镇江市2011年中考数学试题及答案(扫描版)
- 格式:doc
- 大小:2.93 MB
- 文档页数:11
2011年九年级教学质量检测数 学 试 题注意事项:本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填入题后的括号内,每小题选对得3分.) 1.下列根式中与18是同类二次根式的是( ). A .321 B .27 C .6 D .32.抛物线y =2x 2+4x -3的顶点坐标是( ).A .(1,-5)B .(-1,-5)C .(-1,-4)D .(-2,-7) 3.国家游泳中心——“水立方”是2008年北京奥运会标志性建筑之一,其工程占地面积为62828平方米,将62828用科学记数法表示是(保留三个有效数字)( ). A .62.8×103 B .6.28×104 C .6.2828×104 D .0.62828×105 4.数据0,-1,6,1,x 的众数为-1,则这组数据的方差是( ). A .2B .534C .2D .5265.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( ). A .3≤OM ≤5 B .4≤OM ≤5 C .3<OM <5 D .4<OM <56.小明随机地在如图所示的正三角形及其内部区域投针,则针扎 到其内切圆(阴影)区域的概率为( ). A .21 B .π63C .π93 D .π33第6题图第11题图7.如图,□ABCD 中,对角线AC 和BD 相交于点O , 如果AC =12,BD =10,AB =m ,那么m 的取值范围是( ).A .1<m <11B .2<m <22C .10<m <12D .5<m <68.如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别 作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O , 设它们的面积分别是S 1、S 2、S 3,则( ). A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 1<S 3<S 2 D .S 1=S 2=S 39.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( ).A .1x >-B .1x <-C .2x <-D .无法确定10.如图,将A B C △沿D E 折叠,使点A 与B C边的中点F 重合,下列结论中①EF AB ∥且12E F A B =;②BAF C AF ∠=∠;③DE AF 21S ADFE∙=四边形;④2B D F F E C B A C ∠+∠=∠, 一定正确的个数是( ). A .1B .2C .3D .411.若关于x 的一元二次方程ax 2+2x -5=0的两根中有且仅有一根在0和1 之间(不含0和1),则a 的取值范围是( ). A .a <3 B .a >3 C .a <-3 D .a >-312.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是 ( ).A .55°B .60°C .65°D .70°DABCO第7题图xb +x第9题图第8题图第12题图第16题图第Ⅱ卷 非选择题(共84分)二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.当m = 时,关于x 的分式方程213x m x +=--无解.14.已知关于x 的不等式组⎩⎨⎧--≥-0125a >x x 无解,则a 的取值范围是 .15.已知关于的一元二次方程012)1(2=-++x x k 有两个不相同的实数根,则k 的取值范围是 .16.如图,梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值是 .17.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a ≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x )-(3⊕x )的值为 . 三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.)18.(本题满分8分)据《生活报》报道,有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题: (1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?图2图1最喜欢的体育活 动项目的人数/人育活动项目19.(本题满分9分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式; (2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?20.(本题满分9分)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB=68°.(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ ); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.21.(本题满分10分)如图,B D 为圆O 的直径,A B A C =,A D 交B C 于E ,2A E =,4E D =.(1)求证:A B E A D B △∽△,并求A B 的长;(2)延长D B 到F ,使B F B O =,连接F A ,那么直线F A 与⊙O 相切吗?为什么?22.(本题满分10分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.C23.(本题满分11分)如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,过D点作DE∥AC 交BC的延长线于E点.(1)求证:四边形ACED是平行四边形;(2)若AD=3,BC=7,求梯形ABCD的面积.24.(本题满分12分)如图所示,在平面直角坐标系中,⊙M 经过原点O ,且与x 轴、y轴分别相交于A (-6,0),B (0,-8)两点.(1)请求出直线AB 的函数表达式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数表达式;(3)设(2)中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点P ,使得115PDE ABCS S =△△?若存在,请求出点P 的坐标;若不存在,请说明理由.数学参考答案一、选择题1.A2.B3.B4.B5.B6.C7.A8.D9.B10.B11.B12.C 二、填空题13.-6 14.a ≥3 15.k >-2,且k ≠-1 16.3 17.-318.解:(1)由图1知:4810181050++++=(名)………2分 答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人.………………3分x181003650⨯=%%………………………………………….4分∴最喜欢篮球活动的人数占被调查人数的36%. (3)1(302624)20-++=%%%% 20020100÷=% (人)…6分8100100016050⨯⨯=% (人)答:估计全校学生中最喜欢跳绳活动的人数约为160人.………8分 19.解:⑴ y =(x -50)∙ w =(x -50) ∙ (-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为:y =-2x 2+340x -12000........3分 ⑵ y =-2x 2+340x -12000=-2 (x -85) 2+2450,∴当x =85时,y 的值最大. ……………………………6分 ⑶ 当y =2250时,可得方程 -2 (x -85 )2+2450=2250. 解这个方程,得 x 1=75,x 2=95. 根据题意,x 2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.…………9分20.解:(1)在BAC Rt ∆中, 68=∠ACB ,∴24848.210068tan =⨯≈⋅= AC AB (米)答:所测之处江的宽度约为248米…………………………………3分 (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分……………9分21.(1)证明:A B A C = ,ABC C ∴=∠∠,C D = ∠∠,ABC D ∴=∠∠.又BAE D AB = ∠∠,ABE AD B ∴△∽△.A B A E A D A B∴=. AB 2=AD ·AE=(AE+ED )·AE=(2+4)×2=12.AB ∴=. ……………………………………………………5分(2)直线F A 与⊙O 相切.理由如下: 连接O A .BD 为⊙O 的直径,∴∠.BD ∴====1122B F B O B D ∴===⨯=AB = ,BF BO AB ∴==.90OAF ∴= ∠.∴直线F A 与⊙O 相切. ……………………………………10分22.解:(1)设租用一辆甲型汽车的费用是元,租用一辆乙型汽车的费用是元.由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.……………………………………………………………3分 (2)设租用甲型汽车辆,则租用乙型汽车辆.由题意得解得……………………………………………………6分由题意知,为整数,或或共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆. 方案一的费用是(元); 方案二的费用是(元);方案三的费用是(元),所以最低运费是4900元.……………9分答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.……………………………………………10分 23.证: ⑴∵AD ∥BC ∴AD ∥CE 又∵DE ∥AC∴四边形ACED 是平行四边形……………… 3分 ⑵过D 点作DF ⊥BE 于F 点 ……………………4分∵DE ∥AC ,AC ⊥BD ∴DE ⊥BD ,即∠BDE=90° 由⑴知DE=AC ,CE=AD=3∵四边形ABCD 是等腰梯形∴AC=DB ………………………………………7分 ∴DE=DB ……………………………………8分∴△DBE 是等腰直角三角形,∴△DFB 也是等腰直角三角形 ∴DF=BF=21(7-3)+3=5……………………9分(也可运用:直角三角形斜边上的中线等于斜边的一半)()2553721DF BC)(AD 21S ABCD=⨯+=∙+=梯形……11分注:⑴过对角线交点O 作OF ⊥BC 于F ,延长FO 交AD 于H ,于是OH ⊥AD由△ABC ≌△DCB ,得到△OBC 是等腰直角三角形,OF=21BC=27同理OH=21AD=23,高HF=52327=+⑵过A 作AF ⊥BC 于F ,过D 作DH ⊥BC 于H ,由△AFC ≌△DHB得高AF=FC=21(AD+BC)=5⑶DOA COD BOC AOB ABCD S S S S S ∆∆∆∆+++=梯形(进行计算)24. 解:(1)设直线AB 的函数表达式为(y kx b k =+∵直线AB经过(60)(08)A B --,,,,∴由此可得60,8.k b b -+=⎧⎨=-⎩解得4,38.k b ⎧=-⎪⎨⎪=-⎩∴直线AB的函数表达式为483y x =--. (4)分(2)在R t AO B △中,由勾股定理,得10AB ===,x∵圆M 经过O A B ,,三点,且90AO B ∠=°,AB∴为圆M 的直径,∴半径5M A =,设抛物线的对称轴交x 轴于点N ,M N x ⊥∵,∴由垂径定理,得132A N O N O A ===.在R t A M N △中,4M N ===,541C N M C M N ∴=-=-=,∴顶点C 的坐标为(31)-,, 设抛物线的表达式为2(3)1y a x =++, 它经过(08)B -,,∴把0x =,8y =-代入上式,得28(03)1a -=++,解得1a =-,∴抛物线的表达式为22(3)168y x x x =-++=---.…………8分(3)如图,连结A C ,B C ,35213521ON MC 21AN MC 21S S S BMC AMC ABC ⨯⨯+⨯⨯=∙+∙=+=∆∆∆ =15在抛物线268y x x =---中,设0y =, 则2680x x ---=, 解得12x =-,24x =-.D E ∴,的坐标分别是(40)-,,(20)-,, 2D E ∴=;设在抛物线上存在点()P x y ,,使得111511515P D E A B C S S =⨯=△△=,则1y 221y DE 21S PDE =⨯⨯=∙=∆,1y ∴=±,当1y =时,2681x x ---=,解得123x x ==-,1(31)P ∴-,;当1y =-时,2681x x ---=-,解得13x =-+,23x =--2(3)P ∴-+-1,3(3)P ---1.综上所述,这样的P 点存在,且有三个,1(31)P -,,2(3)P -+-1,3(31)P ---.…………………….12分。
镇江中考数学试题及答案试题一:1. 设集合 A = {1, 2, 3, 4, 5},集合 B = {3, 4, 5, 6, 7},则 A ∪ B = ?()A. {1, 2, 3, 4, 5, 6, 7}B. {1, 2, 3, 4, 5}C. {3, 4, 5}D. {2, 6, 7}解析:集合 A ∪ B 即为 A 和 B 的并集,即包含两个集合中的所有元素。
根据集合的定义,得到 A ∪ B = {1, 2, 3, 4, 5, 6, 7},所以选项 A 正确。
2. 已知角 A 的补角为 60°,则角 A 的度数是多少?()A. 30°B. 60°C. 120°D. 150°解析:补角的定义是两个角的度数之和为 90°。
设角 A 的度数为 x°,则有 x + 60° = 90°,解得 x = 30°。
所以选项 A 正确。
3. 一辆汽车从 A 地以每小时 60 公里的速度出发,另一辆汽车从 B 地以每小时 50 公里的速度出发,A 地与 B 地相距 600 公里。
两辆汽车同时出发后,多长时间两辆汽车会相遇?()A. 3 小时B. 4 小时C. 5 小时D. 6 小时解析:两辆汽车的相对速度为 60 km/h - 50 km/h = 10 km/h。
相对速度乘以相遇所需时间等于相遇时两辆汽车的相对距离,即 10 km/h * t = 600 km,解得 t = 60 小时。
所以选项 D 正确。
4. 若正方形边长为 a,则正方形的对角线长度是多少?()A. aB. a√2C. a/√2D. 2a解析:正方形的对角线可以看成两个相邻边构成的直角三角形的斜边。
根据勾股定理,对角线的长度等于边长的平方根乘以√2,即对角线长度= a * √2,所以选项 B 正确。
5. 已知 a:b = 3:4,b:c = 5:6,求 a:c 的比值。
数学试卷第1页(共10页)准考证号:**市2011年初中毕业生学业考试数学试卷【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1-2页,第Ⅱ卷3-10页。
考试时间120分钟,满分150分。
考试结束后,第Ⅱ卷和答题卡按规定装袋上交。
第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的学校、姓名、准考证号、考试科目填涂在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡 皮擦干净后,再选涂其他答案,不能答在试题卷上。
3.考试结束后,本试卷由考场统一收回,集中管理。
一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求 1.-2的相反数A .-2B .2C .2±D .-2 2.下列分式是最简分式的A.b a a 232 B .a a a 32- C .22b a b a ++ D .222ba ab a -- 3.下列运算错误的是A .235a a a ⋅=B .347()m m =C .3363282c b a bc a =)( D .624m m m ÷= 4.一幅扑克牌(不含大小王),任意抽取一张,抽中方块的概率是 A .21 B .521 C .31 D .415.函数31--=x x y 的自变量x 的取值范围是 A .1x > B .1x >且3x ≠ C .1≥x D. 1≥x 且3x ≠数学试卷第2页(共10页)6.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 7.如图:等腰梯形ABCD 中 ,AD ∥BC ,AB=DC , AD=3,AB=4,∠B=60︒,则梯形的面积是 A.310 B.320 C.346+ D.3812+ 8.计算2sin30︒-sin 245︒+cot60︒的结果A.3321+ B.3321+ C.23+ D.23-1+ 9.如图:△ABC 中,DE ∥BC ,AD:DB=1:2,下列选项正确的是A .DE:BC=1:2B .AE:AC=1:3C .BD:AB=1:3D .S DE A ∆:S ABC ∆=1:4( 第9题) (第10题)10.如图:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列说法中正确的个数是①CD AB BC AC ⋅=⋅ ②DB AD AC ⋅=2③BA BD BC ⋅=2 ④DB AD CD ⋅=2A .1个B .2个C .3个D .4个CBEDABDAC数学试卷第3页(共10页)绝密★启用前【考试时间:2011年6月】**市2011年初中毕业生学业考试数学试卷第Ⅱ卷(非选择题 共110分)注意事项:1.第Ⅱ卷共8页,用钢笔或中性笔直接答在试卷上。
盐城市二○一一年高中阶段教育招生统一考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.-2的绝对值是 A .-2 B .- 12C .2D .12【答案】C 。
【考点】绝对值。
【分析】根据绝对值的定义,直接得出结果。
2.下列运算正确的是A .x 2+ x 3= x 5B .x 4·x 2= x 6 C .x 6÷x 2 = x 3D .( x 2)3 = x 8【答案】B 。
【考点】同底幂的乘法。
【分析】42426x x x x +⋅==3.下面四个几何体中,俯视图为四边形的是【答案】D 。
【考点】几何体的三视图。
【分析】根据几何体的三视图,直接得出结果。
4.已知a -b =1,则代数式2a -2b -3的值是A .-1B .1C .-5D .5【答案】A 。
【考点】代数式代换。
【分析】()22323231a b a b --=--=-=-5.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离A B CD【答案】B 。
【考点】圆心距。
【分析】126464<O O <-+∴ 两圆相交。
6.对于反比例函数y = 1x,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C 。
【考点】反比例函数。
【分析】根据反比例函数性质,直接得出结果。
镇江市2011年初中毕业、升学统一文化考试物理试题注意事项:1.本试卷1至2页为选择题,共30分,3至6页为非选择题,共70分,全卷满分100分,考试时间100分钟,考生应将答案全部填写在答题卡相应位置上,答在本试卷上无效.2.答题前,考生务必将自己的姓名、考试证号填写在试卷上,并填写好答题卡上的考生信息.3.作图题必须用2B铅笔作答,并请加黑、加粗,一、单项选择(本题共15小题,每小题2分,共30分)(11·常州、镇江)1.2011年5月15日,国际田联110m栏钻石联赛上海站敲响战鼓,冠军争夺在刘翔和奥利弗之间展开.比赛临近结束,选手全力冲刺时,观众看到如图所示的场景,齐声欢呼“刘翔最快”;很快,根据表中所示的比赛成绩,裁判裁定刘翔获胜,观众和裁判判断刘翔快过奥利弗的方法分别是A.观众:相同时间比路程裁判:相同时间比路程B.观众:相同时间比路程裁判:相同路程比时间C.观众:相同路程比时间裁判:相同时间比路程D.观众:相同路程比时间裁判:相同路程比时间答案:B(11·常州、镇江)2.为改变过度依赖激素促进植物生长的种植状态,江南农科所着手研究利用夜间光照促进植物生长的技术.对于绿色植物而言,下列颜色的灯光照明中,效能晟低的是A.红光B.绿光C.蓝光D.黄光答案:B(11·常州、镇江)3.2011年6月9日,持续绕月9个多月的“嫦娥二号”卫星加速以离开月球,并继续进行深空探测,如图所示,A、B为卫星的两个喷气发动机.根据表中指令可知,使“嫦娥二号”卫星加速离月的信号应为A.00100 10001B.00100 01110C.11011 10001D.11011 01110答案:A(11·常州、镇江)4.在探索微小粒子的历程中,科学家们用一系列高能物理实验证实了大量微小粒子的存在.下列微粒按空间尺度从大到小的顺序排列的是A.原子、原子核、夸克、质子B.原子、原子核、质子、夸克C.夸克、质子、原子核、原子D.质子、夸克、原子核、原子答案:B(11·常州、镇江)5.粗糙水平地面上有一个重为100N的物体,用20N的水平拉力使其在10s内匀速前进了10m,在此过程中A.重力做功的功率为100W B.支持力做功的功率为100WC.拉力做功的功率为200W D.拉力做功的功率为20W答案:D(11·常州、镇江)6.为探究“什么情况下磁可以生电”,小华组装了如图所示的实验装置,图中ab是一根细铜直导线.闭合开关,当ab沿竖直方向上下运动时,电流表指钎没有发生偏转,下列说法正确的是A.感应电流太小,无法使电流表指针发生偏转B.铜直导线太细,应换用较粗的铜棒C.应该把ab改为左右运动D.应该把磁体的N、S极对调答案:C(11·常州、镇江)7.小明去商场购物,自动扶梯将他从一楼匀速送上二楼,在这个过程中,他的A.势能不变,动能不变,机械能不变B.势能不变,动能增大,机械能增大C.势能增大,动能不变,机械能增大D.势能增大,动能增大,机械能增大答案:C(11·常州、镇江)8.在2011年江南中学体育节上,小华水平抛出一飞盘,快速前进的飞盘越升越高,从侧面看,飞行过程中飞盘的形状应为下列图示中的答案:A(11·常州、镇江)9.2011年5月,装载500t散装甘油的货轮抵达某港口,并由油罐车队装载运输至光辉油漆厂.已知甘油密度为 1.25×103kg/rn3。
江苏13市2011年中考数学试题分类解析汇编专题5:数量和位置变化一、选择题1. (常州、镇江2分)若2-x 在实数范围内有意义,则x 的取值范围A .x ≥2 B.x ≤2 C.x >2 D .x <2【答案】A.【考点】函数自变量的取值范围,二次根式有意义的条件。
【分析】根据二次根式被开方数必须是非负数的条件,要使2x -在实数范围内有意义,必须202x x -≥⇒≥,故选A 。
2.(常州、镇江2分)在平面直角坐标系中,正方形ABCD 的顶点分别为A ()1,1、B ()1,1-、C ()1,1--、D ()1,1-,y 轴上有一点P ()2,0。
作点P 关于点A 的对称点1P ,作1P 关于点B 的对称点2P ,作点2P 关于点C 的对称点3P ,作3P 关于点D 的对称点4P ,作点4P 关于点A 的对称点5P ,作5P 关于点B 的对称点6P ┅,按如此操作下去,则点2011P 的坐标为A .()2,0B .()0,2C .()2,0-D . ()0,2-21世纪教育网 【答案】D 。
【考点】分类归纳,点对称。
【分析】找出规律,P 1(2,0),P 2(0,-2),P 3(-2,0),P 4(0,2},……,P 4n (0,2},P 4n+1(2,0),P 4n+2(0,-2),P 4n+3(-2,0)。
而2011除以4余3,所以点P 2011的坐标与P 3坐标相同,为(-2,0)。
故选D 。
21世纪教育网3.(宿迁3分)在平面直角坐标中,点M(-2,3)在A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 。
[来源:21世纪教育网]【考点】点的坐标。
【分析】利用平面直角坐标系中各象限符号特征进行判断:点M(-2,3)横坐标小于0,纵坐标大于0,则这点在第二象限。
故选B 。
4.(徐州2分)若式子1x -在实数范围内有意义,则x 的取什范围是A .1x ≥B ..1x >C ..1x <D .1x ≤【答案】A 。
2011年江苏省镇江市中考数学试卷一、选择题(共8小题,每小题2分,满分16分)1.(2分)在下列实数中,无理数是()A.2B.0C.D.2.(2分)下列计算正确的是()A.a2•a3=a6B.y3÷y3=y C.3m+3n=6mn D.(x3)2=x6 3.(2分)已知某几何体的一个视图(如图),则此几何体是()A.正三棱柱B.三棱锥C.圆锥D.圆柱4.(2分)某地区有8所高中和22所初中.要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是()A.从该地区随机选取一所中学里的学生B.从该地区30所中学里随机选取800名学生C.从该地区一所高中和一所初中各选取一个年级的学生D.从该地区的22所初中里随机选取400名学生5.(2分)若在实数范围内有意义,则x的取值范围()A.x≥2B.x≤2C.x>2D.x<26.(2分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC,BC=2,则sin∠ACD的值为()A.B.C.D.7.(2分)在平面直角坐标系中,正方形ABCD的顶点分别为A(1,1)、B(1,﹣1)、C (﹣1,﹣1)、D(﹣1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D的对称点P4,作点P4关于点A的对称点P5,作P5关于点B的对称点P6…,按如此操作下去,则点P2011的坐标为()A.(0,2)B.(2,0)C.(0,﹣2)D.(﹣2,0)8.(2分)已知二次函数,当自变量x取m时对应的值大于0,当自变量x 分别取m﹣1、m+1时对应的函数值为y1、y2,则y1、y2必须满足()A.y1>0、y2>0B.y1<0、y2<0C.y1<0、y2>0D.y1>0、y2<0二、填空题(共9小题,每小题3分,满分27分)9.(3分)计算:;;;.10.(3分)(1)计算:(x+1)2=;(2)分解因式:x2﹣9=.11.(3分)若∠α的补角为120°,则∠α=,sinα=.12.(3分)已知关于x的方程x2+mx﹣6=0的一个根为2,则m=,另一个根是.13.(3分)已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是cm,面积是cm2.14.(3分)某市2007年5月份某一周的日最高气温(单位:℃)分别为:25、28、30、29、31、32、28,这周的日最高气温的平均值是℃,中位数是℃.15.(3分)如图,DE是⊙O的直径,弦AB⊥CD,垂足为C,若AB=6,CE=1,则OC =,CD=.16.(3分)已知关于x的一次函数y=kx+4k﹣2(k≠0).若其图象经过原点,则k=,若y随着x的增大而减小,则k的取值范围是.17.(3分)把棱长为4的正方体分割成29个棱长为整数的正方体(且没有剩余),其中棱长为1的正方体的个数为.三、解答题(共18分)18.(8分)①计算:°;②化简:.19.(10分)①解分式方程;②解不等式组<.四、解答题(共15分)20.(7分)某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从足球、篮球、排球、其它等四个方面调查了若干名学生,并绘制成“折线统计图与“扇形统计图”.请你根据图中提供的部分信息解答下列问题:(1)在这次调查活动中,一共调查了名学生;(2)“足球”所在扇形的圆心角是度;(3)补全折线统计图.21.(8分)甲、乙、丙三个布袋都不透明,甲袋中装有1个红球和1个白球;乙袋中装有一个红球和2个白球;丙袋中装有2个白球.这些球除颜色外都相同.从这3个袋中各随机地取出1个球.①取出的3个球恰好是2个红球和1个白球的概率是多少?②取出的3个球全是白球的概率是多少?五、解答题(共12分)22.(5分)已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.23.(7分)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.六.探究与画图(共13分)24.如图,在△ABO中,已知点,、B(﹣1,﹣1)、O(0,0),正比例函数y=﹣x 图象是直线l,直线AC∥x轴交直线l与点C.(1)C点的坐标为;(2)以点O为旋转中心,将△ABO顺时针旋转角α(90°≤α<180°),使得点B落在直线l上的对应点为B′,点A的对应点为A′,得到△A′OB′.①∠α=;②画出△A′OB′.(3)写出所有满足△DOC∽△AOB的点D的坐标.25.(6分)已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°.图形②与图形①恰好拼成一个菱形(如图2).记AB的长度为a,BM的长度为b.(1)图形①中∠B=°,图形②中∠E=°;(2)小明有两种纸片各若干张,其中一种纸片的形状及大小与图形①相同,这种纸片称为“风筝一号”;另一种纸片的形状及大小与图形②相同,这种纸片称为“飞镖一号”.①小明仅用“风筝一号”纸片拼成一个边长为b的正十边形,需要这种纸片张;②小明若用若干张“风筝一号”纸片和“飞镖一号”纸片拼成一个“大风筝”(如图3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.请你在图3中画出拼接线并保留画图痕迹.(本题中均为无重叠、无缝隙拼接)七、解答题(共3小题,共26分)26.(7分)某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=at2+bt,且乙级干果的前三天的销售量的情况见下表:(1)求a、b的值;(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?(说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)27.(9分)在平面直角坐标系xOy中,一次函数的图象是直线l1,l1与x轴、y轴分别相交于A、B两点.直线l2过点C(a,0)且与直线l1垂直,其中a>0.点P、Q 同时从A点出发,其中点P沿射线AB运动,速度为每秒4个单位;点Q沿射线AO运动,速度为每秒5个单位.(1)写出A点的坐标和AB的长;(2)当点P、Q运动了多少秒时,以点Q为圆心,PQ为半径的⊙Q与直线l2、y轴都相切,求此时a的值.28.(10分)在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由.2011年江苏省镇江市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.(2分)在下列实数中,无理数是()A.2B.0C.D.【解答】解:∵无理数是无限不循环小数,∴是无理数,2,0,是有理数.故选:C.2.(2分)下列计算正确的是()A.a2•a3=a6B.y3÷y3=y C.3m+3n=6mn D.(x3)2=x6【解答】解:A、a2•a3=a5≠a6,本选项错误;B、y3÷y3=1≠y,本选项错误;C、3m+3n=3(m+n)≠6mn,本选项错误;D、(x3)2=x6,本选项正确.故选:D.3.(2分)已知某几何体的一个视图(如图),则此几何体是()A.正三棱柱B.三棱锥C.圆锥D.圆柱【解答】解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆锥.故选:C.4.(2分)某地区有8所高中和22所初中.要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是()A.从该地区随机选取一所中学里的学生B.从该地区30所中学里随机选取800名学生C.从该地区一所高中和一所初中各选取一个年级的学生D.从该地区的22所初中里随机选取400名学生【解答】解:某地区有8所高中和22所初中.要了解该地区中学生的视力情况,A,C,D中进行抽查是不具有普遍性,对抽取的对象划定了范围,因而不具有代表性.B、本题中为了了解该地区中学生的视力情况,从该地区30所中学里随机选取800名学生就具有代表性.故选:B.5.(2分)若在实数范围内有意义,则x的取值范围()A.x≥2B.x≤2C.x>2D.x<2【解答】解:∵在实数范围内有意义,∴x﹣2≥0,解得x≥2.故选:A.6.(2分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC,BC=2,则sin∠ACD的值为()A.B.C.D.【解答】解:在直角△ABC中,根据勾股定理可得:AB3.∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD.∴sin∠ACD=sin∠B,故选:A.7.(2分)在平面直角坐标系中,正方形ABCD的顶点分别为A(1,1)、B(1,﹣1)、C (﹣1,﹣1)、D(﹣1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D的对称点P4,作点P4关于点A的对称点P5,作P5关于点B的对称点P6…,按如此操作下去,则点P2011的坐标为()A.(0,2)B.(2,0)C.(0,﹣2)D.(﹣2,0)【解答】解:∵作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D的对称点P4,作点P4关于点A的对称点P5,作P5关于点B的对称点P6…,按如此操作下去,∴每变换4次一循环,∴点P2011的坐标为:2011÷4=502…3,点P2011的坐标与P3坐标相同,∴点P2011的坐标为:(﹣2,0),故选:D.8.(2分)已知二次函数,当自变量x取m时对应的值大于0,当自变量x 分别取m﹣1、m+1时对应的函数值为y1、y2,则y1、y2必须满足()A.y1>0、y2>0B.y1<0、y2<0C.y1<0、y2>0D.y1>0、y2<0【解答】解:令0,解得:x,∵当自变量x取m时对应的值大于0,∴<m<,∵点(m+1,0)与(m﹣1,0)之间的距离为2,大于二次函数与x轴两交点之间的距离,∴m﹣1的最大值在左边交点之左,m+1的最小值在右边交点之右.∴点(m+1,0)与(m﹣1,0)均在交点之外,∴y1<0、y2<0.故选:B.二、填空题(共9小题,每小题3分,满分27分)9.(3分)计算:;;1;﹣2.【解答】解:;;1;2.故答案为:,,1,﹣2.10.(3分)(1)计算:(x+1)2=x2+2x+1;(2)分解因式:x2﹣9=(x﹣3)(x+3).【解答】解:①(x+1)2=x2+2x+1;②x2﹣9=(x﹣3)(x+3).11.(3分)若∠α的补角为120°,则∠α=60°,sinα=.【解答】解:根据补角定义,∠α=180°﹣120°=60°,于是sinα=sin60°.故答案为60°,.12.(3分)已知关于x的方程x2+mx﹣6=0的一个根为2,则m=1,另一个根是﹣3.【解答】解:根据题意,得4+2m﹣6=0,即2m﹣2=0,解得,m=1;由韦达定理,知x1+x2=﹣m;∴2+x2=﹣1,解得,x2=﹣3.故答案是:1、﹣3.13.(3分)已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是24 cm,面积是240πcm2.【解答】解:设扇形的半径是r,则20π解得:r=24.扇形的面积是:20π×24=240π.故答案是:24和240π.14.(3分)某市2007年5月份某一周的日最高气温(单位:℃)分别为:25、28、30、29、31、32、28,这周的日最高气温的平均值是29℃,中位数是29℃.【解答】解:29,将该组数据按从小到大依次排列得到:25,28,28,29,30,31,32;处在中间位置的数为29,故中位数为29.故答案为29,29.15.(3分)如图,DE是⊙O的直径,弦AB⊥CD,垂足为C,若AB=6,CE=1,则OC =4,CD=9.【解答】解:连接OA,∵直径DE⊥AB,且AB=6∴AC=BC=3,设圆O的半径OA的长为x,则OE=OD=x∵CE=1,∴OC=x﹣1,在Rt△AOC中,根据勾股定理得:x2﹣(x﹣1)2=32,化简得:x2﹣x2+2x﹣1=9,即2x=10,解得:x=5所以OE=5,则OC=OE﹣CE=5﹣1=4,CD=OD+OC=9.故答案为:4;916.(3分)已知关于x的一次函数y=kx+4k﹣2(k≠0).若其图象经过原点,则k=,若y随着x的增大而减小,则k的取值范围是k<0.【解答】解:(1)当其图象经过原点时:4k﹣2=0,k;(2)当y随着x的增大而减小时:k<0.故答案为:k;k<0.17.(3分)把棱长为4的正方体分割成29个棱长为整数的正方体(且没有剩余),其中棱长为1的正方体的个数为24.【解答】解:棱长为4的正方体的体积为64,如果只有棱长为1的正方体就是64个不符合题意排除;如果有一个3×3×3的立方体(体积27),有1×1×1的立方体37个,37+1>29,不符合题意排除;所以应该是有2×2×2和1×1×1两种立方体.则设棱长为1的有x个,则棱长为2的有(29﹣x)个,解方程:x+8×(29﹣x)=64,解得:x=24.所以分割的立方体应为:棱长为1的24个,棱长为2的5个.故答案为:24.三、解答题(共18分)18.(8分)①计算:°;②化简:.【解答】解:①原式2=2;②原式.19.(10分)①解分式方程;②解不等式组<.【解答】解:①去分母,得2(x﹣2)=3(x+2),去括号,得2x﹣4=3x+6,移项,得2x﹣3x=4+6,解得x=﹣10,检验:当x=﹣10时,(x+2)(x﹣2)≠0,∴原方程的解为x=﹣10;②不等式①化为x﹣2<6x+18,解得x>﹣4,不等式②化为5x﹣5﹣6≥4x+4,解得x≥15,∴不等式组的解集为x≥15.四、解答题(共15分)20.(7分)某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从足球、篮球、排球、其它等四个方面调查了若干名学生,并绘制成“折线统计图与“扇形统计图”.请你根据图中提供的部分信息解答下列问题:(1)在这次调查活动中,一共调查了100名学生;(2)“足球”所在扇形的圆心角是108度;(3)补全折线统计图.【解答】解:(1)40÷40%=100(人).(2)100%=10%,1﹣20%﹣40%﹣10%=30%,360°×30%=108度.(3)喜欢篮球的人数:20%×100=20(人),喜欢足球的人数:30%×100=30(人).21.(8分)甲、乙、丙三个布袋都不透明,甲袋中装有1个红球和1个白球;乙袋中装有一个红球和2个白球;丙袋中装有2个白球.这些球除颜色外都相同.从这3个袋中各随机地取出1个球.①取出的3个球恰好是2个红球和1个白球的概率是多少?②取出的3个球全是白球的概率是多少?【解答】解:(1)画树状图得:∴一共有12种等可能的结果,取出的3个球恰好是2个红球和1个白球的有2种情况,∴取出的3个球恰好是2个红球和1个白球的概率是;(2)∵取出的3个球全是白球的有4种情况,∴取出的3个球全是白球的概率是.五、解答题(共12分)22.(5分)已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.【解答】证明:∵AD平分∠EDC,∴∠ADE=∠ADC,在△AED和△ACD中,∵∴△AED≌△ACD(SAS),∴∠C=∠E,又∵∠E=∠B.∴∠C=∠B,∴AB=AC.23.(7分)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.【解答】证明:∵AD⊥BD,∴△ABD是Rt△∵E是AB的中点,∴BE AB,DE AB(直角三角形斜边上的中线等于斜边的一半),∴BE=DE,∴∠EDB=∠EBD,∵CB=CD,∴∠CDB=∠CBD,∵AB∥CD,∴∠EBD=∠CDB,∴∠EDB=∠EBD=∠CDB=∠CBD,∵BD=BD,∴△EBD≌△CBD(ASA),∴BE=BC,∴CB=CD=BE=DE,∴菱形BCDE.(四边相等的四边形是菱形)六.探究与画图(共13分)24.如图,在△ABO中,已知点,、B(﹣1,﹣1)、O(0,0),正比例函数y=﹣x 图象是直线l,直线AC∥x轴交直线l与点C.(1)C点的坐标为(﹣3,3);(2)以点O为旋转中心,将△ABO顺时针旋转角α(90°≤α<180°),使得点B落在直线l上的对应点为B′,点A的对应点为A′,得到△A′OB′.①∠α=90°;②画出△A′OB′.(3)写出所有满足△DOC∽△AOB的点D的坐标.【解答】解:(1)∵直线AC∥x轴交直线l于点C,∴A、C两点纵坐标为3,代入直线y=﹣x中,得C点横坐标为﹣3,∴C(﹣3,3);(2)由B(﹣1,﹣1)可知,OB为第三象限角平分线,又直线l为二、四象限角平分线,∴旋转角为∠α=∠BOB′=90°,△A′OB′如图所示;(3)∵A点坐标可知OA与x轴正半轴夹角为60°,可知∠AOB=165°,根据对应关系,则∠DOC=165°,故OD在第四象限,与x轴正半轴夹角为30°或与y 轴负半轴夹角为30°,根据A、B、C三点坐标,∴OA=2、OB、OC=3,∵,∴DO6,∴D点的横坐标为:3,或纵坐标为:﹣3,∴D点坐标为(9,﹣3),(3,﹣9).25.(6分)已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°.图形②与图形①恰好拼成一个菱形(如图2).记AB的长度为a,BM的长度为b.(1)图形①中∠B=72°,图形②中∠E=36°;(2)小明有两种纸片各若干张,其中一种纸片的形状及大小与图形①相同,这种纸片称为“风筝一号”;另一种纸片的形状及大小与图形②相同,这种纸片称为“飞镖一号”.①小明仅用“风筝一号”纸片拼成一个边长为b的正十边形,需要这种纸片5张;②小明若用若干张“风筝一号”纸片和“飞镖一号”纸片拼成一个“大风筝”(如图3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.请你在图3中画出拼接线并保留画图痕迹.(本题中均为无重叠、无缝隙拼接)【解答】解:(1)连接AM,如图所示:∵AD=AB,DM=BM,AM为公共边,∴△ADM≌△ABM,∴∠D=∠B,又因为四边形ABMD的内角和等于360°,∠DAB=72°,∠DMB=144°,∴∠B72°;在图2中,因为四边形ABCD为菱形,所以AB∥CD,∴∠A+∠ADC=∠A+∠ADM+∠CEF=180°,∠A=72°,∠ADM=72°,∴∠CEF=180°﹣72°﹣72°=36°;(2)①用“风筝一号”纸片拼成一个边长为b的正十边形,得到“风筝一号”纸片的点A与正十边形的中心重合,又∠A=72°,则需要这种纸片的数量5;②根据题意可知:“风筝一号”纸片用两张和“飞镖一号”纸片用一张,画出拼接线如图所示:故答案为:(1)72°;36°;(2)①、5.七、解答题(共3小题,共26分)26.(7分)某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=at2+bt,且乙级干果的前三天的销售量的情况见下表:(1)求a、b的值;(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?(说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)【解答】解:(1)根据表中的数据可得.答:a、b的值分别是1、20;(2)甲级干果和乙级干果n天售完这批货.﹣n2+40n+n2+20n=1140n=19,当n=19时,y1=399,y2=741,毛利润=399×8+741×6﹣1140×6=798(元),答:卖完这批干果获得的毛利润是798元.(3)设从第m天起乙级干果每天的销量比甲级干果每天的销量至少多6千克,则甲、乙级干果的销售量为m天的销售量减去m﹣1天的销售量,即甲级水果第m天所卖出的干果数量:(﹣m2+40m)﹣[﹣(m﹣1)2+40(m﹣1)]=﹣2m+41.乙级水果第m天所卖出的干果数量:(m2+20m)﹣[(m﹣1)2+20(m﹣1)]=2m+19,(2m+19)﹣(﹣2m+41)≥6,解得:m≥7,答:第7天起乙级干果每天的销量比甲级干果每天的销量至少多6千克.27.(9分)在平面直角坐标系xOy中,一次函数的图象是直线l1,l1与x轴、y 轴分别相交于A、B两点.直线l2过点C(a,0)且与直线l1垂直,其中a>0.点P、Q 同时从A点出发,其中点P沿射线AB运动,速度为每秒4个单位;点Q沿射线AO运动,速度为每秒5个单位.(1)写出A点的坐标和AB的长;(2)当点P、Q运动了多少秒时,以点Q为圆心,PQ为半径的⊙Q与直线l2、y轴都相切,求此时a的值.【解答】解:(1)∵一次函数的图象是直线l1,l1与x轴、y轴分别相交于A、B两点,∴y=0时,x=﹣4,∴A(﹣4,0),AO=4,∵图象与y轴交点坐标为:(0,3),BO=3,∴AB=5;(2)由题意得:AP=4t,AQ=5t,t,又∠P AQ=∠OAB,∴△APQ∽△AOB,∴∠APQ=∠AOB=90°,∵点P在l1上,∴⊙Q在运动过程中保持与l1相切,①当⊙Q在y轴右侧与y轴相切时,设l2与⊙Q相切于F,由△APQ∽△AOB,得:∴,∴PQ=6;故AQ=10,则运动时间为:2(秒);连接QF,则QF=PQ,∵直线l2过点C(a,0)且与直线l1垂直,FQ⊥l2,∴∠APQ=∠QFC=90°,AP∥FQ,∴∠P AQ=∠FQC,∴△QFC∽△APQ,∴△QFC∽△APQ∽△AOB,得:,∴,∴,∴QC,∴a=OQ+QC=OC,②如图2,当⊙Q在y轴的左侧与y轴相切时,设l2与⊙Q相切于E,由△APQ∽△AOB 得:,∴PQ,则AQ=4 2.5,∴则运动时间为:(秒);故当点P、Q运动了2秒或秒时,以点Q为圆心,PQ为半径的⊙Q与直线l2、y轴都相切,连接QE,则QE=PQ,∵直线l2过点C(a,0)且与直线l1垂直,⊙Q在运动过程中保持与l1相切于点P,∴∠AOB=90°,∠APQ=90°,∵∠P AO=∠BAO,∴△APQ∽△AOB,同理可得:△QEC∽△APQ∽△AOB得:,∴,,∴QC,a=QC﹣OQ,综上所述,a的值是:和,28.(10分)在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由.【解答】解:(1)若点E与点P重合,则k=1×2=2;(2)当k>2时,如图1,点E、F分别在P点的右侧和上方,过E作x轴的垂线EC,垂足为C,过F作y轴的垂线FD,垂足为D,EC和FD相交于点G,则四边形OCGD为矩形,∵PF⊥PE,∴S△FPE PE•PF(1)(k﹣2)k2﹣k+1,∴四边形PFGE是矩形,∴S△PFE=S△GEF,∴S△OEF=S矩形OCGD﹣S△DOF﹣S△EGF﹣S△OCE•k(k2﹣k+1)k2﹣1,∵S△OEF=2S△PEF,∴k2﹣1=2(k2﹣k+1),解得k=6或k=2,∵k=2时,E、F重合,∴k=6,∴E点坐标为:(3,2);(3)存在点E及y轴上的点M,使得△MEF≌△PEF,①当k<2时,如图2,只可能是△MEF≌△PEF,作FH⊥y轴于H,∵∠MHF=∠EBM=90°,∠HMF=∠MEB,∴△FHM∽△MBE,∴,∵FH=1,EM=PE=1,FM=PF=2﹣k,∴,BM,在Rt△MBE中,由勾股定理得,EM2=EB2+MB2,∴(1)2=()2+()2,解得k,此时E点坐标为(,2),②当k>2时,如图3,只可能是△MFE≌△PEF,作FQ⊥y轴于Q,△FQM∽△MBE得,,∵FQ=1,EM=PF=k﹣2,FM=PE1,∴,BM=2,在Rt△MBE中,由勾股定理得,EM2=EB2+MB2,∴(k﹣2)2=()2+22,解得k或0,但k=0不符合题意,∴k.此时E点坐标为(,2),∴符合条件的E点坐标为(,2)(,2).。
1 / 12高中阶段教育学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -3的绝对值是( )A. 3B. -3C.13 D. 13- 2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )A. 5 400 000B. 54 000 000C. 540 000 000D. 5 400 000 000 3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )A. 1B. 2C. 3D. 45. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( ) A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥6. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( ) A. -2B. 2图1图22 / 12C. -50D. 507. 如图2,A 为⊙O 上一点,从A 处射出的光线经圆周4次反射后到达F 处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE 的度数是( )A. 30°B. 40°C. 50°D. 80°8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为()A. B. C. D.9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”.如图3,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( ) A. 4 B. 5 C. 6 D. 710. 如图4,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为( )A. 2010B. 2011C. 20102D. 20112图3图43 / 12高中阶段教育学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 9的平方根为____________.12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.14. 若关于x 的方程2220x m x m m -+-=无实数根,则实数m 的取值范围是____________.15. 如图6,已知△ABC是等腰直角三角形,CD 是斜边AB 的中线,△ADC 绕点D 旋转一定角度得到△A DC '',A D '交AC 于点E ,DC '交BC 于点F ,连接EF ,若25A E ED '=,则EF A C ''=_________ . 16. 给出下列命题:① 若方程2560x x +-=的两根分别为1x ,2x ,则121156x x +=;② 对于任意实数x 、y ,都有2233()()x y x xy y x y -++=-;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a ※b =3a -b . 其中所有正确命题的序号是__________________ .图6图54 / 12三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)化简:2162393m m m -÷+--.18.(本小题满分7分)在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率; (2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?19.(本小题满分8分)如图7,已知A 、B 、C 是数轴上异于原点O 的三个点,且O 为AB 的中点,B为AC 的中点. 若点B 对应的数是x ,点C 对应的数是2x -3x ,求x 的值.图75 / 1220.(本小题满分8分)已知关于x 的不等式组4(1)23,617x x x ax -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.21.(本小题满分8分)如图8,已知直线l :y =kx +b 与双曲线C :my x=相交于点A (1,3)、B (32-,-2),点A 关于原点的对称点为P .(1) 求直线l 和双曲线C 对应的函数关系式; (2) 求证:点P 在双曲线C 上;(3) 找一条直线l 1,使△ABP 沿l 1翻折后,点P 能落在双曲线C 上. (指出符合要求的l 1的一个解析式即可,不需说明理由)图86 / 1222.(本小题满分8分)在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿12点方向以40米/分的速度前进,2分钟后到达B 处. 这时,甲队员发现在自己的1点方向的C 处有恐怖分子,乙队员发现C 处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少..应用多快的速度撤离?(结果精确到个位. 参考数据:13 3.6≈0,14 3.74≈.)23.(本小题满分8分)如图10-1,已知AB 是⊙O 的直径,直线l 与⊙O 相切于点B ,直线m 垂直AB 于点C ,交⊙O 于P 、Q 两点. 连结AP ,过O 作OD ∥AP 交l 于点D ,连接AD 与m 交于点M .(1) 如图10-2,当直线m 过点O 时,求证:M 是PO 的中点;(2) 如图10-1,当直线m 不过点O 时,M 是否仍为PC 的中点?证明你的结论.图9图10-1 图10-27 / 1224.(本小题满分9分)如图11,在直角梯形ABCD 中,已知AD ∥BC ,AB =3,AD =1,BC =6,∠A =∠B =90°.设动点P 、Q 、R 在梯形的边上,始终构成以P 为直角顶点的等腰直角三角形,且△PQR 的一边与梯形ABCD 的两底边平行.(1) 当点P 在AB 边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2) 当点P 在BC 边或CD 边上时,求BP 的长.图118 / 1225.(本小题满分9分)如图12,已知直线22y x =+交y 轴于点A ,交x 轴于点B ,直线l :39y x =-+交x 轴于点C .(1) 求经过A 、B 、C 三点的抛物线的函数关系式,并指出此函数的函数值随x 的增大而增大时,x 的取值范围;(2) 若点E 在(1)中的抛物线上,且四边形ABCE 是以BC 为底的梯形,求梯形ABCE 的面积; (3) 在(1)、(2)的条件下,过E 作直线EF ⊥x 轴,垂足为G ,交直线l 于F . 在抛物线上是否存在点H ,使直线l 、直线FH 和x 轴所围成的三角形的面积恰好是梯形ABCE 面积的12?若存在,求点H 的横坐标;若不存在,请说明理由.图12高中阶段教育学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABDCB;6-10. ABCCD.二、填空题(每小题3分,共6个小题,满分18分):11.±3;12.800元;13. 120°;14.m<0;15.57;16.①②④.(注:12、13题有无单位“元”或“°”均不扣分. ) 三、解答题(共9个小题,满分72分):17.解:原式=1633(3)(3)2mm m m-+++-····················································3分=1333m m+++···················································································5分=43m+. ··························································································7分18.(1) 解一:列表如下: ············································································································3分∴第一张是“物种”且第二张是“星球”的概率是16. ······························4分解二:树状图如下:9 / 1210 / 12···························· 3分∴ 第一张是“物种”且第二张是“星球”的概率是16. ············································(2) 这个规定不公平. ··········································································5分因为观众获胜的概率是13,主持人获胜的概率是23. ·································7分19.解:由已知,点O 是AB 的中点,点B 对应的数是x ,∴ 点A 对应的实数为-x . ····································································1分 ∵ 点B 是AC 的中点,点C 对应的数是2x -3x , ∴ (2x -3x )-x =x -(-x ). ··········································································4分 整理,得2x -6x =0,解之得 x =0,或x =6. ···············································6分 ∵ 点B 异于原点,故x =0应舍去. ∴ x 的值为6. ·····································7分 20.解:由4(1)23x x -+>得,x >2; ···························································2分由617x ax +-<得,x <a +7. ··································································5分依题意得,不等式组的解集为2<x <a +7. ··················································6分 又 ∵ 此不等式组有且只有三个整数解,故整数解只能是x =3,4,5, ∴ 5<a +7≤6,则-2<a ≤-1. ·································································8分 (注:未取等号扣1分)21. 解:(1) 将点A 、B 的坐标代入y =kx +b ,有31,32().2k b k b =⨯+⎧⎪⎨-=⨯-+⎪⎩ ·············································································2分 解得,2k =,b =1,即直线l 对应的函数关系为y =2x +1. ·····························3分将点A (1,3)(或B )的坐标代入my x =,得m =3,∴ 双曲线C 对应的函数关系为y =3x. ·····················································4分(2) ∵ P 为点A 关于原点的对称点,∴ 点P 的坐标为(-1,-3),符合双曲线C 的函数关系,故点P 在双曲线C 上. ·················································································6分(3) l 1的解析式为y =x ,或y =-x . ·····························································8分 (注:写出一个解析式即得2分.) 22.解:(1) 乙队员不安全. ······················································· 1分易求AB =80米. ∵ ∠BAC =∠C =30°,∴ BC =AB =80米<100米. ·························· 3分 ∴ 乙队员不安全.(2) 过C 点作CD ⊥AB ,垂足为D ,在AB 边上取一点B 1,使CB 1=100. ······················································································ 4分在Rt △CBD 中,∠CBD =60°,BC =80,则BD =40,CD =403. ···· 5分在Rt △1CDB 中,由勾股定理知22112013B D B C CD =-=, ·····················6分11 / 12而20134015-≈2.13米/秒, ·······························································7分 依题意,乙队员至少应以3米/秒的速度撤离. ··········································8分 (注:结果为2米/秒,本步不给分.)23.(1) 证明:连接PD ,∵ 直线m 垂直AB 于点C ,直线l 与⊙O 相切于点B ,AB 为直径,∴ ∠POA =∠DBA =90°.又∵ AP ∥OD ,∴ ∠P AO =∠DOB . ························································1分 又∵ AO =BO ,∴ △APO ≌△ODB . ·······················································2分 ∴ AP =OD ,∴ 四边形APDO 是平行四边形, ·········································3分 ∴ M 是PO 的中点. ···········································································4分(其他解法:证△APO ≌△ODB 后,据中位线定理证12OM BD =;或证△DPO ≌△DBO ,得∠DPO =∠DBO =90°,从而证四边形APDO 是平行四边形等.)(2) M 是PC 的中点. 证明如下:∵AP ∥OD ,∴ ∠P AO =∠DOB ,又 ∠PCA =∠DBO =90°,∴ △APC ∽△ODB ,∴ PC AC BD BO=.①·····················································5分 又易证△ACM ∽△ABD ,∴ AC MC AB BD=. ·················································6分 又∵ AB =2OB ,∴ 2AC MC OB BD =,∴2AC MC OB BD=.② ····································7分 由①②得,2PC MC BD BD=,∴ PC =2MC ,即M 是PC 的中点. ·························8分 24.(1) 如图.(注:答案不唯一,在图中画出符合条件的图形即可) ······················2分(2) ① 当P 在CD 边上时,由题意,PR ∥BC ,设PR =x .可证四边形PRBQ 是正方形,∴ PR =PQ =BQ =x .过D 点作DE ∥AB ,交BC 于E ,易证四边形ABED 是矩形.∴ AD =BE =1,AB =DE =3. ··········································· 3分又 PQ ∥DE ,∴△CPQ ∽△CDE ,PQ CQ DE CE=. ∴ 635x x -=, ························································ 4分 ∴ x =94,即BP =942. ············································ 5分 (注:此时,由于∠C ≠45°,因此斜边RQ 不可能平行于BC . 在答题中未考虑此问题者不扣分.) ② 当P 在BC 边上,依题意可知RQ ∥BC .过Q 作QF ⊥BC ,易证△BRP ≌△FQP ,则PB =PF . ········· 6分易证四边形BFQR 是矩形,设BP =x ,则BP =BR =QF =PF =x ,BF =RQ =2x . ·················· 7分∵ QF ∥DE ,∴ △CQF ∽△CDE ,∴ QF CF DE CE =. ······································8分12 / 12 ∴6235x x -=,∴ x =1811. ···································································9分 (注:此时,直角边不可能与两底平行. 在答题中未考虑此问题者不扣分.)25.(1) ∵ 直线AB 的解析式为22y x =+,∴ 点A 、B 的坐标分别为A (0,2),B (-1,0).又直线l 的解析式为39y x =-+,∴ 点C 的坐标为(3,0). ··························1分 由上,可设经过A 、B 、C 三点的抛物线的解析式为y =a (x +1)(x -3),将点A 的坐标代入,得 a =23-,∴ 抛物线的解析式为224233y x x =-++. ·····2分 ∴ 抛物线的对称轴为x =1.由此可知,函数值随x 的增大而增大时,x 的取值范围是x ≤1. ···················3分 (注:本步结果无等号不扣分.)(2) 过A 作AE ∥BC ,交抛物线于点E . 显然,点A 、E 关于直线x =1对称,∴ 点E 的坐标为E (2,2). ····································································4分故梯形ABCE 的面积为 S =12(2+4)×2=6. ··················································5分 (3) 假设存在符合条件的点H ,作直线FH 交x 轴于M ,由题意知,3CFM S =. 设F (m ,n ),易知m =2,将F (2,n )的坐标代入y =-3x +9中,可求出n =3,则FG =3. ························6分∴ 132CFM S FG CM ==,∴ CM =2. 由C (3,0)知,1M (5,0),2M (1,0), ·······················································7分设FM 的解析式为y =kx +b ,由1M (5,0),F (2,3)得,F 1M 的解析式为y =-x +5,则F 1M 与抛物线的交点H 满足: 25,24 2.33y x y x x =-+⎧⎪⎨=-++⎪⎩整理得,22790x x -+=, ∵ △<0,∴ 不符合题意,舍去. ······················· 8分由2M (1,0),F (2,3)得,F 2M 的解析式为y =3x -3,则F 2M 与抛物线的交点H 满足:233,24 2.33y x y x x =-⎧⎪⎨=-++⎪⎩整理得,225150x x +-=, ∴ 51454x -±=. ··············································································9分 即:H点的横坐标为51454-±.。