高中数学人教版必修一上册2-2对数函数教学设计
- 格式:doc
- 大小:152.00 KB
- 文档页数:4
《对数函数》教学设计完美版【教学目标】1. 了解对数函数的定义、性质及其在数学和实际中的作用;2. 能够准确地表示对数函数及其反函数的图像;4. 培养学生逻辑思维能力、分析问题的能力和解决问题的能力。
1. 对数函数的定义及基本性质。
3. 对数函数的反函数的图像、定义域、值域以及单调性。
4. 指数函数与对数函数的关系。
5. 利用对数函数解决实际问题。
2. 对数函数图像的绘制。
1. 前置知识启发法借助生活实例及数学实例,引出对数函数的产生背景和基本意义,使学生从熟悉的生活现象及数学运算中获得对对数函数的初步理解。
2. 形象化教学法通过图像或示例说明对数函数的性质,图像生动形象,有利于学生直观的理解对数函数的性质。
3. 探究式教学法在教学中,通过引导学生对例题进行讨论,探究对数函数的问题,发现问题,解决问题,从而培养学生的分析问题、解决问题的能力。
4. 实践教学法通过解决实际问题,让学生主动参与到教学中,根据所学到的知识解决生活中遇到的实际问题,不仅能够增加学生的学习兴趣和动力,同时还能够让学生了解到对数函数对实际问题的解决具有重要作用。
引导学生了解对数函数的定义,并让学生理解对数函数的基本性质,包括定义域、值域、单调性等。
通过讨论,让学生掌握对数函数图像的特点,并通过绘制对数函数的图像,让学生加深对数函数图像的记忆和了解。
通过引导学生思考,让学生初步理解反函数的概念及性质,并用图像和示例进行说明,让学生了解反函数的图像及性质。
通过对指数函数和对数函数的定义、性质及其在数学和实际中的作用的讨论,让学生理解指数函数与对数函数之间的关系。
6. 总结回顾1. 每节课结束后进行问题的测试,检查学生是否掌握了主要内容。
2. 每节课结束后,通过讨论和笔记的方式,让学生对所学内容进行总结和回顾。
3. 通过布置作业,检查学生是否能够巩固和应用所学知识。
4. 通过考试进行评估,检查学生是否对对数函数的定义、性质、图像及其应用有所了解。
2.2.1 对数与对数运算一、教材分析本节是高中数学新人教版必修1的第二章2.2对数函数的内容二、三维目标1.知识与技能(1).理解对数的概念,了解对数与指数的关系;(2).理解和掌握对数的性质;(3).掌握对数式与指数式的关系。
2.过程与方法(1)通过实例认识对数模型,体会引入对数的必要性;(2)通过观察分析得出对数的概念及对数式与指数式的互化;(3)通过分组探究进行活动,掌握对数的重要性质。
3.情感、态度与价值观(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质.三、教学重点教学重点:(1)对数的定义;(2)指数式与对数式的互化四、教学难点教学难点:推导对数性质五、教学策略讲练结合掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握六、教学准备(对数教学目标)—对数的文化意义、对数概念(讲一讲)—对数式与指数式转化(做一做)—例题(讲一讲)、习题(做一做)—两种特殊的对数(讲一讲)—求值(做一做)—评价、小结—作业。
八、板书设计第二章基本初等函数(I)2.2 对数函数2.2.1 对数与对数运算九、教学反思对数的教学采用讲练结合的教学模式。
教学中,以双基为教学主题,采用讲讲练练的教学程序,运用指数式与对数式的转化策略,通过教师的讲,数学家对对数的痴迷激发学生好奇,从实际问题导入对数概念、对数符号,理解对数的意义,通过典型例题的讲授,充分揭示对数式与指数式间的关系,掌握求对数值的方法,通过学生典型习题的练,使学生进一步理解对数式与指数式间的关系,掌握求对数的一些方法,在讲练结合中实现教学目标。
2.2.2对数函数及其性质一、教学内容分析《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。
函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。
必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。
为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。
学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。
最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。
三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。
通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。
对数函数教学设计知识目标1.学生理解对数函数的定义;2.学生掌握对数函数的性质、特点和图像;3.学生能够应用对数函数解决实际问题;4.学生提高数学思维和解决问题的能力。
教学内容第一节:对数函数的定义1.引入对数函数的概念;2.介绍对数函数的定义和性质;3.给出许多实际问题,让学生了解对数函数的意义。
第二节:对数函数的特点和图像1.讲解对数函数的图像特点;2.教学对数函数的反函数的图像特点;3.比较对数函数和指数函数图像。
第三节:对数函数的应用1.应用对数函数解决实际问题;2.教学对数函数运用在生活、科学和工程中的技术;3.补充许多实际问题的解决方法。
教学方法1.演讲法:引领学生入门,提供新知识给学生认识和理解;2.询问题:针对不同学生需要的信息而产生的对话修改;3.小组讨论:激发学生的合作意识和实际操作能力;4.集体探究:选取与对数函数教学相应的问题,鼓励学生在自愿的情况下查阅信息、发表观点、对问题进行探讨;5.实验教学:在本节课中使用实验设备,让学生实际操作,以便更好地了解对数函数的图像特点。
教学评估1.平时评估:针对学生的课堂表现和作业;2.综合测评:期末考试等大型考试;3.学生评估:以温馨的声音,收回学生的课后反馈。
教学资源1.《高中数学教育》;2.电子版教材;3.课程讲义;4.PPT幻灯片;5.示范视频。
总结在上述对数函数的教学设计中,我们可以看到选取实例和图像进行教学是非常重要的。
学生从实例中发现问题,从图像中看到模式,从逐渐深化不断理解,这些解决问题的策略和思考方式,都是通过对数函数的学习所获得的知识,也是对现实生活有用的技能。
《对数函数》教学设计(精品)对数函数教学设计(精品)1. 引言对数函数是高中数学教学中重要的内容之一。
它不仅在数学领域有广泛的应用,而且在其他学科中也扮演着重要的角色。
本教学设计旨在帮助学生全面理解和掌握对数函数的基本概念、性质和应用。
2. 研究目标- 了解对数函数的定义和基本性质- 掌握对数函数的图像、变换和反函数- 熟练运用对数函数解决实际问题3. 教学内容3.1 对数函数的定义和基本性质- 介绍对数函数的定义和符号表示方法- 阐述对数函数的基本性质,如对数函数的定义域、值域和增减性质等3.2 对数函数的图像和变换- 绘制对数函数的基本图像,解释图像的特点和变化规律- 引导学生分析对数函数的平移、伸缩、翻转等变换方式3.3 对数函数的反函数- 介绍对数函数与指数函数的关系- 推导对数函数的反函数,并解释反函数的性质和图像3.4 对数函数的应用- 阐述对数函数在实际问题中的应用,如指数增长、财务管理和科学计算等- 引导学生运用对数函数解决实际问题,并进行相关练和讨论4. 教学策略- 采用启发式教学方法,引导学生积极思考和发现对数函数的性质和规律- 结合具体实例和案例分析,加深学生对对数函数的理解和应用能力- 利用多媒体技术辅助教学,展示对数函数的图像和实际应用场景- 组织小组活动和讨论,促进学生合作研究和问题解决能力5. 教学评估- 设计对数函数的练和测验,测试学生对于对数函数概念和性质的理解程度- 观察学生在实际问题中运用对数函数解决能力的表现- 利用小组合作评价学生在讨论和合作研究中的参与和贡献程度6. 教学资源- 教科书:XXX- 多媒体教学软件:XXX- 实际应用案例:XXX7. 教学总结通过本次教学,学生将全面了解对数函数的定义、性质和应用,提升对数函数的理解和解决实际问题的能力。
同时,学生将培养合作研究和问题解决的能力,为后续数学研究打下良好基础。
以上为《对数函数》教学设计(精品)的纲要,具体教学细节可以根据实际情况进行调整和补充。
高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。
§2.2.2 对数函数及其性质(一)学习目标:⒈理解对数函数的意义,掌握对数函数的图象和性质; ⒉进一步体会应用函数图象讨论函数性质的方法. 教学重点:对数函数的图象及其性质.教学难点:对数函数的图象、性质与底数a 的关系. 教学方法:探究、讨论式.教具准备:用《几何画板》演示对数函数的图象与底数a 的关系. 教学过程:(I )新课引入:师:通过前面的学习我们了解到,生物体内碳14含量P 与死亡年数t 之间的关系为:573012t P ⎛⎫= ⎪⎝⎭.由对数与指数的关系,我们可以得到logt P =.这样我们就可以估算出土文物或古代遗址的年代.根据问题的实际意义可知,对于每一个碳14含量P,通过对应关系log t P =,都有唯一确定的年代t 与它对应,所以t 是P 的函数.这就是我们今天将要研究的一种新的函数——对数函数. (II )讲授新课: ⒈对数函数的意义:师:一般地,我们把函数log a y x =(0a >,且1)a ≠叫做对数函数,其中x 是自变量,函数定义域是(0,)+∞.这里为什么要规定“0a >,且1a ≠”呢?生:在对数的定义“log x a a N x N =⇔=”中,我们规定了必须满足条件“0a >,且1a ≠”.师:0a >的来历确实如此,但对于条件1a ≠来说就不仅仅如此了!事实上,在指数式x a N =中,如果1a =,则对于任意的x R ∈,都有11x =,转换成为对数形式后,则不再是我们所学习的函数了.⒉对数函数的图象和性质:师:下面我们利用计算机软件《几何画板》来观察分析对数函数2log y x =和12log y x =的图象之间的关系以及对数函数log a y x =(0a >,且1)a ≠的图象和性质.(引导学生观察图象,填写下表、讨论交流、概括总结对数函数的基本性质)例题:课本62P 例⒎(Ⅲ)课后练习:课本81P 练习⒈⒉;课本82P 习题2.2 A 组⒍ (Ⅳ)课时小结⒈要理解对数函数的意义,根据函数图象理解掌握对数函数的性质; ⒉要逐渐学会利用函数图像分析研究函数的性质. (Ⅴ)课后作业⒈课本82P 习题2.2 A 组⒌⒎ ⒉阅读课本79P ~80P ,思考下列问题:怎样利用对数函数的单调性比较两个对数的大小?所有对数的大小比较都可以用对数函数的性质进行吗?教学后记:§2.2.2 对数函数及其性质(二)学习目标:⒈熟练掌握对数函数的概念、图象、性质;⒉会根据对数函数的定义求函数的定义域,会利用对数函数的单调性比较同底数的对数值的大小.教学重点:对数函数的性质的应用.教学难点:求形如y =. 教学方法:讲练结合. 教具准备:多媒体投影仪. 教学过程:(I )复习回顾:师:上节课,我们学习了对数函数的概念、图象和性质,大家一起来回顾今天,我们将要应用对数函数的相关知识解决一些问题. (II )讲授新课: ⒈求函数的定义域:例⒈求函数y例⒉若函数]41)1([log 22+-+=x a ax y 的定义域为R ,求实数a 的取值范围.解:函数]41)1([log 22+-+=x a ax y 的定义域为R ,即041)1(2>+-+x a ax 恒成立,此时不等式左边若不是二次式,即0=a 时,显然041>+-x 不能恒成立.因此,左边一定是二次式,故00a >∆<且,进而可求得a 的取值范围为,0414)1(2<⨯⨯--a a解得:33()22a -+∈. 说明:已知定义域为全体实数,是041)1()(2>+-+=x a ax x u 恒成立,即该一元二次不等式的解为全体实数,特别注意,a ≠0.当a =0时041)(>+-=x x u 对x 来说是有限制范围的,并根据二次函数图象判定条件为:a >0且Δ<0.⒉对数函数单调性的应用:例⒊课本62P 例⒏例⒋比较下列各组数中两个值的大小:⑴3.2log 1.1与2.2log 2.1; ⑵7.0log 3.0与9.2log 1.2; ⑶b a log 与)10(log 1<<a b a.选题意图:本题考查对数函数的单调性的应用. 解:⑴ 3.2log 1.1>2.2log 1.1>2.2log 2.1;⑵ 7.0log 3.0<1<9.2log 1.2;⑶当b >1时,b a alog 6log 1>;当0<b <1时,b b a alog log 1<说明:不同底对数比较大小的方法:①两数中间插入一个已知数(如1或0等),间接比较两数大小;②根据真数相同而底数不同的两对数函数的单调性比较:如x y 1.1log =与x y 2.1log =,当x >1取同一个值时恒有x x 2.11.1log log >成立.对数的底或真数含字母时,比较大小要讨论.(Ⅲ)课后练习:课本81P 练习⒊;课本82P 习题2.2 B 组⒉ (Ⅳ)课时小结⒈要理解对数函数的意义,根据函数图象理解、掌握对数函数的性质; ⒉要能够熟练运用对数函数的性质解决问题. (Ⅴ)课后作业⒈课本82P 习题2.2 A 组⒏⒉阅读课本80P ~81P 、84P ,思考下列问题:⑴在指数函数x y a =中,x 是y 的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由.⑵对数函数log a y x =(0a >,且1)a ≠和指数函数x y a =(0a >,且1)a ≠之间有什么关系?⑶对数函数log a y x =(0a >,且1)a ≠和指数函数x y a =(0a >,且1)a ≠的图象有什么关系?⑷观察对数函数log a y x =(0a >,且1)a ≠和指数函数x y a =(0a >,且1)a ≠的图象,你还能够得到它们的什么性质?教学后记:。
对数函数教学设计对数函数教学设计(精选10篇)作为一名教学工作者,时常需要用到教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
我们该怎么去写教学设计呢?以下是小编为大家收集的对数函数教学设计,仅供参考,欢迎大家阅读。
对数函数教学设计篇1教学目标:使学生掌握对数形式复合函数的单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.教学重点:复合函数单调性、奇偶性的讨论方法.教学难点:复合函数单调性、奇偶性的讨论方法.教学过程:[例1]设loga23 <1,则实数a的取值范围是A.0<a<23B. 23 <a<1C.0<a<23 或a>1D.a>23解:由loga23 <1=logaa得(1)当0<a<1时,由y=logax是减函数,得:0<a<23(2)当a>1时,由y=logax是增函数,得:a>23 ,∴a>1综合(1)(2)得:0<a<23 或a>1 答案:C[例2]三个数60.7,0.76,log0.76的大小顺序是A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<60.7<0.76D.log0.76<0.76<60.7解:由于60.7>1,0<0.76<1,log0.76<0 答案:D[例3]设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小解法一:作差法|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga | =1|lga| (|lg(1-x)|-|lg(1+x)|)∵0<x<1,∴0<1-x<1<1+x∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,∴|loga(1-x)|>|loga(1+x)|解法二:作商法lg(1+x)lg(1-x) =|log(1-x)(1+x)|∵0<x<1 ∴0<1-x<1+x∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x由0<x<1 ∴1+x>1,0<1-x2<1∴0<(1-x)(1+x)<1 ∴11+x >1-x>0∴0<log(1-x) 11+x <log(1-x)(1-x)=1∴|loga(1-x)|>|loga(1+x)|解法三:平方后比较大小∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga (1-x)-loga(1+x)]=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x∵0<x<1,∴0<1-x2<1,0<1-x1+x <1∴lg(1-x2)<0,lg1-x1+x <0∴loga2(1-x)>loga2(1+x)即|loga(1-x)|>|loga(1+x)|解法四:分类讨论去掉绝对值当a>1时,|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2)∵0<1-x<1<1+x,∴0<1-x2<1∴loga(1-x2)<0,∴-loga(1-x2)>0当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.当a2-1≠0时,其充要条件是:a2-1>0△=(a+1)2-4(a2-1)<0 解得a<-1或a>53 又a=-1,f(x)=0满足题意,a=1不合题意.所以a的取值范围是:(-∞,-1]∪(53 ,+∞)[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小解:易知f(x)、g(x)的定义域均是:(0,1)∪(1,+∞)f(x)-g(x)=1+logx3-2logx2=logx(34 x).①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).若34 x<1,则1<x<43 ,这时f(x)<g(x)②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x)当x∈(1,43 )时,f(x)<g(x)[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]解:原方程可化为(9x-1-5)= [4(3x-1-2)]∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3∴x=1或x=2 经检验x=1是增根∴x=2是原方程的根.[例7]解方程log2(2-x-1) (2-x+1-2)=-2解:原方程可化为:log2(2-x-1)(-1)log2[2(2-x-1)]=-2即:log2(2-x-1)[log2(2-x-1)+1]=2令t=log2(2-x-1),则t2+t-2=0解之得t=-2或t=1∴log2(2-x-1)=-2或log2(2-x-1)=1解之得:x=-log254 或x=-log23对数函数教学设计篇2一、说教材1、地位和作用本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。
对数函数的图象和性质2 教学设计合格[ ] 不合格[ ]组长(签字):检查日期:年月日精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
2.2.2 对数函数的图像及其性质(学案)一、学习目标1.理解对数函数的概念,会求对数函数的定义域.(重点、难点) 2.能画出具体对数函数的图象,并能根据对数函数的图象说明对数函数的性质.(重点)二、自主学习教材整理1 对数函数的概念阅读教材P 70前两个自然段,完成下列问题.对数函数:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域为(0,+∞).阅读教材P 70第三自然段至P 71“例7”以上部分,完成下列问题.阅读教材P 73至“练习”以上的部分,完成下列问题.反函数:对数函数y =log a x 与指数函数y =a x (a >0,且a ≠1)互为反函数. 三、合作探究例1. (1)下列函数表达式中,是对数函数的个数有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =l n x ;⑤y =log x (x +2);⑥y =2log 4x ;⑦y =log 2(x +1).A .1个B .2个C .3个D .4个(2)若对数函数f (x )的图象过点(4,-2),则f (8)=________.【自主解答】 (1)由于①中自变量出现在底数上,∴①不是对数函数;由于②中底数a ∈R 不能保证a >0,且a ≠1,∴②不是对数函数;由于⑤⑦的真数分别为(x +2),(x +1),∴⑤⑦也不是对数函数;由于⑥中log 4x 的系数为2,∴⑥也不是对数函数;只有③④符合对数函数的定义.(2)由题意设f (x )=log a x ,则f (4)=log a 4=-2,所以a -2=4,故a =12,即f (x )=log 12x ,所以f (8)=log 128=-3. 【答案】 (1)B (2)-3归纳总结:1.判断一个函数是对数函数必须是形如y =log a x (a >0且a ≠1)的形式,即必须满足以下条件:(1)底数a >0,且a ≠1; (2)自变量x 在真数的位置上,且x >0; (3)在解析式y =log a x 中,log a x 的系数必须是1,真数必须是x .2.对数函数的解析式中只有一个参数a ,故用待定系数法求对数函数的解析式时只需一个条件即可求出.例2. (1)函数f (x )=1log 12x +1的定义域为( )A .(2,+∞)B .(0,2)C .(-∞,2) D.⎝⎛⎭⎫0,12(2)函数f (x )=12-x+ln (x +1)的定义域为____________________________. (3)函数f (x )=log (2x -1)(-4x +8)的定义域为___________________________.【自主解答】 (1)要使函数f (x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f (x )的定义域为(0,2),故选B . (2)函数式若有意义,需满足⎩⎪⎨⎪⎧x +1>02-x ≥02-x ≠0即⎩⎪⎨⎪⎧x >-1x <2,解得-1<x <2,故函数的定义域为(-1,2).(3)由题意得⎩⎪⎨⎪⎧-4x +8>02x -1>02x -1≠1,解得⎩⎨⎧x <2x >12x ≠1.故函数y =log (2x -1)(-4x +8)的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,且x ≠1. 【答案】 (1)B (2)(-1,2) (3)⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,且x ≠1 归纳总结:求与对数函数有关的函数的定义域问题应遵循的原则为:1要保证根式有意义;要保证分母不为0;要保证对数式有意义,即若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.例3. (1)已知a >0且a ≠1,函数y =log a x ,y =a x ,y =x +a 在同一坐标系中的图象可能是( )(2)作出函数y =|log 2(x +1)|+2的图象.【自主解答】 (1)∵函数y =a x 与y =log a x 互为反函数,∴它们的图象关于直线y =x 对称.再由函数y =a x 的图象过(0,1),y =log a x 的图象过(1,0),排除选项A ,B ,从C ,D 选项看,y =log a x 递减,即0<a <1,故C 正确.【答案】 C(2)第一步:作y =log 2x 的图象,如图(1)所示.(1) (2)第二步:将y =log 2x 的图象沿x 轴向左平移1个单位长度,得y =log 2(x +1)的图象,如图(2)所示.第三步:将y =log 2(x +1)的图象在x 轴下方的部分作关于x 轴的对称变换,得y =|log 2(x+1)|的图象,如图(3)所示.第四步:将y =|log 2(x +1)|的图象沿y 轴向上平移2个单位长度,即得到所求的函数图象,如图(4)所示.(3) (4)归纳总结:函数图象的变换规律 (1)一般地,函数y =f (x ±a )+b (a ,b 为实数)的图象是由函数y =f (x )的图象沿x 轴向左或向右平移|a |个单位长度,再沿y 轴向上或向下平移|b |个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y =f (|x -a |)的图象是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图象与y =f (x )的图象在f (x )≥0的部分相同,在f (x )<0的部分关于x 轴对称.四、学以致用1.若函数f (x )=log (a +1)x +(a 2-2a -8)是对数函数,则a =________.【解析】 由题意可知⎩⎪⎨⎪⎧a 2-2a -8=0a +1>0a +1≠1,解得a =4. 【答案】 42.函数f (x )=3-x +lg (x +1)的定义域为( )A .[-1,3)B .(-1,3)C .(-1,3]D .[-1,3]【解析】 根据题意,得⎩⎪⎨⎪⎧3-x ≥0x +1>0,解得-1<x ≤3,∴f (x )的定义域为(-1,3].故选C. 【答案】 C 3.函数y =log 32x -的定义域为( )A .[1,+∞)B .(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1 【解析】 要使函数y =log 32x -有意义,有⎩⎪⎨⎪⎧2x -1>0log 32x -,解得x ≥1,所以函数f (x )的定义域是[1,+∞).故选A. 【答案】 A 4.函数y =a -x 与y =log a (-x )的图象可能是( )【解析】∵在y =log a (-x )中,-x >0,∴x <0,∴图象只能在y 轴的左侧,故排除A ,D ;当a >1时,y =log a (-x )是减函数,y =a -x =⎝⎛⎭⎫1a x 是减函数,故排除B ;当0<a <1时,y =log a (-x )是增函数,y =a -x =⎝⎛⎭⎫1a x 是增函数,∴C 满足条件,故选C. 【答案】 C五、自主小测1.已知函数f (x )=11-x的定义域为M ,g(x )=ln (1+x )的定义域为N ,则M∩N =( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅ 2.若f (x )是对数函数,且f (2)=2,则f (x )=________.3.函数f (x )=log a (2x +1)+2(a >0且a ≠1)必过定点________.4.已知函数y =f (x )与g(x )=log 3x (x >0)互为反函数,则f (-2)=________.5.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,利用图象判断是否有满足f (a )>f (2)的a 值.参考答案1.【解析】 由题意得M ={x |x <1},N ={x |x >-1},则M ∩N ={x |-1<x <1}.【答案】 C2.【解析】 设f (x )=log a x (a >0,且a ≠1),则f (2)=log a 2=2,即a =2,所以f (x )=log 2x .【答案】 log 2x3.【解析】 令2x +1=1,得x =0,此时f (x )=2,故函数f (x )=log a (2x +1)+2(a >0且a ≠1)必过定点(0,2).【答案】 (0,2)4.【解析】 ∵函数y =f (x )与g (x )=log 3x (x >0)互为反函数,∴f (x )=3x ,则f (-2)=3-2=19. 【答案】 195.【解】 (1)作出函数y =log 3x 的图象如图所示:(2)令f (x )=f (2),即log 3x =log 32,解得x =2.由如图所示的图象知:当0<a <2时,恒有f (a )<f (2).故当0<a <2时,不存在满足f (a )>f (2)的a 值.。
对数函数
教学目标
1.知识目标: 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题。
2.能力目标:培养学生观察能力、逻辑思维能力,发展学生探究和解决问题的能力,并渗透数形结合、分类讨论等数学思想,提高学生的应用意识和创新能力。
通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想. 3.情感目标:结合教学内容,培养学生学习数学的兴趣,对学生进行对称美、抽象美等数学审美教育。
教学重点:理解对数函数的定义,掌握对数函数图像和性质。
教学难点:是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对
数函数的图像和性质。
教学方法
启发研讨式
教学用具
多媒体
教学过程
一.回顾复习
前几课,我们一起学习了指数函数以及指数函数的图像和性质,请大家回顾一下:(打开课件,让学生们口答指数函数的性质) 二. 引入新课
今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数. 提问:指数函数存在反函数吗?(存在)
举例:指数函数x y 2=,由学生口答求反函数的过程:由x y 2=得y x 2log =.又
x y 2=的值域为()+∞,0,
所求反函数为 x y 2log =,()+∞∈,0x .
如果把函数改成一般式x
a y =,那么同样可得到它的反函数是x y a log =,()+∞∈,0x 那么我们今天就是研究指数函数的反函数-----对数函数.(板书)2.3.2对数函数 三. 新授课
1. 对数函数的定义:一般地,函数)1,0(log ≠=a a x y a >叫做对数函数(logarithmic
functioon ),它的定义域是()+∞,0.
那么对数函数)1,0(log ≠=a a x y a >的图像怎么来作呢?
学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图. 由于指数函数的图像按 1>a 和 10<<a 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况,并分别以x y 2log =和x y 2
1log =为例画图.
具体操作时,将学生分为四个小组,分别画出对数函数x y 2log =和x y 2
1log =的图
像,要求学生做到:
(1) 指数函数 x y 2=和 x
y )2
1(=的图像要尽量准确(关键点的位置,图像的变化趋势等).
(2) 画出直线 x y =.
(3) x y 2=的图像在翻折时先将特殊点(0,1)对称点 (1,0)找到,变化趋势由靠近x 轴对称为逐渐靠近y 轴,而 x
y )2
1(=的图像在翻折时可提示学生分两段翻折,在y=x 左侧的先翻,然后再翻在y=x 右侧的部分.
学生在笔记本完成具体操作以后,教师在运用多媒体把两对数图像的形成再用动画演示一遍,画出x y 2log =和x y 2
1log =的图像.(此时同底的指数函数和对数函数画在同一坐
标系内)如图:
教师画完图后再利用电脑将 x y 2log =和x y 2
1log =的图像画在同一坐标系内,如图:
教师说明:对数函数)1,0(log ≠=a a x y a >的图像大致有两种,它们也是随底a 的范围1>a 和 10<<a 的不同而不同的,故我们在研究对数函数性质时,也应分两种情况来讨论,下面:
A 、各小组根据图像总结图像特征和函数性质;
B 、各小组派代表向全体同学汇报探究成果; 在讲完性质④以后可以追问学生对数函数有没有最大值和最小值,当得到否定答案时,
可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当 1>a 且1>x 时,有 0>y ;当 10<<a 且10<
<x 时,有 0>y . 学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为
正,当底数与真数在1的两侧时,函数值为负,并把它当作第⑥条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用. 四.简单应用 (板书) 1. 研究相关函数的性质 例1. 求下列函数的定义域:
(1))4(log 2.0x y -= (2)1log -=x y a (1,1≠a a >)
(3))32(log )5(-=-x y x
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制. 2. 利用单调性比较大小 (板书) 例2. 比较下列各组数的大小
(1)4.3log 2与8.3log 2 (2)8.1log a 与1.2log a (1,1≠a a >
) (3)5log 7与7log 5 (4)5.0log 2.1与8.0log 7.0与5log 3
让学生先说出各组数的特征与比较方法,最后总结一下比较两对数值的常用方法:
(1)若底数为同一常数,则直接根据对数函数的单调性来比较; (2)若底数为同一字母,则根据对数函数的单调性对字母进行分类讨论; (3)若底数不同,则可找出0或±1等第三数来比较。
3. 思考题
对数函数的底与对数函数的图像间有什么关系呢?不妨以下列函数为例作出它们的图像:(1)x y 2log = (2)x y 3log = (3)x y 2
1log = (4)x y 3
1log = ,并据此
得出对数函数的底与对数函数的图像间的关系。
五.小结
本节课我们讲了:
(1)对数函数的定义;(2)对数函数的图像和性质;(3)比较两个对数值大小的方法 六.作业 (略) 七、教学反思。