={x |-3≤x ≤3},B ={y |y =-x 2+t }.若A ∩B =∅,则实数t 的取值范围是( )A.t<-3 B.t≤-3C.t>3 D.t≥3解析:B={y|y≤t},结合数轴可知t<-3.答案:A12.定义A-B={x|x∈A,且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M=________. 解析:关键是理解A-B运算的法则,N-M={x|x∈N,且x∉M},所以N-M={6}.答案:{6}13.设A ={x |x 2-2x =0},B ={x |x 2-2ax +a 2-a =0}. (1)若A ∩B =B ,求a 的取值范围; (2)若A ∪B =B ,求a 的值.解析:由x 2-2x =0,得x =0或x =2. 所以A ={0,2}.(1)因为A ∩B =B ,所以B ⊆A ,B =∅,{0},{2},{0,2}. 当B =∅时,Δ=4a 2-4(a 2-a )=4a <0, 所以a <0.当B ={0}或{2}时,则⎩⎪⎨⎪⎧Δ=4a =0,a 2-a =0⇒a =0,或⎩⎪⎨⎪⎧ Δ=4a =0,4-4a +a 2-a =0无解,所以a =0,B ={0,2},则⎩⎪⎨⎪⎧a 2-a =04-4a +a 2-a =0⇒a =1,综上,a 的取值范围为{a |a ≤0或a =1}. (2)因为A ∪B =B ,所以A ⊆B , 所以B ={0,2},所以a =1.14.已知集合A ={x |2m -1<x <3m +2},B ={x |x ≤-2或x ≥5},是否存在实数m ,使A ∩B ≠∅?若存在,求实数m 的取值范围;若不存在,请说明理由.解析:若A ∩B =∅,分A =∅和A ≠∅讨论: (1)若A =∅,则2m -1≥3m +2, 解得m ≤-3,此时A ∩B =∅; (2)若A ≠∅,要使A ∩B =∅,则应有⎩⎪⎨⎪⎧2m -1<3m +2,2m -1≥-2,3m +2≤5,即⎩⎪⎨⎪⎧m >-3,m ≥-12,m ≤1.所以-12≤m ≤1.综上,当A ∩B =∅时,m ≤-3或-12≤m ≤1,所以当m 取值范围为⎩⎨⎧⎭⎬⎫m |-13<m <-12或m >1时, A ∩B ≠∅.。
1.1.1集合的含义与表示第1课时集合的含义【学习要求】1.通过实例理解集合的有关概念;2.初步理解集合中元素的三个特性;3.体会元素与集合的属于关系;4.知道常用数集及其专用符号,会用集合语言表示有关数学对象.【学法指导】通过经历从集合实例中抽象概括出集合共同特征的过程,理解并掌握集合的含义;通过由用自然语言描述集合到用抽象的符号语言描述集合的过程,体会集合语言的严谨性和逻辑性,逐渐养成严密的思维习惯.【知识要点】1.元素与集合的概念(1)把统称为元素,通常用表示.(2)把叫做集合(简称为集),通常用表示.2.集合中元素的特性:、、.3.集合相等:只要构成两个集合的元素是的,就称这两个集合是相等的.4.元素与集合的关系有两种,分别为、,数学符号分别为、.5【问题探究】问题情境:军训前学校通知:今天上午八点高一年级在体育场集合进行军训动员;那么这个通知的对象是全体的高一学生还是个别学生呢?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.探究点一集合概念的形成过程问题1在初中,我们学过哪些集合?用集合描述过什么?问题2数学中的“集合”一词与我们日常生活中的哪些词语的意义相近?问题3阅读教材第2页中的例子,你能否从具体的实例中抽象出集合及元素的概念?探究点二集合元素的特征问题1某班所有的“帅哥”能否构成一个集合?某班身高高于175厘米的男生能否构成一个集合?集合元素确定性的含义是什么?问题2集合中的元素不能相同,这就是元素的互异性,如何理解这一性质?问题3“中国的直辖市”构成的集合中,元素包括哪些?甲同学说:北京、上海、天津、重庆;乙同学说:上海、北京、重庆、天津,他们的回答都正确吗?由此说明什么?怎么说明两个集合相等?例1考查下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某校2012年在校的所有高个子同学;(4)3的近似值的全体.小结判断给定的对象能不能构成集合,关键在于能否找到一个明确的标准,对于任何一个对象,都能确定它是不是给定集合的元素.跟踪训练1下列给出的对象中,能构成集合的是()A.著名数学家 B.很大的数C.聪明的人D.小于3的实数探究点三集合与集合中的元素的关系及表达问题1集合及集合中的元素用怎样的字母来表示?问题2集合与元素之间的关系如何表示?例2已知-3AA,∈中含有的元素有1,12,32+--aaa,求a的值.小结由元素的确定性知:-3A∈,则必有一个式子的值为-3,以此展开讨论,便可求得a.求出的a值代入A的元素后,不能出现相同的元素,否则这样的a不符合元素的互异性,应舍去.跟踪训练2已知由1,x,x2三个实数构成一个集合,求x应满足的条件.探究点四常用的数集及表示问题常用的数集有哪些?如何表示?例3下面有四个命题,正确命题的个数为()(1)集合N中最小的数是1;(2)若-a不属于N,则a属于N;(3)若a∈N,b∈N,则a+b的最小值为2;(4)xx212=+的解可表示为{1,1}.A.0 B.1 C.2 D.3小结集合可以用大写的字母表示,但自然数集、正整数集、整数集、有理数集、实数集有专用字母表示,一定要牢记,以防混淆.跟踪训练3用符号“∈”或“∉”填空.(1)-3________N;(2)3.14________Q;(3)3_____Q;(4)1________N+;(5)π________R【当堂检测】1.下列各条件中能构成集合的是()A.世界著名科学家B.在数轴上与原点非常近的点C.所有等腰三角形D.全班成绩好的同学2.一个小书架上有十个不同品种的书各3本,那么由这个书架上的书组成的集合中含有________个元素.3.给出下列几个关系,正确的个数为()①3∈R;②0.5∉Q;③0∈N;④-3∈Z;⑤0∈N+.A.0 B.1 C.2 D.34.方程0442=+-xx的解集中,有________个元素【课堂小结】1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合. 2.集合中元素的三个特性(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的. (3)无序性:集合与其中元素的排列顺序无关,如由元素c b a ,,与由元素c a b ,,组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.【课后作业】一、基础过关1. 下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数2. 集合A 中只含有元素a ,则下列各式正确的是( )A .0∈AB .a ∉AC .a ∈AD .a =A 3. 由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含( )A .2个元素B .3个元素C .4个元素D .5个元素4. 由下列对象组成的集体属于集合的是________.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.5. 如果有一集合含有三个元素1,x ,x 2-x ,则实数x 的取值范围是________. 6. 判断下列说法是否正确?并说明理由.(1)参加2012年伦敦奥运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合; (3)1,0.5,32,12组成的集合含有四个元素;(4)某校的年轻教师.7.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .二、能力提升8. 已知集合S 中三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形9. 已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可10.方程x 2-2x -3=0的解集与集合A 相等,若集合A 中的元素是a ,b ,则a +b =________.11.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?三、探究与拓展12.设A 为实数集,且满足条件:若a ∈A ,则11-a ∈A (a ≠1).求证:(1)若2∈A ,则A 中必还有另外两个元素; (2)集合A 不可能是单元素集.第2课时 集合的表示 【学习要求】1.掌握集合的两种常用表示方法(列举法和描述法);2.通过实例能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.【学法指导】通过由用自然语言描述数学概念到用集合语言描述数学概念的抽象过程,感知用集合语言思考问题的方法;体会将实际问题数学化的过程.【知识要点】1.列举法把集合的元素 出来,并用花括号“{ }”括起来表示集合的方法叫做列举法. 2.描述法用集合所含元素的共同特征表示集合的方法称为 .3.列举法常用于集合中的元素 时的集合表示,描述法多用于集合中的元素有 或元素个数较多的有限集.【问题探究】问题情境:上节课我们学习了用大写字母表示常用的几个数集,但是这不能体现出集合中的具体元素是什么,并且还有大量的非常用集合不能用大写字母表示,事实上表示一个集合关键是确定它包含哪些元素,为此,我们有必要学习集合的表示方法还有哪些?分别适用于什么情况? 探究点一 列举法表示集合问题1 在初中学正数和负数时,是如何表示正数集合和负数集合的?如表示下列数中的正数4.8,-3,2,-0.5,13,73,3.1.问题2 列举法是如何定义的?什么类型的集合适合用列举法 表示?问题3 book 中的字母的集合能否表示为:{}k o o b ,,,? 例1 用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x x =2的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.小结 (1)花括号“{ }”表示“所有”、“整体”的含义,如实数集R 可以写为{实数},但如果写成{实数集}、{全体实数}、{}R 都是不确切的.(2)列举法表示的集合的种类①元素个数少且有限时,全部列举,如{1,2,3,4};②元素个数多且有限时,可以列举部分,中间用省略号表示,如“从1到 1 000的所有自然数”可以表示为{1,2,3,…,1 000};③元素个数无限但有规律时,也可以类似地用省略号列举,如:自然数集N 可以表示为{0,1,2,3,…}. 跟踪训练1 用列举法表示下列集合.(1)由所有小于10的既是奇数又是素数的自然数组成的集合; (2)式子)0,0(≠≠+b a bb aa 的所有值组成的集合.探究点二 描述法表示集合问题1 用列举法能表示不等式37<-x 的解集吗?为什么?问题2 不等式37<-x 的解集我们可以用集合所含元素的共同特征来表示,那么不等式37<-x 的解集中所含元素的共同特征是什么?问题3 由奇数组成的集合中,元素的共同特征是什么?问题4 用集合元素的共同特征来表示集合就是描述法,那么如何用描述法来表示集合?什么类型的集合适合用描述法表示?例2 试分别用列举法和描述法表示下列集合: (1)方程2x -2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.小结 集合中的元素具有无序性、互异性,所以用列举法表示集合时不必考虑元素的顺序,且元素不能重复,元素与元素之间要用“,”隔开;用描述法表示集合时,要注意代表元素是什么,从而理解集合的含义,区分两集合是不是相等的集合.跟踪训练2 用适当的方法表示下列集合: (1)方程0136422=++-+y x y x 的解集;(2)二次函数102-=x y 图象上的所有点组成的集合. 例3 用适当的方法表示下列集合:(1)由20,2≤≤=n n x 且N n ∈组成的集合; (2)抛物线x x y 22-=与x 轴的公共点的集合;(3)直线y =x 上去掉原点的点的集合.小结 用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.跟踪训练3 若集合A ={x ∈Z|-2≤x ≤2},B ={y |y =x 2+2 000,x ∈A },则用列举法表示集合B =______【当堂检测】1.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解集不可表示为( )A .{(x ,y )|⎩⎪⎨⎪⎧ x +y =3x -y =-1}B .{(x ,y )|⎩⎪⎨⎪⎧x =1y =2} C .{1,2} D .{(1,2)}2.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为 ( )A .3B .6C .8D .10 3.已知集合A =⎭⎬⎫⎩⎨⎧∈-∈N x Nx 68,试用列举法表示集合A . 【课堂小结】1.在用列举法表示集合时应注意: (1)元素间用分隔号“,”;(2)元素不重复;(3)元素无顺序;(4)列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示. 2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式?(2)元素具有怎样的属性)当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.【课后作业】一、基础过关1. 集合{x ∈N +|x -3<2}用列举法可表示为( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5} 2. 集合{(x ,y )|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合3. 将集合⎩⎪⎨⎪⎧(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =52x -y =1表示成列举法,正确的是 ( )A .{2,3}B .{(2,3)}C .{(3,2)}D .(2,3)4. 若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为( )A .5B .4C .3D .25. 用列举法表示下列集合:(1)A ={x ∈N ||x |≤2}=________;(2)B ={x ∈Z ||x |≤2}=________;(3)C={(x,y)|x2+y2=4,x∈Z,y∈Z}=______.6.下列各组集合中,满足P=Q的有________.(填序号)①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.7.用适当的方法表示下列集合.(1)方程x(x2+2x+1)=0的解集;(2)在自然数集内,小于1 000的奇数构成的集合;(3)不等式x-2>6的解的集合;(4)大于0.5且不大于6的自然数的全体构成的集合.8.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.二、能力提升9.下列集合中,不同于另外三个集合的是() A.{x|x=1} B.{y|(y-1)2=0} C.{x=1} D.{1}10.集合M={(x,y)|xy<0,x∈R,y∈R}是() A.第一象限内的点集B.第三象限内的点集C.第四象限内的点集D.第二、四象限内的点集11.下列各组中的两个集合M和N,表示同一集合的是______.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.12.集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.三、探究与拓展13.定义集合运算A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和是多少?1.1.2集合间的基本关系【学习要求】1.理解子集、真子集的概念;2.了解集合之间的包含、相等关系的含义;3.能利用Venn图表达集合间的关系;4.了解空集的含义.【学法指导】通过观察身边的实例所构成的集合,发现集合间的基本关系,体验其现实意义;树立数形结合的思想,体会类比对发现新结论的作用.【知识要点】1.子集的概念一般地,对于两个集合A,B,如果集合A中元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作(或),读作“”(或“”).2.Venn图用平面上曲线的内部代表集合,这种图称为Venn图.3.集合相等与真子集的概念(1)集合相等:如果,就说集合A与B相等;(2)真子集:如果集合A⊆B,但存在元素,称集合A是集合B的真子集.记作:A B(或BA),读作:A真包含于B(或B真包含A).4.空集(1)定义:的集合叫做空集.(2)用符号表示为:.(3)规定:空集是任何集合的.5.子集的有关性质(1)任何一个集合是它本身的子集,即.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么【问题探究】问题情境:已知任意两个实数a,b,则它们的大小关系可能是a<b或a=b或a>b,那么对任意的两个集合A,B,它们之间有什么关系?今天我们就来研究这个问题.探究点一集合与集合之间的“包含”关系问题1观察下面几个例子,你能发现两个集合间有什么关系吗?(1)A={1,2,3},B={1,2,3,4,5};(2)设A为新华中学高一(2)班全体女生组成的集合,B为这个班全体学生组成的集合;(3)A=N,B=R;(4)A={x|x为中国人},B={x|x为亚洲人}.问题2如何运用数学语言准确表达问题1中两个集合的关系?问题3类比表示集合间关系的符号与表示两个实数大小关系的符号之间有什么类似之处?问题4集合A,B的关系能不能用图直观形象的表示出来?小结用Venn图表示两个集合间的“包含”关系A⊆B(或B⊇A),如下图所示.例1观察下面几组集合,集合A与集合B具有什么关系?(1)A={x|x>3},B={x|3x-6>0}.(2)A ={正方形},B ={四边形}.(3)A ={育才中学高一(11)班的学生},B ={育才中学高一年级的学生}.小结 在判断两个集合的关系时,对于用描述法表示的集合,一般要变成用列举法来表示,使集合中的元素特征清晰地呈现出来,便于讨论集合间的包含关系.跟踪训练1 已知集合P ={x |x =|x |,x ∈N 且x <2},Q ={x ∈Z|-2<x <2},试判断集合P 、Q 间的关系. 探究点二 集合与集合之间的“相等”关系问题1 观察下面几个例子,你能发现两个集合间有什么关系吗? (1)设C ={x |x 是两条边相等的三角形},D ={x |x 是等腰三角形}; (2)C ={2,4,6},D ={6,4,2}.问题2 与实数中的结论“若a ≥b ,且b ≥a ,则a =b ”相类比,在集合中,你能得出什么结论?小结 如果两个集合所含的元素完全相同,那么我们称这两个集合相等.用子集概念对两个集合的相等可描述为:如果A ⊆B 且B ⊆A ,则A ,B 中的元素是一样的,因此A =B ,即A =B ⇔⎩⎪⎨⎪⎧A ⊆B B ⊆A .问题3 用Venn 图怎样表示两个集合相等的关系?例2 已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2}.若A =B ,求实数c 的值.小结 抓住集合相等的含义,分情况进行讨论,同时要注意检验所得的结果是否满足元素的互异性. 跟踪训练2 已知集合A ={x ,xy ,x -y },B ={0,|x |,y }且A =B ,求实数x 与y 的值. 探究点三 真子集、空集的概念问题1 集合A 是集合B 的真子集的含义是什么?问题2 空集是怎么定义的?空集用什么符号表示?空集有怎样的性质?问题3 集合A 是集合B 的真子集与集合A 是集合B 的子集之间有什么区别? 问题4 0,{0}与∅三者之间有什么关系?问题5 包含关系{a }⊆A 与属于关系a ∈A 的意义有什么区别?问题6 对于集合A ,A ⊆A 正确吗?对于集合A ,B ,C ,如果A ⊆B ,B ⊆C ,那么集合A 与C 有什么关系? 例3 写出满足{1,2}A ⊆{1,2,3,4,5}的所有集合A 共有多少个?小结 (1)求集合的子集问题,应按集合中所含元素的个数分类依次书写,以免出现重复或遗漏. (2)此题中“求集合A 的个数”,等价于求集合{3,4,5}的非空子集个数. 跟踪训练3 已知{a ,b }⊆A {a ,b ,c ,d ,e },写出所有满足条件的集合A .【当堂检测】1.集合P ={x |x 2-1=0},T ={-1,0,1},则P 与T 的关系为( ) A .P T B .T P C .P =T D .P ⊄T2.集合A ={-1,0,1},A 的子集中,含有元素0的子集共有( ) A .2个 B .4个 C .6个 D .8个3.已知{0,1}A ⊆{-1,0,1},则集合A =__________【课堂小结】1.对子集、真子集有关概念的理解(1)集合A 中的任何一个元素都是集合B 中的元素,即由x ∈A ,能推出x ∈B ,这是判断A ⊆B 的常用方法.(2)不能简单地把“A ⊆B ”理解成“A 是B 中部分元素组成的集合”,因为若A =∅时,则A 中不含任何元素;若A =B ,则A 中含有B 中的所有元素.(3)在真子集的定义中,A B 首先要满足A ⊆B ,其次至少有一个x ∈B ,但x ∉A . 2.集合子集的个数求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的子集.集合的子集、真子集个数的规律为:含n 个元素的集合有2n 个子集,有2n -1个真子集,有2n -2个非空真子集.写集合的子集时,空集和集合本身易漏掉.【课后作业】一、基础过关1. 下列集合中,结果是空集的是( )A .{x ∈R |x 2-1=0}B .{x |x >6或x <1}C .{(x ,y )|x 2+y 2=0}D .{x |x >6且x <1}2. 集合P ={x |y =x +1},集合Q ={y |y =x -1},则P 与Q 的关系是( )A .P =QB .P QC .QPD .P ∩Q =∅3. 下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A ,则A ≠∅. 其中正确的个数是( )A .0B .1C .2D .34. 下列正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是()5. 已知M ={x |x ≥22,x ∈R },给定下列关系:①π∈M ;②{π}M ;③πM ;④{π}∈M .其中正确的有________.(填序号)6. 已知集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围是________. 7. 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.8. 若集合A ={x |x 2+x -6=0},B ={x |x 2+x +a =0},且B ⊆A ,求实数a 的取值范围.二、能力提升9. 适合条件{1}⊆A {1,2,3,4,5}的集合A 的个数是( )A .15个B .16个C .31个D .32个10.集合M ={x |x =3k -2,k ∈Z },P ={y |y =3n +1,n ∈Z },S ={z |z =6m +1,m Z ∈}之间的关系是 ( )A .S P MB .S =P MC .S P =MD .P =M S11.已知集合A {2,3,7},且A 中至多有1个奇数,则这样的集合共有________个.12.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.三、探究与拓展13.已知集合A={x||x-a|=4},B={1,2,b}.问是否存在实数a,使得对于任意实数b(b≠1,b≠2)都有A ⊆B.若存在,求出对应的a值;若不存在,说明理由.1.1.3集合的基本运算第1课时并集与交集【学习要求】1.理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集;2.能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用;3.掌握有关的术语和符号,并会用它们正确进行集合的并集与交集运算.【学法指导】通过观察和类比,借助Venn图理解集合的并集及交集运算,培养数形结合的思想;体会类比的作用;感受集合作为一种语言在表示数学内容时的简洁和准确.【知识要点】1.并集(1)定义:一般地,的元素组成的集合,称为集合A与B的并集,记作. (2)并集的符号语言表示为A∪B=.(3)性质:A∪B=,A∪A=,A∪∅=,A∪B=A⇔,A A∪B.2.交集(1)定义:一般地,由元素组成的集合,称为集合A与B的交集,记作. (2)交集的符号语言表示为A∩B=.(3)性质:A∩B=,A∩A=,A∩∅=,A∩B=A⇔,A∩B A∪B,A∩B A,A∩B B.【问题探究】问题情境:两个实数除了可以比较大小外,还可以进行加减法运算,如果把集合与实数相类比,我们会想两个集合是否也可以进行“加减”运算呢?本节就来研究这个问题.探究点一并集问题1请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.问题2在问题1中,我们称集合C为集合A、B的并集,那么如何定义两个集合的并集?问题3集合A∪B如何用Venn图来表示?问题4用并集运算符号表示问题1中A,B,C三者之间的关系是什么?例1(1)设A={4,5,6,8},B={3,5,7,8},求A∪B. (2)设集合A={x|-1<x<2},集合B={x|1<x<3},求A∪B.小结两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合,它们的公共元素在并集中只能出现一次.对于表示不等式解集的集合的运算,可借助数轴解题.跟踪训练1已知集合A={1,2,4},B={2,4,6},则A∪B=_____________探究点二交集问题1请同学们考察下面的问题,集合A、B与集合C之间有什么关系?①A={2,4,6,8,10},B={3,5,8,12},C={8};②A={x|x是国兴中学2011年9月入学的高一年级女同学},B={x|x是国兴中学2011年9月入学的高一年级同学},C={x|x是国兴中学2011年9月入学的高一年级女同学}.问题2在问题1中,我们称集合C为集合A、B的交集,那么如何定义两个集合的交集?问题3如何用Venn图表示交集运算?例2(1)新华中学开运动会,设A={x|x是新华中学高一年级参加百米赛跑的同学},B={x|x是新华中学高一年级参加跳高比赛的同学},求A∩B.(2)设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.小结两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合,当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.跟踪训练2设集合P={1,2,3,4,5},集合Q={x R∈|2≤x≤5},那么下列结论正确的是()A.P∩Q=P B.P∩Q QC.P∩Q P D.P∩Q=Q探究点三并集与交集的性质问题1你能用Venn图表示出两个非空集合的所有关系吗?问题2你能从问题1中所画的图中发现哪些重要的结论?问题3如果集合A,B没有公共元素,那么它们就没有交集吗?例3已知A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},若A∪B=A,求实数a的值.小结在利用集合的交集、并集性质解题时,若条件中出现A∪B=A,或A∩B=B,解答时常转化为B⊆A,然后用集合间的关系解决问题,运算时要考虑B=∅的情况,切记不可漏掉.跟踪训练3设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a R∈},若A∩B=B,求a的值.【当堂检测】1.设集合A={x|x∈Z且-15≤x≤-2},B={x|x∈Z且|x|<5},则A∪B中的元素个数是()A.10 B.11 C.20 D.212.若集合M={-1,0,1},N={0,1,2},则M∩N等于()A.{0,1} B.{-1,0,1} C.{0,1,2} D.{-1,0,1,2}3.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围为________【课堂小结】1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.【课后作业】一、基础过关1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于() A.{0,1,2,3,4} B.{1,2,3,4} C.{1,2} D.{0}2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B等于() A.{x|x<1} B.{x|-1≤x≤2} C.{x|-1≤x≤1} D.{x|-1≤x<1}3.若集合A={参加伦敦奥运会比赛的运动员},集合B={参加伦敦奥运会比赛的男运动员},集合C={参加伦敦奥运会比赛的女运动员},则下列关系正确的是()A.A⊆B B.B⊆C C.A∩B=C D.B∪C=A4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为() A.x=3,y=-1 B.(3,-1) C.{3,-1} D.{(3,-1)}5.设集合M={-1,0,1},N={x|x2≤x},则M∩N等于() A.{0} B.{0,1} C.{-1,1} D.{-1,0,1}6.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.7.设A={-4,2a-1,a2},B={a-5,1-a,9},已知A∩B={9},求A∪B.8.设集合A={-2},B={x|ax+1=0,a R∈},若A∩B=B,求a的值.二、能力提升9.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于() A.0或 3 B.0或3 C.1或 3 D.1或310.设集合A={-3,0,1},B={t 2-t+1}.若A∪B=A,则t=________.11.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=________,b=________.12.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.三、探究与拓展13.已知集合A={x|2a+1≤x≤3a-5},B={x|x<-1,或x>16},分别根据下列条件求实数a的取值范围.(1)A∩B=∅;(2)A⊆(A∩B).第2课时补集及综合应用【学习要求】1.了解全集、补集的意义;2.正确理解补集的概念,正确理解符号“∁U A”的含义;3.会求已知全集的补集,并能正确应用它们解决一些具体问题.【学法指导】通过观察和类比,借助Venn图理解集合的补集及集合的综合运算,进一步树立数形结合的思想;进一步体会类比的作用;感受集合作为一种语言在表示数学内容时的简洁和准确.【知识要点】1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为,通常记作. 2.补集:对于一个集合A,由全集U中的所有元素组成的集合称为集合A相对于全集U的补集,记作.补集的符号语言表示为∁U A=.3.补集与全集的性质(1)∁U U=;(2)∁U∅=;(3)∁U(∁U A)=;(4)A∪(∁U A)=;(5)A∩(∁U A)=.【问题探究】问题情境:相对于某个集合U,其子集中的元素是U中的一部分,那么剩余的元素也应构成一个集合,这两个集合对于U构成了相对关系,这就验证了“事物都是对立和统一的关系”.集合中的部分元素构成的集合与集合之间的关系就是部分与整体的关系.这就是本节研究的内容——全集和补集.探究点一全集、补集概念问题1方程(x-2)(x2-3)=0的解集在有理数范围内与在实数范围内有什么不同?通过这个问题你得到什么启示?问题2U={全班同学}、A={全班参加足球队的同学}、B={全班没有参加足球队的同学},则U、A、B有何关系?问题3在问题2中,相对集合A、B,集合U是全集,集合B是集合A的补集,同时集合A是集合B的补集,那么如何定义全集和补集的概念?问题4怎样用Venn图表示集合A在全集U中的补集?例1(1)设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A,∁U B.(2)设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B,∁U(A∪B).小结研究补集必须是在全集的条件下研究,而全集因研究问题不同而异,全集常用U来表示.跟踪训练1已知A={0,2,4,6},∁S A={-1,-3,1,3},∁S B={-1,0,2},用列举法写出集合B.探究点二全集、补集的性质问题1借助Venn图,你能化简∁U(∁U A),∁U U,∁U∅吗?问题2借助Venn图,你能分析出集合A与∁U A之间有什么关系吗?例2已知集合S={x|1<x≤7},A={x|2≤x<5},B={x|3≤x<7}.。
函数的单调性性 质 图 象定 义增 函 数设函数f (x )的定义域为I 。
如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数。
减 函 数设函数f (x )的定义域为I 。
如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数。
单调性与单调区间如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性,区间M 称为单调区间。
【典例精析】例题1 利用单调性定义证明:函数f (x )=1-x 在其定义域内是增函数。
思路导航:本题是利用单调性定义证明函数单调性的一个典型例子,由于函数的定义域没有给出,证明前要先求出定义域,然后证明。
答案:证明:证法一:函数f (x )=1-x 的定义域是x ∈[1,+∞),任取x 1、x 2∈[1,+∞)且x 1<x 2,则f (x 2)-f (x 1)=12-x -11-x=1111)1)1)(11(1212121212-+--=-+--+----x x x x x x x x x x 。
∵x 1、x 2∈[1,+∞),且x 1<x 2,∴12-x +11-x >0,x 2-x 1>0。
∴f (x 1)<f (x 2),即函数f (x )=1-x 在其定义域上是增函数。
证法二:函数f (x )=1-x 的定义域是x ∈[1,+∞],任取x 1、x 2∈[1,+∞)且x 1<x 2,则1111)()(212121--=--=x x x x x f x f , ∵x 1、x 2∈[1,+∞),且x 1<x 2,∴0≤x 1-1<x 2-1。
∴0≤1121--x x <1。
∴1121--x x <1。
∵f (x 2)=12-x >0,∴f (x 1)<f (x 2)。
1.1.2 集合间的基本关系课时目标 1.理解集合之间包含与相等的含义.2.能识别给定集合的子集、真子集,并能判断给定集合间的关系.3.在具体情境中,了解空集的含义.1.子集的概念一般地,对于两个集合A 、B ,如果集合A 中________元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作______(或______),读作“__________”(或“__________”).2.Venn 图:用平面上______曲线的内部代表集合,这种图称为Venn 图. 3.集合相等与真子集的概念B(1)定义:______________的集合叫做空集. (2)用符号表示为:____.(3)规定:空集是任何集合的______. 5.子集的有关性质(1)任何一个集合是它本身的子集,即________.(2)对于集合A ,B ,C ,如果A ⊆B ,且B ⊆C ,那么___________________________.一、选择题1.集合P ={x |y =x +1},集合Q ={y |y =x -1},则P 与Q 的关系是( ) A .P =Q B .P QC.P Q D.P∩Q=∅2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是()A.3B.6C.7D.83.对于集合A、B,“A⊆B不成立”的含义是()A.B是A的子集B.A中的元素都不是B中的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A4.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.其中正确的个数是()A.0B.1C.2D.35.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是()A.S P M B.S=P MC.S P=M D.P=M S二、填空题7.已知M={x|x≥22,x∈R},给定下列关系:①π∈M;②{π}M;③πM;④{π}∈M.其中正确的有________.(填序号)8.已知集合A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围是________.9.已知集合A{2,3,7},且A中至多有1个奇数,则这样的集合共有________个.三、解答题10.若集合A={x|x2+x-6=0},B={x|x2+x+a=0},且B⊆A,求实数a的取值范围.11.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.若B⊆A,求实数m的取值范围.能力提升12.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.13.已知集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.拓展当A不是B的子集时,我们记作“A B”(或B A).2.对元素与集合、集合与集合关系的分析与拓展(1)元素与集合之间的关系是从属关系,这种关系用符号“∈”或“∉”表示.(2)集合与集合之间的关系有包含关系,相等关系,其中包含关系有:含于(⊆)、包含(⊇)、真包含于()、真包含()等,用这些符号时要注意方向,如A⊆B与B⊇A是相同的.1.1.2集合间的基本关系知识梳理1.任意一个A⊆B B⊇A A含于B B包含A 2.封闭3.A⊆B且B⊆A x∈B,且x∉A 4.(1)不含任何元素(2)∅(3)子集 5.(1)A⊆A(2)A⊆C作业设计1.B[∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0}∴P Q,∴选B.]2.C[M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.]3.C4.B[只有④正确.]5.B[由N={-1,0},知N M,故选B.]6.C[运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S表示成被6整除余1的整数集.]7.①②解析①、②显然正确;③中π与M的关系为元素与集合的关系,不应该用“”符号;④中{π}与M的关系是集合与集合的关系,不应该用“∈”符号.8.a≥2解析在数轴上表示出两个集合,可得a≥2.9.6解析(1)若A中有且只有1个奇数,则A ={2,3}或{2,7}或{3}或{7}; (2)若A 中没有奇数,则A ={2}或∅. 10.解 A ={-3,2}.对于x 2+x +a =0, (1)当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立; (2)当Δ=1-4a =0,即a =14时,B ={-12},B ⊆A 不成立; (3)当Δ=1-4a >0,即a <14时,若B ⊆A 成立, 则B ={-3,2}, ∴a =-3×2=-6.综上:a 的取值范围为a >14或a =-6. 11.解 ∵B ⊆A ,∴①若B =∅, 则m +1>2m -1,∴m <2.②若B ≠∅,将两集合在数轴上表示,如图所示.要使B ⊆A ,则⎩⎨⎧m +1≤2m -1,m +1≥-2,2m -1≤5,解得⎩⎨⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.由①、②,可知m ≤3. ∴实数m 的取值范围是m ≤3.12.解 (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A ={x |1a <x <2a }. 又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a }. ∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2. 13.5解析 若A 中有一个奇数,则A 可能为{1},{3},{1,2},{3,2}, 若A 中有2个奇数,则A ={1,3}.。
【创新设计】(浙江专用)2016-2017学年高中数学第一章集合与函数概念 1.1.3.1 并集、交集课时作业新人教版必修1
1.(2014·新课标全国Ⅱ卷)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=( )
A.∅
B.{2}
C.{0}
D.{-2}
解析由于B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∩B={2}.
答案 B
2.(2015·全国Ⅱ卷)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=( )
A.{x|-1<x<3}
B.{x|-1<x<0}
C.{x|0<x<2}
D.{x|2<x<3}
解析由A={x|-1<x<2},B={x|0<x<3},所以A∪B={x|-1<x<3}.
答案 A
3.已知集合A={x|-1<x<2},B={x|-1≤x≤a}.若A∩B=A,则a的取值范围是( )
A.a<-1
B.a>2
C.a≥2
D.-1<a<2
解析∵A∩B=A,∴A⊆B.在数轴上画出两集合,要使集合B完全覆盖集合A,集合B的端点a应在2处或其右侧,因此a≥2.
答案 C
4.满足条件M∪{-1}={-1,0,1}的集合M的个数是______.
解析由于M∪{-1}={-1,0,1},所以M⊆{-1,0,1},且0∈M,1∈M,因此M={0,1},或M={-1,0,1}.
答案 2
5.已知集合P={x|x2≤1},M={a},若P∪M=P,则a的取值范围为________.
解析由P={x|x2≤1}得P={x|-1≤x≤1}.
由P∪M=P得M⊆P.又M={a},所以-1≤a≤1.
答案{a|-1≤a≤1}
6.(2016·江西赣州市十三县市上学期期中)已知集合A={x∈Z|-3≤x-1≤1},B={1,2,3},C={3,4,5,6}.
(1)求A的非空真子集的个数;
(2)求B∪C,A∪(B∩C).
解(1)A={-2,-1,0,1,2},共5个元素,所以A的非空真子集的个数为25-2=30.
(2)因为B={1,2,3},C={3,4,5,6},所以B∪C={1,2,3,4,5,6},A∪(B∩C)={-2,-1,0,1,2,3}.
7.已知A ={-3,a 2,a +1},B ={a -3,2a -1,a 2
+1},若A ∩B ={-3},求集合A ∪B . 解 ∵A ∩B ={-3},∴-3∈B ,
易知a 2
+1≠-3,则a -3=-3或2a -1=-3. ①若a -3=-3,则a =0,
此时A ={0,1,-3},B ={-3,-1,1}, 则A ∩B ={1,-3},这与已知矛盾. ②若2a -1=-3,则a =-1,
此时A ={0,1,-3},B ={-3,-4,2},A ∩B ={-3},符合题意.因此A ∪B ={-3,-4,2,0,1}.
8.已知A ={x |2a ≤x ≤a +3},B ={x |x <-1,或x >5},若A ∩B =∅,求a 的取值范围. 解 由于A ∩B =∅,A ={x |2a ≤x ≤a +3}. (1)若A =∅,有2a >a +3,∴a >3. (2)若A ≠∅,如图所示,
则有⎩⎪⎨⎪⎧2a ≥-1,a +3≤5,2a ≤a +3,
解得-1
2≤a ≤2.⎩⎨⎧⎭
⎬⎫a |-12≤a ≤2或a >3
综上所述,a 的取值范围是⎣⎢⎡⎦
⎥⎤-12,2.
能 力 提 升
9.若集合A ={1,3,x },B ={1,x 2
},A ∪B ={1,3,x },则满足条件的实数x 有( ) A.1个
B.2个
C.3个
D.4个
解析 因为A ∪B =A ,所以B ⊆A ,所以x 2
=3或x 2
=x ,解得x =±3或x =1或x =0. 当x =1时,集合A ,B 不满足元素的互异性,故x =±3或x =0. 答案 C
10.设集合A ={(x ,y )|y =ax +1},B ={(x ,y )|y =x +b },且A ∩B ={(2,5)},则( ) A.a =3,b =2 B.a =2,b =3 C.a =-3,b =-2
D.a =-2,b =-3
解析 由题意知点(2,5)在一次函数y =ax +1和y =x +b 上,所以5=2a +1且5=2+b ,得a =2,b =3. 答案 B
11.设集合A ={x |-1<x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是________. 解析 利用数轴分析可知,a >-1.
答案 (-1,+∞)
12.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},且B ≠∅,若A ∪B =A ,则实数m 的取值范围是________.
解析 因为A ∪B =A ,所以B ⊆A ,又B ≠∅,所以⎩⎪⎨⎪
⎧m +1≥-2,2m -1≤7,m +1<2m -1,
即2<m ≤4.
答案 2<m ≤4
13.已知集合A ={x |x 2
-3x +2=0},C ={x |x 2
-x +2m =0}.若A ∩C =C ,求实数m 的取值范围.
解 由已知得,A ={1,2}.因为A ∩C =C ,所以C ⊆A . ①当C =∅时,方程x 2-x +2m =0无实数根, 因此其判别式Δ=1-8m <0,即m >1
8
;
②当C ≠∅时,方程x 2-x +2m =0有相同的实数根,即x =1或x =2,因此其判别式Δ=1-8m =0,解得m =18,代入方程x 2
-x +2m =0,解得x =12,A ∩C =C 矛盾,显然m =18不符
合要求;
③当C ={1,2}时,方程x 2
-x +2m =0有两个不相等的实数根1,2,而1+2≠1,不符合
一元二次方程中根与系数的关系.综上所述,m 的取值范围为
⎩
⎨⎧⎭⎬⎫
m |m >18. 探 究 创 新
14.(2015·浙江湖州期中)已知集合A ={x |x 2
-4x -5≥0},集合B ={x |2a ≤x ≤a +2}. (1)若a =-1,求A ∩B 和A ∪B ; (2)若A ∩B =B ,求实数a 的取值范围.
解 (1)A ={x |x ≤-1或x ≥5},B ={x |-2≤x ≤1},所以A ∩B ={x |-2≤x ≤ -1},
A ∪
B ={x |x ≤1或x ≥5}.
(2)因为A ∩B =B ,所以B ⊆A . ①若B =∅,则2a >a +2,得a >2;
②若B ≠∅,则⎩⎪⎨⎪⎧a ≤2,a +2≤-1或⎩
⎪⎨⎪⎧a ≤2,
2a ≥5,
所以a ≤-3.
综上知,实数a 的取值范围是{a |a >2或a ≤-3}.。