AD536A
- 格式:pdf
- 大小:468.31 KB
- 文档页数:16
有效值转换器AD536A及其应用摘要:AD536A是一种新型集成电路有效值变换器,它具有精度高,可靠性好的特点。
本文着重介绍AD536A 的特点及应用电路。
关键词:AD536A 有效值在电信号测量中,经常要测量电信号的有效值,以往测量有效值的方法如下:1.用峰值变换器通过峰值因数求有效值。
现在使用的普通万用表即采用此方法,此种方法简单易行。
但对于不清楚波峰因子的信号,用此种方法不能得到有效值。
2.热电偶电桥有效值变换器。
市场上的有效值电压表即采用热电偶有效值变换器,热电偶有效值变换器虽然可以实现真有效值变化,但实际制作相当困难。
热电偶难以配对,且过载能力低,造价高。
因而除有效值电压表外,其他电子测量和控制仪器不宜采用热电偶有效值变换器。
3.用模拟运放组成电子式有效值变换器。
用模拟运算放大器分别组成平方器,积分器,开方器即可完成有效值变换,这种有效值变换器的具体实现方案有多种电路形式,但由于模拟运算放大器性能的离散性,所以这种方法实现的有效值变换精度很低。
4.用单片机逐点采样一组数据,求方均根值得其有效值。
这种方法能获得较为精确得有效值,具体实现也比较方便,但对于动态范围比较大的信号采样较难,不能得到精确的有效值。
以上方法不同程度地存在缺点或局限性。
AD536A是真有效值交流/直流转换器,AD536A能计算复杂输入信号的有效值并且给出一个与之等效的直流输出电平,波形的有效值比平均值更有用,因为它和信号的能量有关系,而且随机信号的有效值与它的方差有关。
一.AD536A的主要技术指标:电源电压范围± 3-±18V电源电流 1.2mA输入满刻度值 7V输入阻抗 106Ω输出阻抗 25kΩ测量输出≤0.2%频率稳定输入大于100mV 为450KHZ,输入大于 1V为2MHZ分贝输出 0-60dB二.AD536A的特点:AD536A是一个能实现有效值转换的单片集成电路。
AD536A直接计算任何含有直流和交流成分的复杂输入信号的有效值。
AD536ADJ真有效值交流转换直流IC的研究与应用首先,我们来了解一下AD536ADJ的基本特性和工作原理。
AD536ADJ是一款基于电荷平衡原理的电压转换器,可以将直流输入信号转换为等效的交流输出信号。
它内部集成了一个内部振荡器和一个电荷积分放大器,可以实现高精度和高稳定性的转换功能。
AD536ADJ的主要特性包括:输入电压范围广,可接受0V至40V的直流输入;输出频率范围宽,可以达到1Hz至100kHz;转换精度高,可达到0.1%;工作温度范围广,可以在-40℃至85℃的环境下正常工作。
在实际应用中,AD536ADJ有着广泛的用途。
首先,它可以用于电源管理领域。
电源管理是指对电源电压进行监测和控制,以提供稳定和可靠的电源输出。
AD536ADJ可以通过将直流电源转换为交流信号,实现对电源电压的实时监测和控制。
在电力系统中,可以将AD536ADJ与其他电源管理器件配合使用,实现对功率因数、电压波形和电源负载的控制。
其次,AD536ADJ还可以应用于工业自动化控制领域。
工业自动化控制是指通过自动化设备和技术,实现对工业生产过程的监控和控制。
AD536ADJ可以作为工业自动化控制系统中的一个重要组成部分,用于检测和控制过程中的直流信号。
例如,在温度控制系统中,AD536ADJ可以将温度传感器的直流信号转换为交流信号,再经过控制器进行处理和控制。
此外,AD536ADJ还可以应用于测量和仪器领域。
在科学实验和工程测量中,常需要将直流信号转换为交流信号进行测量和分析。
AD536ADJ可以实现高精度和高稳定度的直流转交流转换,提供精确的测量结果。
总之,AD536ADJ作为一款高性能的直流转交换电压转换器集成电路,具有广泛的研究和应用价值。
它可以在电源管理、电力系统和工业自动化控制等领域发挥重要作用,实现对直流信号的高精度和高稳定度的转换。
相信随着科技的不断进步,AD536ADJ的研究和应用将会有更加广阔的前景。
谐波-真有效值(True RMS)¡¡唯一的真实测量值我司推系列的真有效值的万用表,如203T钳形万用表,68T数字万用表,为了使客户对真有效值有一个全面的了解。
我们结合生活中现实情况讲解下真有效值和平均值的区别。
真有效值(True RMS)¡¡唯一的真实测量值许多商业和工业的装置都为断路器的频繁误跳闸所烦扰。
这些跳闸看上去经常像是随机的、令人费解的。
其实这里面是有其原因可究。
造成这种现象的原因一般来说有两个方面。
第一个可能原因是一些负载,特别是个人电脑和其它电子设备开机时所产生的冲击电流。
关于这种原因,将会在本指南的后面章节里具体讨论。
另一个可能原因是回路里的真实电流的测量值低于真实值¡¡换而言之,是实际电流过高而引起的。
在现代化装置中这种电流测量值偏低是个高发现象。
既然当前的数字测量仪器如此精确可靠,为什么又会发生这种现象哪?答案就是许多测量仪都不适合于测量失真(畸变)电流,而现在绝大多数的电流都是失真的。
电流失真是由于非线性负荷的谐波电流造成的,特别是个人电脑、配有电子镇流器的荧光灯和变频驱动装置等电子设备为代表。
谐波的产生机理及其对电气系统的的影响将在指南的3.1节进行具体阐述。
图3所示为个人电脑接入后的典型电流波形图。
很明显这不是一个纯正弦波,所以一般适用于正弦波的测量工具和计算方法都不适用。
这意味着,在对电力系统进行故障检修或者性能测试分析时,有必要采用能够处理非正弦电流和电压的正确测量工具。
图1 一个电流两种读数,你相信哪个?图中的回路为一个有畸变电流的非线性负载供电。
真有效值卡钳式电流表(左)上的读数是正确的,而平均值卡钳式电流表的读数(右)比正确值要低32%。
图1所示为同一回路上的两种卡钳式电流表的读数差别。
两个测量仪都运行正常,且按照生产厂家的要求进行了校准,主要的差别就在于测量方法的不同。
左边的电流表是真有效值测量仪,右边的是按有效值校准的平均值测量仪。
型号功能简述AD1380JD 16位20us高性能模数转换器(民用级)AD1380KD 16位20us高性能模数转换器(民用级)AD1671JQ 12位 1.25MHz采样速率带宽2MHz模数转换器(民用级)AD1672AP 12位3MHz采样速率带宽20MHz单电源模数转换器(工业级)AD1674JN 12位100KHz采样速率带宽500KHz模数转换器(民用级)AD1674AD 12位100KHz采样速率带宽500KHz模数转换器(工业级)AD202JN 小型2KHz隔离放大器(民用级)卧式AD202JY小型2KHz隔离放大器(民用级)立式AD204JN 小型5KHz隔离放大器(民用级)卧式AD22100KT 带信号调理比率输出型温度传感器AD22105AR 可编程温控开关电阻可编程温度控制器SOICAD261BND-1 数字隔离放大器AD2S99AP 可编程正弦波振荡器(工业级)PLCCAD420AN-32 16位单电源4-20mA输出数模转换器(工业级)DIPAD420AR-32 16位单电源4-20mA输出数模转换器(工业级)SOICAD421BN 16位环路供电符合HART协议4-20mA输出数模转换器(工业级)DIP AD421BR 16位环路供电符合HART协议4-20mA输出数模转换器(工业级)SOIC AD515AJH 低价格,低偏置电流,高输入阻抗运放(民用级) TO-99AD515ALH 低价格,低偏置电流,高输入阻抗运放(民用级) TO-99AD517JH 低失调电压,高性能运放(民用级) TO-99AD518JH 宽带,低价格运放(民用级) TO-99AD521JD 电阻设置增益精密仪表放大器(民用级)DIPAD524AD 引脚设置增益高精度仪表放大器(工业级)DIPAD526BD 软件编程仪表放大器(工业级)DIPAD526JN 软件编程仪表放大器(民用级)DIPAD532JH 模拟乘法器(民用级)TO-99AD534JD 模拟乘法器(民用级)DIPAD534JH 模拟乘法器(民用级)TO-99AD536AJH 集成真有效值直流转换器(民用级)TO-99AD536AJD 集成真有效值直流转换器(民用级)DIPAD536AJQ 集成真有效值直流转换器(民用级)DIPAD537JH 150KHZ集成压频转换器(民用级)TO-99AD537SH 150KHZ集成压频转换器(军用级)TO-99AD538AD 单片实时模拟乘法器(工业级)DIPAD539JN 宽带双通道线性乘法器(民用级)DIPAD542JH 低价格,低偏置电流,高输入阻抗运放(民用级) TO-99AD545ALH 低偏置电流,高输入阻抗运放(民用级) TO-99AD546JN 静电计放大器(民用级)DIPAD547JH 低价格,低偏置电流,高输入阻抗运放(民用级) TO-99AD548JN 精密BiFET输入运放(民用级)DIPAD549JH 低偏置电流,高输入阻抗运放(民用级) TO-99AD549LH 低偏置电流,高输入阻抗运放(民用级) TO-99AD5539JN 高速运放(民用级)DIPAD557JN 微处理器兼容完整7位电压输出数模转换器(民用)DIPAD558JN 微处理器兼容完整8位电压输出数模转换器(民用)DIPAD565AJD 12位0.25us电流输出数模转换器(民用)DIPAD568JQ 12位超高速电流输出数模转换器(民用)DIPAD569JN 16位3us电流输出数模转换器(民用)DIPAD570JD/+ 8位25us模数转换器(民用)DIPAD574AJD 12位25us模数转换器(民用)DIPAD574AKD 12位25us模数转换器(民用)DIPAD578KN 12位3us模数转换器(民用)DIPAD580JH 精密 2.5V电压基准源(民用级)TO-52AD580LH 精密 2.5V电压基准源(民用级)TO-52AD581JH 精密10V电压基准源(民用级)TO-5AD582KD 0.7us采样保持放大器(民用)DIPAD584JH 引脚设置输出电压基准源(民用级)TO-99AD584JN 引脚设置输出电压基准源(民用级)DIPAD585AQ 3us采样保持放大器(工业级)DIPAD586JN 精密5V电压基准源(民用级)DIPAD586JQ 精密5V电压基准源(民用级)DIPAD586KN 精密5V电压基准源(民用级)DIPAD586KQ 精密5V电压基准源(民用级)DIPAD586KR 精密5V电压基准源(民用级)SOICAD587KN 精密10V电压基准源(民用级)DIPAD587KR 精密10V电压基准源(民用级)SOICAD588AQ 精密可编程电压基准源(工业级)DIPAD589JH 精密 1.235V电压基准源(民用级)H-02AAD590JH —55℃~150℃测温范围温度传感器TO-52AD590KH —55℃~150℃测温范围温度传感器TO-52AD592AN 低价格,精密单片温度传感器TO-92AD592BN 低价格,精密单片温度传感器TO-92AD595AD K型(铬-铝)热电偶信号调节器(工业级)DIPAD595AQ K型(铬-铝)热电偶信号调节器(工业级)DIPAD598AD 线性可变位移信号调节器(LVDT)(工业级)DIPAD600XN 低噪声宽带可变增益双运放(民用级)DIPAD602JN 低噪声宽带可变增益双运放(民用级)DIPAD603AQ 低噪声可变增益运放(工业级)DIPAD606JN 50MHz, 80db对数放大器(民用级)DIPAD607ARS 低功耗混频器/AGC/RSSC 3V接收机的IF子系统(工业级)SSOP AD620AN 低功耗仪表放大器(工业级)DIPAD621AN 低功耗仪表放大器(工业级)DIPAD622AN 单电源仪表放大器(工业级)DIPAD623AN 单电源Rail-Rail输出仪表放大器(工业级)DIPAD623AR 单电源Rail-Rail输出仪表放大器(工业级)SOICAD624AD 精密仪表放大器(工业级)DIPAD625JN 可编程增益仪表放大器(民用级)DIPAD625KN 可编程增益仪表放大器(民用级)DIPAD626AN 单电源仪表放大器(工业级)DIPAD627AN 单电源低功耗Rail-Rail输出仪表放大器(工业级)DIPAD629AN 高电压抑制比差分放大器(工业级)DIPAD630JN 平衡跳制解调器(民用级)DIPAD633JN 低价格模拟乘法器(民用级)DIPAD636JH 高精度真有效值直流转换器(民用级)TO-99AD636JD 高精度真有效值直流转换器(民用级)DIPAD637JQ 高精度真有效值直流转换器(民用级)DIPAD648JN 精密,BiFET输入运放(民用级)DIPAD650JN 1MHz,电压频率转换器(民用级)DIPAD650KN 1MHz,电压频率转换器(民用级)DIPAD652AQ 2MHz,同步电压频率转换器(工业级)DIPAD654JR 500KHz,低价格电压频率转换器(民用级)SOICAD654JN 500KHz,低价格电压频率转换器(民用级)DIPAD660AN 16位8us串并行输入数模转换器(工业级)DIPAD6640AST 12位65MSPS模数转换器(工业级) LQFPAD6644AST 14位65MSPS模数转换器(工业级) LQFPAD667JN 12位3us并行输入数模转换器(民用级)DIPAD667KN 12位3us并行输入数模转换器(民用级)DIPAD669AN 16位8us并行输入数模转换器(工业级)DIPAD670JN 单电源,内带仪表放大器电压基准源8位数模转换器(民用级)DIPAD676JD 16位100KSPS采样速率并行输出模数转换器(民用级)DIPAD676JN 16位100KSPS采样速率并行输出模数转换器(民用级)DIPAD676KD 16位100KSPS采样速率并行输出模数转换器(民用级)DIPAD677AR 16位100KSPS采样速率串行输出模数转换器(民用级)SOICAD677JD 16位100KSPS采样速率串行输出模数转换器(民用级)DIPAD677JN 16位100KSPS采样速率串行输出模数转换器(民用级)DIPAD678JD 12位200KSPS采样速率并行输出模数转换器(民用级)DIPAD678KN 12位200KSPS采样速率并行输出模数转换器(民用级)DIPAD679JN 14位128KSPS采样速率并行输出模数转换器(民用级)DIPAD679KN 14位128KSPS采样速率并行输出模数转换器(民用级)DIPAD680JN 精密 2.5V电压基准源(民用级)DIPAD684JQ 1us 四通道采样保持放大器(民用级)DIPAD693AQ 环路供电,4~20mA输出传感器信号变送器(工业级)DIPAD694AQ 0~2V或0~10V输入,4~20mA或0-20mA输出信号变送器(工业级)DIP AD694JN 0~2V或0~10V输入,4~20mA或0-20mA输出信号变送器(民用级)DIP AD698AP 通用线性可变位移信号调节器(LVDT)(工业级)PLCCAD7008AP20 带10位D/A,20MHz主频直接数字同步调制器(工业级)PLCCAD7008JP-50 带10位D/A,50MHz主频直接数字同步调制器(民用级)PLCCAD704JN 精密四运放(民用级)DIPAD705JN 精密运放(民用级)DIPAD706JN 精密双运放(民用级)DIPAD707AQ 精密单运放(工业级)DIPAD707JN 精密单运放(民用级)DIPAD708AQ 双AD707(工业级)DIPAD708JN 双AD707(民用级)DIPAD7111ABN 0.37db对数数模转换器(工业级)DIPAD7111LN 0.37db对数数模转换器(工业级)DIPAD711AQ 精密BiFET输入运放(工业级)DIPAD711JR 精密BiFET输入运放(民用级)SOICAD711JN 精密BiFET输入运放(民用级)DIPAD712AQ 双AD711(工业级)DIPAD712JN 双AD711(民用级)DIPAD713BQ 四AD711(工业级)DIPAD713JN 四AD711(民用级)DIPAD720JP RGB-NTSC/PAL编码器(民用级)PLCCAD7224KN 8位3us转换时间电压输出数模转换器(民用级)DIPAD7226KN 8位4通道3us转换时间电压输出数模转换器(民用级)DIPAD7228ABN 8位8通道5us转换时间电压输出数模转换器(工业级)DIPAD722JR-16 Analog toNTSC/PAL编码器(民用级)SOICAD7237AAN 12位2通道5us转换时间电压输出数模转换器(工业级)DIPAD7237JN 12位2通道5us转换时间电压输出数模转换器(民用级)DIPAD7243AN 12位电压输出型数模转换器(工业级)DIPAD7245AAN 12位10us转换时间电压输出数模转换器(工业级)DIPAD7249BN 12位双路串行输出数模转换器(工业级)DIPAD724JR Analog toNTSC/PAL编码器(民用级)SOICAD734AQ 10MHz带宽四象限模拟乘法器(工业级)DIPAD736JN 通用真有效值直流转换器(民用级)DIPAD737JN 通用真有效值直流转换器(民用级)DIPAD737AQ 通用真有效值直流转换器(工业级)DIPAD7416AR 片内带D/A数字输出温度传感器LM35升级品可8片级联(工业级)SOIC AD741KN 通用运放(民用级)DIPAD743JN 低噪声,BiFET输入运放(民用级)DIPAD744JN 精密,双极性运放(民用级)DIPAD745JN 精密低噪声运放(民用级)DIPAD7501JN 8选1 CMOS多路转换器(民用级)DIPAD75019JP 16×16音频距阵开关(民用级)PLCCAD7502JN 差动4选1 CMOS多路转换器(民用级)DIPAD7502KQ 差动4选1 CMOS多路转换器(民用级)DIPAD7503JN 8选1 CMOS多路转换器(民用级)DIPAD7506JN 16选1 CMOS多路转换器(民用级)DIPAD7507JN 差动8选1 CMOS多路转换器(民用级)DIPAD7510DIJN 四单刀单掷CMOS介质隔离模拟开关9民用级)DIPAD7510DIKN 四单刀单掷CMOS介质隔离模拟开关9民用级)DIPAD7512DIJN 双单刀双掷CMOS介质隔离模拟开关9民用级)DIPAD7512DIKN 双单刀双掷CMOS介质隔离模拟开关9民用级)DIPAD7520LN 10位CMOS数模转换器(民用级)DIPAD7523JN 8位CMOS数模转换器(民用级)DIPAD7524JN 8位CMOS带锁存数模转换器(民用级)DIPAD7528JN 8位180ns电流输出CMOS数模转换器(民用级)DIPAD7528KN 8位180ns电流输出CMOS数模转换器(民用级)DIPAD7533JN 10位600ns电流输出CMOS数模转换器(民用级)DIPAD7535JN 14位 1.5us电流输出CMOS数模转换器(民用级)DIPAD7537JN 12位双路1.5us电流输出CMOS数模转换器(民用级)DIP AD7541AKN 12位600ns电流输出CMOS数模转换器(民用级)DIPAD7542JN 12位250ns电流输出CMOS数模转换器(民用级)DIPAD7543KN 12位串行输入CMOS数模转换器(民用级)DIPAD7545AKN 12位1us电流输出CMOS数模转换器(民用级)DIPAD7564BN 低功耗四路数模转换器(工业级)DIPAD7574JN 8位15us电流输出CMOS数模转换器(民用级)DIPAD7590DIKN 四单刀单掷CMOS带锁存介质隔离模拟开关9民用级)DIP AD7660AST 16位100KSPS CMOS模数转换器(工业级)LQFPAD7664AST 16位570KSPS CMOS模数转换器(工业级)LQFPAD767JN 12位高速电压输出数模转换器(民用级)DIPAD768AR 16位高速电流输出数模转换器(民用级)SOICAD7701AN 16位∑–△模数转换器(工业级)DIPAD7703AN 20位∑–△模数转换器(工业级)DIPAD7703BN 20位∑–△模数转换器(工业级)DIPAD7705BN 16位∑–△模数转换器(工业级)DIPAD7705BR 16位∑–△模数转换器(工业级)SOICAD7706BN 16位∑–△模数转换器(工业级)DIPAD7707BR 16位∑–△模数转换器(工业级)SOICAD7710AN 24位∑–△模数转换器(工业级)DIPAD7711AN 24位∑–△模数转换器(工业级)DIPAD7712AN 24位∑–△模数转换器(工业级)DIPAD7713AN 24位∑–△模数转换器(工业级)DIPAD7714AN-3 24位∑–△模数转换器(工业级)DIP 3V电源AD7714AN-5 24位∑–△模数转换器(工业级)DIP 5V电源AD7715AN-5 16位∑–△模数转换器(工业级)DIP 5V电源AD7715AR-5 16位∑–△模数转换器(工业级)SOIC 5V电源AD7731BN 24位∑–△模数转换器(工业级)DIPAD7741BN 单通道输入6MHz压频转换器(工业级)DIPAD7742BN 四通道输入6MHz压频转换器(工业级)DIPAD7750AN 两通道乘积/频率转换器电度表专用芯片(工业级)DIPAD7755AARS IEC521/1036标准电度表专用芯片(工业级)DIPAD7777AR 10位多路T/H子系统(工业级)SOICAD779JD 14位128KSPS采样速率并行输出模数转换器(民用级)DIPAD780AN 2.5V或3V可选输出高精度电压基准源(工业级)DIPAD781JN 700ns采样保持放大器(民用级)DIPAD7820KN 8位500KSPS采样速率模数转换器(民用级)DIPAD7821KN 8位1MSPS采样速率模数转换器(民用级)DIPAD7822BN 8位2MSPS采样速率模数转换器(工业级)DIPAD7824BQ 8位四通道高速模数转换器(民用级)DIPAD7824KN 8位四通道高速模数转换器(工业级)DIPAD7837AN 12位双路乘法数模转换器(工业级)DIPAD7845JN 12位乘法数模转换器(民用级)DIPAD7846JN 16位电压输出数模转换器(民用级)DIPAD7847AN 12位双路乘法数模转换器(工业级)DIPAD7856AN 14位8通道285KSPS采样速率模数转换器(工业级)DIPAD7862AN-10 12位4通道同时采样250KSPS速率模数转换器带2SHA and 2ADCs(工业级)DIP AD7864AS-1 12位4通道同时采样147KSPS速率模数转换器(工业级)PQFPAD7865AS-1 14位4通道同时采样175KSPS速率模数转换器带2SHA and 2ADCs(工业级)PQFP AD7872AN 14位串行输出模数转换器(工业级)DIPAD7891AP-1 12位四通道同时采样模数转换器(工业级)DIPAD7892AN-1 12位四通道同时采样模数转换器(工业级)SOICAD7895AN-10 12位750KSPS采样速率模数转换器(民用级)DIPAD7874AN 12位750KSPS采样速率模数转换器(民用级)DIPAD7874BR 12位8通道200KSPS速率模数转换器(工业级)SOICAD7886JD 12位单电源八通道串行采样模数转换器(工业级)DIPAD7886KD 12位单电源八通道串并行采样模数转换器(工业级)DIPAD7888AR 12位600KSPS采样模数转换器(工业级)DIPAD7890AN-10 12位单电源200KSPS采样速率模数转换器(工业级)DIPAD790JN 高速精密比较器(民用级)DIPAD795JN 低偏置电流低噪声运放(民用级)DIPAD797AN 低失真低噪声运放(工业级)DIPAD797AR 低失真低噪声运放(工业级)SOICAD73360AR 16位6通道数据采集子系统(三相电量测量IC)(工业级)SOICAD8001AN 800MHz 电流反馈运放(工业级)DIPAD8002AN 800MHz 电流反馈双运放(工业级)DIPAD8009AR 1GHz 4500V/us 电流反馈双运放(工业级)DIPAD8011AN 340MHz 电流反馈运放(工业级)DIPAD8015AR 单电源真空管前置放大器(工业级)SOICAD8018AR 5V Rail-Rail 大电流输出XDSL线性驱动放大器(工业级)SOICAD8031AN 单电源Rail-Rail输入输出运放(工业级)DIPAD8032AN 单电源Rail-Rail输入输出双运放(工业级)DIPAD8036AN 低失真宽带240MHz电压输出运放(工业级)DIPAD8037AN 低失真宽带270MHz电压输出运放(工业级)DIPAD8041AN 120MHz带宽Rail-Rail输出运放(工业级)DIPAD8041AR 120MHz带宽Rail-Rail输出运放(工业级)SOICAD8042AN 120MHz带宽Rail-Rail输出双运放(工业级)DIPAD8044AN 80MHz带宽Rail-Rail输出四运放(工业级)DIPAD8047AN 电压反馈运放(工业级)DIPAD8055AR 电压反馈运放(工业级)SOICAD8056AR 低价格300MHz电压反馈双运放(工业级) SOICAD8058AR 电压反馈双运放(工业级)SOICAD8079AR 双通道260MHz缓冲器(工业级) SOICAD8108AST 8×8视频距阵开关(工业级)LQFPAD8109AST 8×8视频距阵开关(工业级)LQFPAD810AN 带电源休眠控制端的低功耗视频运放(工业级) DIPAD8111AST 16×8视频距阵开关(工业级)LQFPAD8115AST 16×16视频距阵开关(工业级)LQFPAD8116AST 16×16视频距阵开关(工业级)LQFPAD811AN 高性能视频运放(工业级) DIPAD811JR 高性能视频运放(工业级) SOICAD812AN 低功耗电流反馈双运放(工业级) DIPAD812AR 低功耗电流反馈双运放(工业级) SOICAD8131AR 差分输入输出电压反馈放大器(工业级)SOICAD8138AR IF 放大器(工业级)SOICAD813AN 单电源低功耗三视频运放(工业级) DIPAD813AR-14 单电源低功耗三视频运放(工业级) SOICAD815AY大电流输出,差动输入\输出运放(工业级)AD8170AN 2选1视频多路转换器(工业级) DIPAD8174AN 4选1视频多路转换器(工业级) DIPAD817AN 高速低功耗宽电源运放(工业级) DIPAD8180AN 差动2选1视频多路转换器(工业级) DIPAD8184AN 4选1视频多路转换器(工业级) DIPAD818AN 低价格高速电压反馈视频运放(工业级) DIPAD820AN 单电源低功耗FET输入Rail-Rail输出运放(工业级) DIP AD822AN 双AD820(工业级) DIPAD822AN-3V 双AD820(工业级) DIP 3V电源AD823AN 单电源Rail-Rail输出双运放(工业级)DIPAD824AN 单电源Rail-Rail输出四运放(工业级)DIPAD826AN 高速低功耗双运放(工业级) DIPAD827AQ 双AD847 (工业级) DIPAD827JN 双AD847 (民用级) DIPAD828AN 双AD818(工业级) DIPAD829JN 高速低噪声视频运放(工业级) DIPAD8307AN 500MHz对数放大器(工业级)DIPAD8307AR 500MHz对数放大器(工业级)SOICAD8309ARU 500MHz对数放大器(工业级)TSSOPAD830AN 高速视频差动运放(工业级) DIPAD8313ARM 2.5GHz对数放大器(工业级)RM-8AD830AN 高速视频差动运放(工业级) DIPAD8313ARM 2.5GHz对数放大器(工业级)RM-8AD8320ARP 数字可变增益线性驱动器(工业级)RP-20AD834JN 500MHz带宽四象限模拟乘法器(工业级)DIPAD8350AR15 差分输入射频放大器(工业级)SOICAD835AN 250MHz带宽四象限电压输出模拟乘法器(工业级)DIP AD8402AN-10 2通道数字电位器阻值10K(工业级) DIPAD8403AN100 4通道数字电位器阻值100K(工业级) DIPAD840JN 宽带高速运放(民用级) DIPAD843AQ 34MHz带宽高速FET输入运放(工业级) DIPAD844AN 2000V/us高速运放(工业级) DIPAD845JN 16MHz带宽高速FET输入运放(民用级) DIPAD845KN 16MHz带宽高速FET输入运放(民用级) DIPAD847AQ 300V/us高速低功耗运放(工业级) DIPAD847JN 300V/us高速低功耗运放(民用级) DIPAD847SQ 300V/us高速低功耗运放(军用级) DIPAD849JN 高速低功耗运放(民用级) DIPAD8522AN 12 位单电源双路电流输出型数模转换器(工业级)DIP AD8551AR 自稳零运放(工业级)SOICAD8552AR 自稳零双运放(工业级)SOICAD8561AN 单电源比较器(工业级)DIPAD8561AR 单电源比较器(工业级)SOICAD8564AN 单电源TTL/CMOS四路比较器(工业级)DIPAD8598AN 单电源双路比较器(工业级)DIPAD9042AST 12位41MSPS模数转换器(工业级) LQFPAD9048JQ 8位35MSPS视频模数转换器(民用级) DIPAD9049BRS 9位30MSPS模数转换器(工业级) SSOPAD9050BR 10位40MSPS模数转换器(工业级) SOICAD9051BRS 10位60MSPS模数转换器(工业级) SSOPAD9057BRS-40 8位40MSPSz视频模数转换器(工业级) SSOPAD9057BRS-60 8位60MSPS视频模数转换器(工业级) SSOPAD9058JJ 双路8位50MSPS视频模数转换器(民用级) LCCAD9059BRS 双路8位60MSPS视频模数转换器(工业级) SSOPAD9066JR 双路6位60MSPS视频模数转换器(民用级) SSOPAD9071BR 10位TTL兼容100MSPS模数转换器(工业级) SOICAD9101AR 7ns建立时间采样保持放大器(工业级)SOICAD9200ARS 10位20MSPS模数转换器(工业级) SSOPAD9203ARU 10位40MSPS模数转换器(工业级) TSSOPAD9220AR 12位10MSPS模数转换器(工业级) SOICAD9221AR 12位1MSPS模数转换器(工业级) SOICAD9223AR 12位3MSPS模数转换器(工业级) SOICAD9225AR 12位25MSPS模数转换器(工业级) SOICAD9226ARS 12位65MSPS模数转换器(工业级) SSOPAD9240AS 14位10MSPS模数转换器(工业级) MQFPAD9243AS 14位3MSPS模数转换器(工业级) MQFPAD9260AS 16位2.5MSPS∑–△模数转换器(工业级)MQFPAD9280ARS 单电源8位32MSPS模数转换器(工业级)SSOPAD9281ARS 单电源8位双路32MSPS模数转换器(工业级)SSOP AD9283BRS-100 单电源8位100MSPS模数转换器(工业级)SSOP AD9283BRS-80 单电源8位80MSPS模数转换器(工业级)SSOPAD9288BRS-80 单电源8位双路80MSPS模数转换器(工业级)SSOPAD9300KQ 4选1宽带视频多路转换器(民用级) DIPAD9483KS-100 8位100MSPS三视频模数转换器(民用级)MQFPAD9500BQ 数字化可编程延迟信号发生器(工业级) DIPAD9501JN TTL/COMS数字化可编程延迟信号发生器(民用级) DIPAD9617JR 1400V/us,140MHz带宽高速运放(民用级) SOICAD9617JN 1400V/us,140MHz带宽高速运放(民用级) DIPAD9618JN 1800V/us,160MHz带宽高速运放(民用级) DIPAD9630AN 低失真闭环缓冲放大器(工业级) DIPAD9631AN 超低失真宽带电压反馈放大器(工业级) DIPAD96687BQ 高速双电压比较器(工业级) DIPAD9698KN 高速TTL兼容双电压比较器(工业级) DIPAD9708ARU 8位100MSPS 双路数模转换器(工业级)TSSOPAD9709AST 8位125MSPS 双路数模转换器(工业级)PQFPAD9713BAN 12位80MSPS TTL兼容数模转换器(工业级) DIPAD9721BR 10位400MSPS TTL兼容数模转换器(工业级) SOICAD9731BR 10位170MSPS 双电源数模转换器(工业级) SOICAD9732BRS 10位200MSPS 单电源数模转换器(工业级) SSOPAD9750AR 10位125MSPS 数模转换器(工业级)SOICAD9752AR 12位125MSPS 数模转换器(工业级)SOICAD9760AR 10位100MSPS 数模转换器(工业级)SOICAD9762AR 12位100MSPS 数模转换器(工业级)SOICAD9764AR 14位100MSPS 数模转换器(工业级)SOICAD976CN 16位100KSPS BiCMOS并行输出模数转换器(工业级)DIPAD976AN 16位100KSPS BiCMOS并行输出模数转换器(工业级)DIPAD976AAN 16位200KSPS BiCMOS并行输出模数转换器(工业级)DIPAD9772AST 14位300MSPS 数模转换器(工业级)LQFPAD977AAN 16位200KSPS BiCMOS串行输出数模转换器(工业级)DIPAD977AN 16位100KSPS BiCMOS串行输出数模转换器(工业级)DIPAD9801JCST 10位6MSPS CCD信号处理器(民用级)LQFPAD9802JST 10位6MSPS CCD信号处理器(民用级)LQFPAD9803JST 10位6MSPS CCD信号处理器(民用级)LQFPAD9805JS 10位3通道6MSPS CCD信号处理器(民用级)MQFPAD9816JS 12位3通道6MSPS CCD信号处理器(民用级)MQFPAD9822JR 14位3通道12MSPS CCD信号处理器(民用级)SOICAD9830AST 带10位D/A,25MHz主频直接数字同步调制器(工业级)PQFPAD9831AST 带10位D/A,50MHz主频直接数字同步调制器(工业级)PQFPAD9832BRU 带10位D/A,25MHz主频直接数字同步调制器(工业级)TSSOPAD9850BRS 带10位D/A,125MHz主频直接数字同步调制器(工业级)SSOPAD9851BRS 带10位D/A,180MHz主频直接数字同步调制器(工业级)SSOPAD9852AST 带12位D/A,200MHz主频直接数字同步调制器(工业级)LQFP-80AD9852ASQ 带散热器带12位D/A,300MHz主频直接数字同步调制器(工业级)LQFP-80 AD9853AS 数字QPSK/16 QAM 调整器(工业级)PQFPAD9854AST 带12位D/A,200MHz主频直接数字同步调制器(工业级)LQFP-80AD9854ASQ 带散热器带12位D/A,300MHz主频直接数字同步调制器(工业级)LQFP-80AD9901KQ 线性相位探测器/频率鉴别器(民用级)DIPADG201AKN 四单刀单掷模拟开关(民用级)DIPADG201HSJN 四单刀单掷模拟开关(民用级)DIPADG211AKN 四单刀单掷模拟开关(民用级)DIPADG222AKN 四单刀单掷模拟开关(民用级)DIPADG333ABN 四单刀单掷模拟开关(工业级)DIPADG333ABR 四单刀单掷模拟开关(工业级)SOICADG408BN 8选1CMOS模拟多路转换器(工业级)DIPADG409BN 差动4选1CMOS模拟多路转换器(工业级)DIPADG411BN 四单刀单掷模拟开关(工业级)DIPADG417BN 单刀单掷模拟开关(工业级)DIPADG419BN 单刀单掷模拟开关(工业级)DIPADG431BN 四单刀单掷模拟开关(工业级)DIPADG436BN 双单刀单掷模拟开关(工业级)DIPADG441BN 四单刀单掷模拟开关(工业级)DIPADG442BN 四单刀单掷模拟开关(工业级)DIPADG506AKN 16选1CMOS模拟多路转换器(民用级)DIPADG507AKN 差动8选1CMOS模拟多路转换器(民用级)DIPADG508AKN 8选1CMOS模拟多路转换器(民用级)DIPADG508FBN 8选1CMOS带过压保护模拟多路转换器(工业级)DIPADG509AKN 差动4选1CMOS模拟多路转换器(民用级)DIPADG511BN 单电源四单刀单掷模拟开关(工业级)DIPADG608BN 8选1CMOS模拟多路转换器(工业级)DIPADG609BN 差动4选1CMOS模拟多路转换器(工业级)DIPADG719BRM 单路视频CMOS模拟开关(工业级)RM-6ADG736BRM 双路视频CMOS模拟开关(工业级)RM-10ADM660AN DC-DC转换器(工业级)DIPADM690AN 微处理器监控电路(工业级)DIPADM708AN 微处理器监控电路(工业级)DIPADSP21060KS160 32位浮点数字信号处理器内存4M(民用级)PQFPADSP21060CZ-160 32位浮点数字信号处理器内存4M(工业级)PQFPADSP21062KS-160 32位浮点数字信号处理器内存2M(民用级)PQFPADSP2181KS-133 16位定点数字信号处理器(民用级)PQFP-128ADSP2181KST-133 16位定点数字信号处理器(民用级)TQFP-128ADUC812BS 带单片机、8路12位A/D、2路D/A的数采系统(工业级)PQFP ADVF32KN 500KHz工业标准压频转换器(民用级)DIPADXL105JQC ±1g-±5g带温度补偿加速度传感器(民用级)QC-14ADXL202AQC ±2g双路加速度传感器(工业级)QC-14AMP02FP 高精度仪表放大器(工业级)DIPAMP04FP 单电源精密仪表放大器(工业级)DIPDAC08CP 8位高速电流输出型数模转换器(民用级)DIPDAC8228FP 8位双路电压输出型数模转换器(工业级)DIPOP07AZ/883C 超低失调电压运放(军用级)DIPOP07CP 超低失调电压运放(工业级)DIPOP07CS 超低失调电压运放(工业级)SOICOP176GP 低失真低噪声运放(工业级)DIPOP177GP 高精密运放(工业级)DIPOP27GP 低噪声精密运放(工业级)DIPOP291GP 单电源Rail-Rail输入输出双运放(工业级)DIPOP295GP 单电源Rail-Rail输入输出双运放(工业级)DIPOP296GP 微功耗Rail-Rail输入输出双运放(工业级)DIPOP297GP 超低偏置电流精密双运放(工业级)DIPOP297GS 超低偏置电流精密双运放(工业级)SOICOP37EP 低噪声精密运放(民用级)DIPOP37GP 低噪声精密运放(工业级)DIPOP495GP 单电源Rail-Rail输入输出四运放(工业级)DIPOP497GP 超低偏置电流精密四运放(工业级)DIPOP77GP OP07改进型(工业级)DIPOP90GP 低电压微功耗精密运放(工业级)DIPOP97FP 微功耗精密运放(工业级)DIPOP97FS 微功耗精密运放(工业级)SOICPKD01FP 峰值检测器(工业级)DIPREF02CP 精密5V电压基准源带温度传感器(工业级)DIPREF03GP 精密低价格2.5V电压基准源(工业级)DIPREF192GP 低功耗大电流输出2.5V电压基准源(工业级)DIPREF192GS 低功耗大电流输出2.5V电压基准源(工业级)SOICREF194GP 低功耗大电流输出4.5V电压基准源(工业级)DIPREF195GS 低功耗大电流输出5V电压基准源(工业级)SOICREF43FZ 高精度2.5V电压基准源(工业级)DIPSMP04EP 7us四通道采样保持放大器(工业级)DIPSMP08FP 7us八通道采样保持放大器(工业级)DIPSSM2141P 差动线路接收器Gain="0dB"(工业级)DIPSSM2142P 平衡线路驱动器(工业级)DIPSSM2143P 差动线路接收器Gain="-6dB"(工业级)DIPSSM2211P 1W功率差分输出音频功率放大器(工业级)DIPSSM2275P Rail-Rail输出双音频功率放大器(工业级)DIPTMP03FS PWM输出,直接与微处理器接口数字输出温度传感器SOIC TMP04FS 反相PWM输出,直接与微处理器接口数字输出温度传感器SOIC TMP36GT9 电压输出温度传感器TO-92MAX038CPP 波形发生器MAX1044CPA 60KHz振荡器自举模式DC-DC 电荷泵转换器MAX110ACPE 低价格双路14位串形模数转换器MAX110BCPE 低价格双路14位串形模数转换器MAX111BCPE 低价格14位串形模数转换器MAX122BCNG 高速带采保和基准的12位模数转换器MAX1232CPA微处理器监控电路MAX1242BCSA 10位带2.5V基准的串形模数转换器MAX125CEAX 14位2×4通道4路同时采集并行模数转换器MAX134CPL 积分型A/D转换器,+5V,3-3/4位MAX135CPI 低功率A/D转换器MAX139CPL 积分型A/D转换器MAX140CPL 积分型A/D转换器MAX1480BCPI 完全隔离半双RS-485接口MAX1480BEPI 完全隔离半双RS-485接口MAX1483CPA RS-485/RS-442接口,256个节点MAX1487CPA RS-485/RS-442接口,128个节点MAX1487ECPA RS-485/RS-442接口,+15KV保护MAX1488ECPD RS-232接口,+15KV保护MAX1489ECPD RS-232接口,+15KV保护MAX148BCPP 低功耗8路10位A/DMAX1490BCPG 完全隔离全双IKS-485接口MAX158BCPI 高速8路8位A/DMAX1771CPA开关型DC-DC变换器MAX1771CSA开关型DC-DC变换器MAX180CCPL 8路12位A/DMAX186CCPP 串行接口A/D,带采保,电压基准,12位,采样速率133KHZ MAX187BCPA串行A/D,12位,采样速率75KHZMAX189CCPA低功耗,12位单通道,串行带采保和电压基准A/DMAX191BCNG 低功耗,12位单通道,带采保和电压基准A/DMAX192BCPP 串行A/D,10位采样速率133MMAX197BCNI 12位,八通道故障保护,带采保并行A/DMAX202CPE RS-232接口,+5VMAX202CSE RS-232接口MAX202ECPE +15KV静电保护RS-232接口MAX202EESE +15KV静电保护,工业级RS-232接口MAX202EPE 工业级RS-232接口MAX207CNG RS-232接口MAX208CNG RS-232接口MAX232CPE RS-232接口,+5VMAX232CSE RS-232接口MAX232EPE 工业级RS-232接口MAX235CPG RS-232接口5组收发器MAX238CNG RS-232接口MAX238ENG RS-232接口MAX260BCHG 双路,开关电容型4阶滤波器MAX260BENG 双路,开关电容型4阶滤波器MAX261BCNG 双路,开关电容型4阶滤波器MAX280CPA单路,开关电容型5阶滤波器MAX291CPA有源滤波器,时钟可编程MAX292CPA有源滤波器,时钟可编程MAX293CPA有源滤波器,时钟可编程MAX294CPA有源滤波器,时钟可编程MAX297CPA有源滤波器,时钟可编程MAX301CPE 模拟开关MAX305EPE 模拟开关MAX306CPI 模拟多路转换器MAX3080CPD 失效保护RS-485/RS-232 MAX3082CPA失效保护RS-485/RS-232 MAX308CPE 模拟多路转换器MAX309CPE 模拟多路转换器MAX3100CPD 通用异步收发信机(UART)MAX312CPE 模拟开关MAX313CPE 模拟开关MAX318CPA模拟开关MAX319CPA模拟开关MAX3218CPP RS-232接口MAX3223CPP RS-232接口MAX3232CPE RS-232接口MAX325CPA模拟开关MAX333CPP 模拟开关MAX338CPE 模拟多路转换器MAX339CPE 模拟多路转换器MAX351CPE 模拟开关MAX354CPE 模拟多路转换器MAX354CWE 模拟多路转换器MAX354EPE 模拟多路转换器(工业级)MAX355CPE 模拟多路转换器MAX355CWE 模拟多路转换器MAX366CPA模拟多路转换器MAX367CPN 模拟多路转换器MAX384CPN 模拟多路转换器MAX391CPE 模拟多路转换器MAX400CPA运算放大器MAX4016ESA视频放大器MAX4100ESA视频放大器MAX4101ESA视频放大器MAX4106ESA视频放大器MAX4107ESA视频放大器MAX4142ESD 视频放大器MAX4146ESD 视频放大器MAX419CPD 运算放大器MAX420CPA运算放大器MAX427CPA运算放大器MAX435CPD 运算放大器MAX436CPD 运算放大器MAX440CPI 视频多路转换器/放大器MAX441CPP 视频多路转换器/放大器MAX442CPA视频多路转换器/放大器MAX4456CPL 视频矩阵开关MAX453EPA视频多路转换器/放大器MAX457EPA视频放大器MAX458CPL 视频矩阵开关MAX468CPE 视频缓冲器MAX470CPE 视频缓冲器MAX479CPD 运算放大器MAX480EPA运算放大器MAX483CPA RS-485/RS-422接口MAX485CPA RS-485/RS-422接口MAX487CPA RS-485/RS-422接口MAX487ECPA RS-485/RS-422接口MAX487EEPA RS-485/RS-422接口MAX488CPA RS-485/RS-422接口MAX490ECPA RS-485/RS-422接口MAX491CPD RS-485/RS-422接口MAX491ECPD RS-485/RS-422接口MAX501AENG D/A转换器MAX504CPD 串行,低功耗D/A转换MAX505BCNG 四路8位D/A转换MAX506CPP D/A转换MAX509BCPE D/A转换MAX512CPD 8位低功耗D/AMAX515CPA电压输出串型10位D/AMAX517BCPA D/A转换二线接口MAX518BCPA双路517MAX526DCNG 四路12位D/A转换MAX527DCNG ±5V四路12位D/A转换MAX528CPP 八路8位D/A转换MAX530BCNG 低功耗D/A转换MAX531BCPD 串行接口,低功耗D/A转换,多种电压输出MAX532BCPE D/A转换,12位MAX536BCWE 四路串型电压输出12位D/AMAX538BCPA D/A转换MAX543ACPA D/A转换MAX551ACPA 12位D/A转换器MAX603CPA低压差线性稳压器MAX619CPA DC-DC电荷泵变换器MAX6225ACPA基准电压源MAX6225AESA基准电压源MAX6225BCPA基准电压源MAX6225BCSA基准电压源MAX622CPA DC-DC电荷泵变换器MAX6250BCPA基准电压源MAX633ACPA DC-DC变换器MAX638AEPA DC-DC变换器MAX639CPA DC-DC变换器MAX660CPA DC-DC电荷泵变换器,振荡频率10KHZ可选择MAX662ACPA DC-DC变换器,外围仅需3个小电容MAX667CPA低压差线性稳压器MAX691ACPE MP监控电路MAX691CPE MP监控电路MAX705CPA MP监控电路MAX706CPA MP监控电路MAX708CPA MP监控电路MAX708CSA-T MP监控电路MAX709LEPA监控电路MAX712CPE 电池充电器电路MAX712EPE 电池充电器电路MAX713CPE 电池充电器电路MAX7219CNG LED显示驱动电路MAX7219ENG LED显示驱动电路MAX724CCK 降压型DC-DC变换器MAX726CCK 降压型DC-DC变换器MAX729CCK 降压型DC-DC变换器MAX730ACPA降压型DC-DC变换器,单频开关噪音MAX733CPA升压型DC-DC变换器MAX735CPA反向输出DC-DC变换器MAX736CPD 反向输出DC-DC变换器MAX738ACPA降压型DC-DC变换器,单频开关噪音MAX738AEPA降压型DC-DC变换器,单频开关噪音MAX739CPD 反向输出DC-DC变换器MAX739CWE 反向输出DC-DC变换器MAX7400CPA有源滤波器MAX743CPE 双电压输出DC-DCMAX743EPE 双电压输出DC-DCMAX749CPA反向输出DC-DC变换器,数字调节LCD用负荷电流MAX750ACPA降压型DC-DC变换器,单频开关噪音MAX756CPA升压型DC-DC变换器MAX761CPA升压型DC-DC变换器MAX764CPA反向输出DC-DC变换器MAX765CPA反向输出DC-DC变换器MAX766EPA反向输出DC-DC变换器MAX787CCK 降压型DC-DC变换器MAX791CPE DC-DC变换器MAX807LCPE MP监控电路。
2 文氏电桥陷波的原理由文氏电桥组成的基波抑制电路(陷波器)如图l所示。
电桥的元件参数关系为Rl=2R2,C1=C2=C,R3=R4=R此时,电桥的抑制频率为因为Rl=2R2,对任一频率信号,UAD=Ui/3。
由计算可知:当输入信号频率f=fo 时,UBD=Ui/3,则UAB=0。
此时,电桥处于平衡状态,输出为O。
当输入信号频率f偏离fo时,电桥失去平衡,则有电压输出。
文氏电桥无源滤波器电路的选择特性很差。
实际工作中,需要阻带很窄、选择性很强的陷波器,为此采用文氏电桥组成的有源陷波电路,如图2所示。
此时陷波的频率为l kHz。
Al、A2是电压跟随器组态,均有缓冲隔离作用,具有高输入阻抗和低输出阻抗特性,对选频电路的谐振频率无影响,A1输出的部分电压反馈至A2的同相端,并经A2输出到电桥桥臂。
调节Rp可调节反馈量,从而改变Q值,以达到锐通带选频作用。
若不加正反馈,在l kHz附近二次谐波的特性曲线就会下降,不能进行准确测量。
如果反馈量与频率特性有关,用可变电阻器Rp调整;如果衰减特性已调准,Q值已选定,则Rp可换成固定电阻器。
在Al的反馈回路中加入电阻器R8是为了抵消输入偏流,以减小直流漂移。
C3的作用是抑制尖峰脉冲。
当f=fo时,电桥平衡,Al的输出为0;f偏离fo时,电桥失衡,有输出电压。
因此该电路能抑制基波,使谐波通过。
若取fo=l kHz,C=0.01μF,由R=l/2πfoC来计算R,求得R=15 kΩ。
A1、A2均为集成运算放大器,可选NE5532A型。
高Q值的陷波器选择性好。
但中心频率fo易偏移,会引起较大的测量误差,因此,测量失真度时可采用二级甚至三级串联调谐设计,使之具有中心频率为±1%的衰减带宽。
3 系统模块智能化数控调谐文氏电桥陷波器包括陷波频率调谐文氏电桥、有效值检波器、A/D采样电路和单片机控制电路,如图3所示。
在系统中,一个未知频率的信号输入文氏电桥之后,在某一个频率点进行陷波,通过有效值检波电路对文氏电桥输出的残余信号进行有效值检波;A/D采样电路对检波后产生的直流电压进行采样,转换成数字信号,并且将数据传输到单片机;单片机对此数据进行判断,当采集到的直流电平为最小值时,文氏电桥的谐振中心频率正好是所需的陷波频率(即最接近基频);如果采集到的直流电平不是最小值,那么单片机将控制改变文氏电桥的电阻和电容,使其中心频率接近基频。
RMS to DC转换AD536A功能:有效值到直流电平装换高精度激光微调技术0.2%最大误差(AD536AX)0.5%最大误差(AD536AJ)宽响应能力:能够计算AC和DC信号的RMS450KHz带宽:Vrms>100mV2MHz带宽:Vrms>1V信号的波峰因数当误差为1%时为7dB输出有60dB范围低功耗:1.2mA静态电流单、双端均可用整体集成电路-55℃ to 125℃(AD536AS)产品描述AD536A是一款RMS到直流转换的整体集成电路,它优于混合式或组合式的电路。
AD536A直接计算输入波形的RMS值,包括AC和DC组件。
有一个波峰因数补偿表,可以使波峰系数达到7的测量值只有1%的误差。
本器件能测量300K 带宽大于100mV的信号,误差在3dB范围内。
AD536A有一项重要的新功能,能够将rms电平转换成dB值输出。
信号rms的对数输出到独立的管脚进行dB转换,其范围有60dB。
利用一个外部的参考电流,用户能够很方便地设置0dB电平,能计算输入的任何0.1到2Vrms波形。
AD536A在晶圆级采用激光校准对输入输出补偿,正负波形平衡,7Vrms满量程精度。
因此,无需外部调整,即可达到额定精度。
输入输出均有完全保护,输入电平可超出供电电平。
输入连接失去供电不会损坏芯片。
输出有短路保护。
AD536A商用产品分两个精度级别(A,K)温度范围(0℃ to 70℃)和另一个超范围级别(S)温度范围-55℃ to 125℃。
AD536AK有最大±2mV±0.2%的读取误差,而AD536AJ和AD536AS有±5mV±0.5%的最大误差。
所有三种都可用14-DIP 或10to100脚金属封装。
AD536AS也有20脚无铅陶瓷封装。
产品特点1、AD536A计算输入的复合AC信号输出等效直流电平。
计算信号的rms值比信号电平均值更有用,因为rms反映了信号的功率,还反映了信号的标准偏差。
Integrated CircuitTrue RMS-to-DC ConverterAD536A Rev. DInformation furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©1976–2008 Analog Devices, Inc. All rights reserved.FEATURESTrue rms-to-dc conversionLaser trimmed to high accuracy±0.2% maximum error (AD536AK)±0.5% maximum error (AD536AJ)Wide response capabilityComputes rms of ac and dc signals450 kHz bandwidth: V rms > 100 mV2 MHz bandwidth: V rms > 1 VSignal crest factor of 7 for 1% errordB output with 60 dB rangeLow power: 1.2 mA quiescent currentSingle- or dual-supply operationMonolithic integrated circuit−55°C to +125°C operation (AD536AS)GENERAL DESCRIPTIONThe AD536A is a complete monolithic integrated circuit that performs true rms-to-dc conversion. It offers performance comparable or superior to that of hybrid or modular units costing much more. The AD536A directly computes the true rms value of any complex input waveform containing ac and dc components.A crest factor compensation scheme allows measurements with 1% error at crest factors up to 7. The wide bandwidth of the device extends the measurement capability to 300 kHz with less than 3 dB errors for signal levels greater than 100 mV.An important feature of the AD536A, not previously available in rms converters, is an auxiliary dB output pin. The logarithm of the rms output signal is brought out to a separate pin to allow the dB conversion, with a useful dynamic range of 60 dB. Using an externally supplied reference current, the 0 dB level can be conveniently set to correspond to any input level from 0.1 V to 2 V rms.The AD536A is laser trimmed to minimize input and output offset voltage, to optimize positive and negative waveform symmetry (dc reversal error), and to provide full-scale accuracy at 7 V rms. As a result, no external trims are required to achieve the rated unit accuracy.The input and output pins are fully protected. The input circuitry can take overload voltages well beyond the supply levels. Loss of supply voltage with the input connected to external circuitry does not cause the device to fail. The output is short-circuit protected.FUNCTIONAL BLOCK DIAGRAMdB+V SR LI OUTBUFOUT54-1Figure 1.The AD536A is available in two accuracy grades (J and K) for commercial temperature range (0°C to 70°C) applications, and one grade (S) rated for the −55°C to +125°C extended range. The AD536AK offers a maximum total error of ±2 mV ± 0.2% of reading, while the AD536AJ and AD536AS have maximum errors of ±5 mV ± 0.5% of reading. All three versions are available in a hermetically sealed 14-lead DIP or a 10-pin TO-100 metal header package. The AD536AS is also available in a 20-terminal leadless hermetically sealed ceramic chip carrier.The AD536A computes the true root-mean-square level of a complex ac (or ac plus dc) input signal and provides an equiva-lent dc output level. The true rms value of a waveform is a more useful quantity than the average rectified value because it relates directly to the power of the signal. The rms value of a statistical signal also relates to its standard deviation.An external capacitor is required to perform measurements to the fully specified accuracy. The value of this capacitor deter-mines the low frequency ac accuracy, ripple amplitude, and settling time.The AD536A operates equally well from split supplies or a single supply with total supply levels from 5 V to 36 V. With1 mA quiescent supply current, the device is well suited for a wide variety of remote controllers and battery-powered instruments.AD536ARev. D | Page 2 of 16TABLE OF CONTENTSFeatures .............................................................................................. 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 Absolute Maximum Ratings ............................................................ 5 ESD Caution .................................................................................. 5 Pin Configurations and Function Descriptions ........................... 6 Applications Information ................................................................ 8 Typical Connections .................................................................... 8 Optional External Trims For High Accuracy ............................8 Single-Supply Operation ..............................................................9 Choosing the Averaging Time Constant ....................................9 Theory of Operation ...................................................................... 11 Connections for dB Operation ................................................. 11 Frequency Response .................................................................. 12 AC Measurement Accuracy and Crest Factor ........................ 12 Outline Dimensions ....................................................................... 14 Ordering Guide .. (15)REVISION HISTORY8/08—Rev. C to Rev. DChanges to Features Section............................................................ 1 Changes to General Description Section ...................................... 1 Changes to Figure 1 .......................................................................... 1 Changes to Table 2 ............................................................................ 5 Change to Figure 2 ........................................................................... 5 Changes to Figure 15 ...................................................................... 10 Changes to Connections for dB Operation Section ................... 11 Changes to Figure 17 ...................................................................... 12 Changes to Frequency Response Section .................................... 12 Updated Outline Dimensions ....................................................... 14 Changes to Ordering Guide . (15)3/06—Rev. B to Rev. CUpdated Format .................................................................. U niversal Changed Product Description to General Description ............... 1 Changes to General Description .................................................... 1 Changes to Table 1 ............................................................................ 3 Changes to Table 2 ............................................................................ 5 Added Pin Configurations and Function Descriptions .............. 6 Changed Standard Connection to Typical Connections ............. 8 Changed Single Supply Connection to Single SupplyOperation ........................................................................................... 9 Changes to Connections for dB Operation ................................. 11 Changes to Figure 17 ...................................................................... 12 Updated Outline Dimensions ....................................................... 14 Changes to Ordering Guide . (15)6/99—Rev. A to Rev. B1/76—Revision 0: Initial VersionAD536ARev. D | Page 3 of 16SPECIFICATIONST A = +25°C and ±15 V dc, unless otherwise noted. Table 1.AD536AJ AD536A K AD536AS Parameter Min Typ Max Min Typ Max Min Typ Max Unit TRANSFER FUNCTION V OUT = √Avg(V IN )2 V OUT = √Avg(V IN )2 V OUT = √Avg(V IN )2 CONVERSION ACCURACYTotal Error, Internal Trim 1(See Figure 6) ±5 ± 0.5 ±2 ± 0.2 ±5 ± 0.5 mV ± % of rdg vs. Temperature T MIN to +70°C ±0.1 ± 0.01 ±0.05 ± 0.005 ±0.1 ± 0.005 mV ± % of rdg/°C +70°C to +125°C ±0.3 ± 0.005 mV ± % of rdg/°C vs. Supply Voltage ±0.1 ±0.01 ±0.1 ± 0.01 ±0.1±0.01mV ± % of rdg/°C dc Reversal Error ±0.2 ±0.1 ±0.2 mV ± % of rdgTotal Error, External Trim 1(See Figure 9)±3 ± 0.3 ±2 ± 0.1 ±3 ± 0.3 mV ± % of rdg ERROR VS. CREST FACTOR 2 Crest Factor 1 to Crest Factor 2 Specified accuracy Specified accuracy Specified accuracy Crest Factor = 3 −0.1 −0.1 −0.1 % of rdg Crest Factor = 7 −1.0 −1.0 −1.0 % of rdgFREQUENCY RESPONSE 3Bandwidth for 1% AdditionalError (0.09 dB) V IN = 10 mV 5 5 5 kHz V IN = 100 mV 45 45 45 kHz V IN = 1 V 120 120 120 kHz ±3 dB Bandwidth V IN = 10 mV 90 90 90 kHz V IN = 100 mV 450 450 450 kHz V IN = 1 V 2.3 2.3 2.3 MHzAVERAGING TIME CONSTANT(See Figure 12)25 25 25 ms/μF INPUT CHARACTERISTICS Signal Range, ±15 V Supplies Continuous RMS Level 0 to 7 0 to 7 0 to 7 V rms Peak Transient Input ±20 ±20 ±20 V peakContinuous RMS Level,V S = ±5 V0 to 2 0 to 2 0 to 2 V rms Peak Transient Input,V S = ±5 V±7 ±7 ±7 V peak Maximum ContinuousNondestructive Input Level (All Supply Voltages) ±25 ±25 ±25 V peak Input Resistance 13.33 16.67 20 13.33 16.67 20 13.33 16.67 20 kΩ Input Offset Voltage 0.8 ±2 0.5 ±1 0.8 ±2 mV OUTPUT CHARACTERISTICSOffset Voltage, V IN = COM(See Figure 6) ±1 ±2 ±0.5 ±1 ±2 mV vs. Temperature ±0.1 ±0.1 ±0.2 mV/°C vs. Supply Voltage ±0.1 ±0.1 ±0.2 mV/V Voltage Swing, ±15 V Supplies 0 to +11 +12.5 0 to +11 +12.5 0 to +11+12.5 V ± 5 V Supply 0 to +2 0 to +2 0 to +2 VdB OUTPUT, 0 dB = 1 V rms(See Figure 17)Error, 7 mV < V IN < 7 V rms ±0.4 ±0.6 ±0.2 ±0.3 ±0.5 ±0.6 dB Scale Factor −3 −3 −3 mV/dBScale Factor TemperatureCoefficient−0.033 −0.033 −0.033 dB/°C Uncompensated +0.33 +0.33 +0.33 % of rdg/°C I REF for 0 dB = 1 V rms 5 20 80 5 20 80 5 20 80 μA I REF Range 1 100 1 100 1 100 μAAD536ARev. D | Page 4 of 16AD536AJ AD536A KAD536AS Parameter Min Typ Max Min Typ Max Min Typ Max Unit I OUT TERMINAL I OUT Scale Factor 40 40 40 μA/V rms I OUT Scale Factor Tolerance ±10 ±20 ±10 ±20 ±10 ±20 % Output Resistance 20 25 30 20 25 30 20 25 30 kΩ Voltage Compliance −V S to (+V S − 2.5 V) −V S to (+V S − 2.5 V) −V S to(+V S − 2.5 V)V BUFFER AMPLIFIERInput and Output Voltage Range −V S to(+V S − 2.5V) −V S to (+V S − 2.5V) −V S to (+V S − 2.5V) V Input Offset Voltage, R S = 25 kΩ ±0.5 ±4 ±0.5 ±4 ±0.5 ±4 mV Input Bias Current 20 60 20 60 20 60 nAInput Resistance 108 108 108Ω Output Current (+5 mA, (+5 mA, (+5 mA, −130 μA) −130 μA) −130 μA) Short-Circuit Current 20 20 20 mA Output Resistance 0.5 0.5 0.5 Ω Small-Signal Bandwidth 1 1 1 MHzSlew Rate 45 5 5 V/μs POWER SUPPLY Voltage Rated Performance ±15 ±15 ±15 V Dual Supply ±3.0 ±18 ±3.0 ±18 ±3.0 ±18 V Single Supply +5 +36 +5 +36 +5 +36 V Quiescent Current Total V S , 5 V to 36 V, T MIN to T MAX 1.2 2 1.2 2 1.2 2 mA TEMPERATURE RANGE Rated Performance 0 +70 0 +70 −55 +125 °C Storage −55 +150 −55 +150 −55 +150 °C NUMBER OF TRANSISTORS 65 65 65 1Accuracy is specified for 0 V to 7 V rms, dc or 1 kHz sine wave input with the AD536A connected as in the figure referenced. 2Error vs. crest factor is specified as an additional error for 1 V rms rectangular pulse input, pulse width = 200 μs. 3Input voltages are expressed in volts rms, and error is expressed as a percentage of the reading. 4With 2kΩ external pull-down resistor.AD536ARev. D | Page 5 of 16ABSOLUTE MAXIMUM RATINGSTable 2.Parameter RatingSupply VoltageDual Supply ±18 VSingle Supply +36 VInternal Power Dissipation 500 mWMaximum Input Voltage ±25 V peakBuffer Maximum Input Voltage ±V SMaximum Input Voltage ±25 V peak Storage Temperature Range −55°C to +150°C Operating Temperature Range AD536AJ/AD536AK 0°C to +70°C AD536AS −55°C to +125°C Lead Temperature (Soldering, 60 sec) 300°C ESD Rating 1000 VThermal Resistance θJA 1 10-Pin Header (H-10 Package) 150°C/W 20-Terminal LCC (E-20 Package) 95°C/W 14-Lead SBDIP (D-14 Package) 95°C/W 14-Lead CERDIP (Q-14 Package) 95°C/WStresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION1θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.PAD NUMBERS CORRESPOND TO PIN NUMBERS FOR THE TO-100 14-LEAD CERAMIC DIP PACKAGE.1BOTH PADS SHOWN MUST BE CONNECTED TO V IN.THE AD536A IS AVAILABLE IN LASER-TRIMMED CHIP FORM.SUBSTRATE CONNECTED TO –V S .OUT 8765AV 4S300504-002Figure 2. Die Dimensions and Pad Layout Dimensions shown in inches and (millimeters)AD536ARev. D | Page 6 of 16PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONSV INNC –V S C AV S dB BUF OUT LBUF IN OUTNC = NO CONNECT00504-003Figure 3. D-14 and Q-14 Packages Pin ConfigurationTable 3. D-14 and Q-14 Packages Pin Function DescriptionsPin No. Mnemonic Description1 V IN Input Voltage2 NC No Connection3 −V S Negative Supply Voltage4 C AV Averaging Capacitor5 dB Log (dB) Value of the RMS Output Voltage6 BUF OUT Buffer Output7 BUF IN Buffer Input8 I OUT RMS Output Current9 R L Load Resistor 10 COM Common 11 NC No Connection 12 NC No Connection 13 NC No Connection 14 +V S Positive Supply VoltageI S+V COM BUF OUT00504-004Figure 4. H-10 Package Pin ConfigurationTable 4. H-10 Package Pin Function DescriptionsPin No. Mnemonic Description1 R L Load Resistor2 COM Common3 +V S Positive Supply Voltage4 V IN Input Voltage5 −V S Negative Supply Voltage6 C AV Averaging Capacitor7 dB Log (dB) Value of the RMS Output Voltage8 BUF OUT Buffer Output9 BUF IN Buffer Input 10 I OUT RMS Output CurrentAD536ARev. D | Page 7 of 16B U F O U R B U F I I O U NC = NO CONNECTV I N NC –V S C AV +V SNC NC NC dB COMTLNTNC NC N CN CN CN C00504-005Figure 5. E-20 Package Pin ConfigurationTable 5. E-20 Package Pin Function DescriptionsPin No. Mnemonic Description 1 NC No Connection 2 V IN Input Voltage 3 NC No Connection 4 −V S Negative Supply Voltage 5 NC No Connection 6 C AV Averaging Capacitor 7 NC No Connection 8 dB Log (dB) Value of the RMS Output Voltage 9 BUF OUT Buffer Output 10 BUF IN Buffer Input 11 NC No Connection 12 I OUT RMS Output Current13 R L Load Resistor 14 COM Common 15 NC No Connection 16 NC No Connection 17 NC No Connection 18 NC No Connection 19 NC No Connection 20 +V S Positive Supply VoltageAD536ARev. D | Page 8 of 16APPLICATIONS INFORMATIONTYPICAL CONNECTIONSThe AD536A is simple to connect to for the majority of high accuracy rms measurements, requiring only an external capaci-tor to set the averaging time constant. The standard connection is shown in Figure 6 through Figure 8. In this configuration, the AD536A measures the rms of the ac and dc levels present at the input, but shows an error for low frequency input as a function of the filter capacitor, C AV , as shown in Figure 12. Thus, if a 4 μF capacitor is used, the additional average error at 10 Hz is 0.1%; at 3 Hz, the additional average error is 1%.The accuracy at higher frequencies is according to specification. To reject the dc input, add a capacitor in series with the input, as shown in Figure 10. Note that the capacitor must be nonpolar. If the AD536A supply rails contain a considerable amount of high frequency ripple, it is advisable to bypass both supply pins to ground with 0.1 μF ceramic capacitors, located as close to the device as possible.00504-006V V OUTSFigure 6. 14-Lead Standard RMS ConnectionOUT+V S00504-020Figure 7. 10-Pin Standard RMS Connection–V S00504-021B U F B U IFigure 8. 20-Terminal Standard RMS ConnectionThe input and output signal ranges are a function of the supply voltages; these ranges are shown in Figure 21 and Figure 22. The AD536A can also be used in an unbuffered voltage output mode by disconnecting the input to the buffer. The output then appears unbuffered across the 25 kΩ resistor. The buffer ampli-fier can then be used for other purposes. Further, the AD536A can be used in a current output mode by disconnecting the 25 kΩ resistor from ground. The output current is available at Pin 8 (I OUT , Pin 10 on the H-10 package) with a nominal scale of 40 μA per V rms input positive output.OPTIONAL EXTERNAL TRIMS FOR HIGH ACCURACYThe accuracy and offset voltage of the AD536A is adjustable with external trims, as shown in Figure 9. R4 trims the offset. Note that the offset trim circuit adds 365 Ω in series with the internal 25 kΩ resistor. This causes a 1.5% increase in scale factor, which is compensated for by R1. The scale factor adjustment range is ±1.5%.The trimming procedure is as follows:1. Ground the input signal, V IN , and adjust R4 to provide 0 Voutput from Pin 6. Alternatively, adjust R4 to provide the correct output with the lowest expected value of V IN . 2. Connect the desired full-scale input level to V IN , either dcor a calibrated ac signal (1 kHz is the optimum frequency). 3. Trim R1 to provide the correct output at Pin 6. For example,1.000 V dc input provides 1.000 V dc output. A ±1.000 V peak-to-peak sine wave should provide a 0.707 V dc output. Any residual errors are caused by device nonlinearity. The major advantage of external trimming is to optimize device performance for a reduced signal range; the AD536A is internally trimmed for a 7 V rms full-scale range.AD536ARev. D | Page 9 of 16V INV OFFSET ADJUST 00504-007Figure 9. Optional External Gain and Output Offset TrimsSINGLE-SUPPLY OPERATIONDual power supplies are shown in Figure 6, Figure 7, Figure 8, and Figure 9. The AD536A can also be powered by a single supply greater than 5 V , as shown in Figure 10. When using the AD536A with a single supply, the differential input stage must be biased above ground, and the input must be ac coupled. Biasing the device between the supply and ground is simply a matter of connecting Pin 10 (COM, Pin 2 on the H-10 package) to a resistor divider and bypassing the pin to ground. T o minimize power consumption, the values of the resistors may be large, as Pin 10 current is only 5 μA.AC input coupling requires only Capacitor C2. A dc return is not necessary because it is provided internally. C2 is selected for the proper low frequency breakpoint with the input resistance of 16.7 kΩ; for a cutoff at 10 Hz, C2 should be 1 μF. The signal ranges in this connection are slightly more restricted than in the dual-supply connection. The input and output signal ranges are shown in Figure 21 and Figure 22. The load resistor, R L , is nec-essary to provide output sink current.0.1µF00504-008Figure 10. Single-Supply ConnectionCHOOSING THE AVERAGING TIME CONSTANTThe AD536A computes the rms of both ac and dc signals. If the input is a slowly varying dc signal, the output of the AD536A tracks the input exactly.At higher frequencies, the average output of the AD536Aapproaches the rms value of the input signal. The actual output of the AD536A differs from the ideal output by a dc (or average) error and some amount of ripple, as shown in Figure 11.00504-009Figure 11. Typical Output Waveform for Sinusoidal InputThe dc error is dependent on the input signal frequency and the value of C AV . Use Figure 12 to determine the minimum value of C AV , which yields a given percentage of dc error above a given frequency using the standard rms connection.The ac component of the output signal is the ripple. There are two ways to reduce the ripple. The first method involves using a large value of C AV . Because the ripple is inversely proportional to C AV , a tenfold increase in this capacitance affects a tenfold reduction in ripple.When measuring waveforms with high crest factors, such as low duty cycle pulse trains, the averaging time constant should be at least 10 times the signal period. For example, a 100 Hz pulse rate requires a 100 ms time constant, which corresponds to a 4 μF capacitor (time constant = 25 ms per μF).AD536ARev. D | Page 10 of 16The primary disadvantage in using a large C AV to remove ripple is that the settling time for a step change in input level is increased proportionately. Figure 12 illustrates that the relationship between C AV and 1% settling time is 115 ms for each microfarad of C AV . The settling time is twice as great for decreasing signals as it is for increasing signals. The values in Figure 12 are for decreasing signals. Settling time also increases for low signal levels, as shown in Figure 13.101001k 10k0.11101000.011100kINPUT FREQUENCY (Hz)R E Q U I R E D C A V (µF )0.11101000.01F O R 1% S E T T L I N G T I M E I N S E C O N D S M U L T I P L Y R E A D I N G B Y 0.1151PERCENT DC ERROR AND PERCENT RIPPLE (PEAK)00504-010Figure 12. Error/Settling Time Graph for Use with the Standard RMSConnection (See Figure 6 Through Figure 8)10m100m17.510.05.01m10rms INPUT LEVEL (V)S E T T L I N G T I M E R E L A T I V E T O 1V r m s I N P U T S E T T L I N G T I M E1.02.500504-011Figure 13. Settling Time vs. Input LevelA better method to reduce output ripple is the use of a postfilter. Figure 14 shows a suggested circuit. If a single-pole filter is used (C3 removed, R X shorted) and C2 is approximately twice the value of C AV , the ripple is reduced, as shown in Figure 15, and settling time is increased. For example, with C AV = 1 μF and C2 = 2.2 μF, the ripple for a 60 Hz input is reduced from 10% of reading to approximately 0.3% of reading.The settling time, however, is increased by approximately a factor of 3. Therefore, the values of C AV and C2 can be reduced to permit faster settling times while still providing substantial ripple reduction.The two-pole postfilter uses an active filter stage to provide even greater ripple reduction without substantially increasing the settling times over a circuit with a one-pole filter. The values of C AV , C2, and C3 can then be reduced to allow extremely fast settling times for a constant amount of ripple. Caution should be exercised in choosing the value of C AV , because the dc error is dependent on this value and is independent of the postfilter. For a more detailed explanation of these topics, refer to the RMS to DC Conversion Application Guide, 2nd Edition, available online from Analog Devices, Inc., at .rms OUT1FOR SINGLE POLE, SHORT Rx, REMOVE C3.00504-012Figure 14. Two-Pole Postfilter1k 10010k1010D CE R R O R O R R I P P L E (% o f R e a d i n g )00504-013FREQUENCY (Hz)Figure 15. Performance Features of Various Filter Types (See Figure 6 to Figure 8 for Standard RMS Connection)Rev. D | Page 11 of 16THEORY OF OPERATIONThe AD536A embodies an implicit solution of the rms equation that overcomes the dynamic range as well as other limitations inherent in a straightforward computation of rms. The actual computation performed by the AD536A follows the equation⎥⎦⎤⎢⎢⎣⎡=rms V V Avg rms V IN 2Figure 16 is a simplified schematic of the AD536A. Note that itis subdivided into four major sections: absolute value circuit (active rectifier), squarer/divider, current mirror, and buffer amplifier. The input voltage (V IN ), which can be ac or dc, is converted to a unipolar current (I 1) by the active rectifiers (A 1, A 2). I 1 drives one input of the squarer/divider, which has the transfer functionI 4 = I I 2/I 3The output current, I 4, of the squarer/divider drives the current mirror through a low-pass filter formed by R1 and the exter-nally connected capacitor, C AV . If the R1 C AV time constant is much greater than the longest period of the input signal, then I 4 is effectively averaged. The current mirror returns a current I 3, which equals Avg[I 4], back to the squarer/divider to complete the implicit rms computation. Thus,I 4 = Avg [I I 2/I 4] = I I rmsSV 1. PINOUTS ARE FOR 14-LEAD DIP.00504-014Figure 16. Simplified SchematicThe current mirror also produces the output current, I OUT , which equals 2I 4. I OUT can be used directly or can be converted to a voltage with R2 and buffered by A4 to provide a low impedance voltage output. The transfer function of the AD536A results in the following:V OUT = 2R2 × I rms = V IN rmsThe dB output is derived from the emitter of Q3 because the voltage at this point is proportional to –log V IN . The emitter follower, Q5, buffers and level shifts this voltage so that the dB output voltage is zero when the externally supplied emitter current (I REF ) to Q5 approximates I 3.CONNECTIONS FOR dB OPERATIONThe logarithmic (or decibel) output of the AD536A is one of its most powerful features. The internal circuit computing dB works accurately over a 60 dB range. The connections for dB measurements are shown in Figure 17.Select the 0 dB level by adjusting R1 for the proper 0 dB reference current (which is set to cancel the log output current from the squarer/divider at the desired 0 dB point). The external op amp provides a more convenient scale and allows compensation of the +0.33%/°C scale factor drift of the dB output pin.The temperature-compensating resistor, R2, is available online in several styles from Precision Resistor Company, Inc., (Part Number AT35 and Part Number ST35). The average temperature coefficients of R2 and R3 result in the +3300 ppm required to compensate for the dB output. The linear rms output is available at Pin 8 on the DIP or Pin 10 on the header device with an output impedance of 25 kΩ. Some applications require an additional buffer amplifier if this output is desired. For dB calibration, 1. Set V IN = 1.00 V dc or 1.00 V rms. 2. Adjust R1 for dB output = 0.00 V . 3. Set V IN = +0.1 V dc or 0.10 V rms. 4.Adjust R5 for dB output = −2.00 V .Any other desired 0 dB reference level can be used by setting V IN and adjusting R1 accordingly. Note that adjusting R5 for the proper gain automatically provides the correct temperature compensation.1SPECIAL TC COMPENSATION RESISTOR, +3300 PPM/°C,PRECISION RESISTOR COMPANY PART NUMBER AT35 OR PART NUMBER ST35.54-15Figure 17. dB ConnectionFREQUENCY RESPONSEThe AD536A utilizes a logarithmic circuit in performing theimplicit rms computation. As with any log circuit, bandwidthis proportional to signal level. The solid lines in the graph ofFigure 18 represent the frequency response of the AD536A atinput levels from 10 mV rms to 7 V rms. The dashed lines indicatethe upper frequency limits for 1%, 10%, and ±3 dB of readingadditional error. For example, note that a 1 V rms signal producesless than 1% of reading additional error up to 120 kHz. A 10 mVsignal can be measured with 1% of reading additional error(100 μV) up to only 5 kHz.100k1M10M1k10k1010.10.01VOUT(V)FREQUENCY(Hz)54-16Figure 18. High Frequency ResponseAC MEASUREMENT ACCURACY AND CRESTFACTORCrest factor is often overlooked when determining the accuracyof an ac measurement. The definition of crest factor is the ratioof the peak signal amplitude to the rms value of the signal(CF = V P/V rms). Most common waveforms, such as sine andtriangle waves, have relatively low crest factors (<2). Waveformsthat resemble low duty cycle pulse trains, such as those occurringin switching power supplies and SCR circuits, have high crestfactors. For example, a rectangular pulse train with a 1% dutycycle has a crest factor of 10 (CF = 1√n).Figure 19 illustrates a curve of reading error for the AD536A fora 1 V rms input signal with crest factors from 1 to 11. A rectan-gular pulse train (pulse width = 100 μs) was used for this testbecause it is the worst-case waveform for rms measurement (allof the energy is contained in the peaks). The duty cycle andpeak amplitude were varied to produce crest factors from 1 to11 while maintaining a constant 1 V rms input amplitude.η = DUTY CYCLE =CF = 1/√ηөIN (rms) = 1 V rms100µsT1–1–2–3–4INCREASEINERROR(%ofReading)1234567891011CREST FACTOR0054-17Figure 19. Error vs. Crest FactorINCREASEINERROR(%OFREADING)1µs10µs100µs1000µsPULSE WIDTH(µs)1010.154-18Figure 20. Error vs. Pulse Width Rectangular PulseRev. D | Page 12 of 16。