高中数学函数单调性教案
- 格式:docx
- 大小:166.41 KB
- 文档页数:5
高中数学函数单调性教案
一、教学目标:
1.了解函数的单调性概念;
2.掌握函数单调递增和单调递减的定义;
3.能够根据函数图像确定函数的单调性;
4.能够应用函数的单调性解决实际问题。
二、教学重点:
1.函数的单调性定义;
2.函数单调递增和单调递减的判定方法;
3.函数单调性在实际问题中的应用。
三、教学难点:
1.理解函数的单调性概念;
2.根据函数图像确定函数的单调性。
四、教学准备:
1.教师准备:课件、黑板、粉笔等;
2.学生准备:课本、笔记、习题册等。
五、教学步骤:
1.引入:教师通过举例子引入函数的单调性概念,并与学生讨论函数单调递增和单调递减
的定义。
2.讲解:教师详细讲解函数单调递增和单调递减的判定方法,包括导数的应用。
3.练习:教师让学生进行练习,通过观察函数图像判断函数的单调性,并完成相关计算题。
4.拓展:教师引导学生探讨函数单调性在实际问题中的应用,并展示相关案例。
5.归纳:教师与学生一起总结本节课的内容,强化理解和记忆。
6.作业:布置相关习题作为课后作业,以巩固学生的学习成果。
六、教学反馈:
1.教师及时回答学生提出的疑问;
2.对学生的作业进行批改,并及时反馈;
3.鼓励学生积极参与课堂讨论,提高学生的学习兴趣和主动性。
高中数学函数的单调性教学设计一、教学任务及对象1、教学任务本节课的教学任务是围绕高中数学中函数的单调性展开,使学生能够理解并掌握函数单调性的概念、判定方法及其在实际问题中的应用。
具体包括:单调性的定义、单调递增和单调递减的判定、单调区间的确定,以及单调性在函数图像绘制、最值求解和不等式证明等方面的应用。
2、教学对象教学对象为高中二年级的学生,他们在之前的学习中已经掌握了函数的基本概念、图像及其基本性质,具备了一定的数学思维能力和逻辑推理能力。
在此基础上,通过本节课的学习,学生将进一步完善对函数性质的认识,为后续学习导数、极限等概念打下坚实基础。
二、教学目标1、知识与技能(1)理解函数单调性的定义,能够准确区分单调递增和单调递减的函数。
(2)掌握利用定义法、图像法和符号法判断函数单调性的方法,并能够熟练运用。
(3)学会求解函数的单调区间,并能将其应用于实际问题中。
(4)掌握单调性在求解函数最值、证明不等式等中的应用,提高解题能力。
2、过程与方法(1)通过分析实例,引导学生自主探究函数单调性的概念,培养学生的观察力和思考能力。
(2)运用数形结合的方法,使学生能够将抽象的数学概念与具体的图像相结合,提高直观想象能力。
(3)通过小组合作、讨论交流,培养学生合作解决问题的能力,拓展解题思路。
(4)设计具有梯度的问题,引导学生由浅入深地掌握函数单调性的相关知识,提高学生的逻辑推理能力。
3、情感,态度与价值观(1)激发学生对数学学习的兴趣,培养积极主动探究数学问题的态度。
(2)通过解决实际问题,使学生认识到数学知识在实际生活中的应用价值,增强学生的社会责任感。
(3)引导学生树立正确的价值观,认识到数学学习不仅仅是追求分数,更重要的是培养思维能力和解决问题的能力。
(4)鼓励学生勇于面对困难和挑战,培养坚持不懈、克服困难的意志品质。
(5)在小组合作过程中,培养学生相互尊重、团结协作的精神,提高人际沟通能力。
三、教学策略1、以退为进在本节课的教学中,采用“以退为进”的策略,即在教学过程中有意识地从已知的简单概念或问题出发,逐步引导学生深入探讨,从而掌握更复杂的概念。
《函数的单调性》教学设计一、教学内容解析1. 教材内容及地位本节课是人教版版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.2. 教学重点函数单调性的概念,判断和证明简单函数的单调性.3. 教学难点函数单调性概念的生成,证明单调性的代数推理论证.二、学生学情分析1. 教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“V随X的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2. 教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.三、课堂教学目标1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随x 的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:1. 指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随x 的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4. 在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.五、教学过程(一)通过问题,引入课题分别作出函数y=x+1,y=-x+1,y=x²的图像,并且观察自变量变化时,函数图像有什么变化趋势?y=-x+10 1X1y=x²1问题一问题二如何描述函数图像的上升或下降?图像上升,y 随着x的增大而增大图像上升,y随着x的增大而减小向题三如何用符号化的数学语言来描述y 随着x 的增大而增大呢?(二)引导探究,生成概念探究在函数y=f(x)的给定区间上任取x₁,x₂,当x₁<x₂时,有f(x)<f(x₂),这时我们就说函数y=f(x)在给定区间上是增函数.单调性的定义一般的,设函数f(x) 的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有_f(x)<f(x₂),那么就说函数f(x) 在区间D上是增函数;如果对于定义域I内某个区间D 上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有f(x)>f(x),那么就说函数f(x) 在区间D上是减函数;如果函数y=f(x) 在区间D上是增函数或是减函数,就说这个函数在这个区间上具有(严格的)单调性;区间D 叫做函数y=f(x)的单调区间(三)学以致用,理解感悟概念理解( 1 ) 已知,因为f(-1)<f(2), 所以函数f(x)是增函数.(2)能不能说y= (x≠0)定义域(-∝,0)∪(0,+∝)上是单调减函数?(3)对于函数f(x),x∈D,若x,x₂∈D,(x₂-x) [f(x₂)-f(x₁)]>0 ,则函数f(x)在D上是增函数.(4)y=f(x) 在区间D上是减函数,若x,x₂∈D,且x₁<x₂,则f(x)>f(x₂).- 用于比较函数值的大小(5)y=f(x) 在区间D上是减函数,若x,x₂∈D,且f(x₁)>f(x₂),则x₁<x₂…用于比较自变量值的大小概念升华:(1)x,x₂具有任意性;(2)单调性是相对区间而言的,在一点处不具有单调性,单调区间之间用“,”隔开(不可用“U”符号连接)(3)定义的等价变形;(4)“知二推一”的应用典型例题—根据图像,指出函数的单调区间,并指明函数在这些区间上的增减性。
函数的单调性【教学目标】1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念、判断及证明.【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】一、创设情境,引入课题课前布置任务:(1) 由于某种原因,2008年奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2) 通过查阅历史资料研究奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由生活情境引入新课,激发兴趣.二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规律?预案:(1)函数在整个定义域内 y随x的增大而增大;函数在整个定义域内 y随x的增大而减小.(2)函数在上 y随x的增大而增大,在上y随x的增大而减小.(3)函数在上 y随x的增大而减小,在上y随x的增大而减小.引导学生进行分类描述 (增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能根据自己的理解说说什么是增函数、减函数?预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识.〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.探究规律,理性认识问题1:下图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明在为增函数?预案:(1) 在给定区间内取两个数,例如1和2,因为12<22,所以在为增函数.(2) 仿(1),取很多组验证均满足,所以在为增函数.(3) 任取,因为,即,所以在为增函数.对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量.〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念问题:你能用准确的数学符号语言表述出增函数的定义吗?师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念判断题:①.②若函数.③若函数在区间和(2,3)上均为增函数,则函数在区间(1,3)上为增函数.④因为函数在区间上都是减函数,所以在上是减函数.通过判断题,强调三点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数.思考:如何说明一个函数在某个区间上不是单调函数?〖设计意图〗让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展例证明函数在上是增函数.1.分析解决问题针对学生可能出现的问题,组织学生讨论、交流.证明:任取, 设元求差变形,断号∴∴即∴函数在上是增函数.定论2.归纳解题步骤引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.练习:证明函数在上是增函数.问题:要证明函数在区间上是增函数,除了用定义来证,如果可以证得对任意的,且有可以吗?引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在上是增函数.〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.四、归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1) 概念探究过程:直观到抽象、特殊到一般、感性到理性.(2) 证明方法和步骤:设元、作差、变形、断号、定论.(3) 数学思想方法和思维方法:数形结合,等价转化,类比等.2.作业书面作业:课本第60页习题2.3 第4,5,6题.课后探究:(1) 证明:函数在区间上是增函数的充要条件是对任意的,且有.(2) 研究函数的单调性,并结合描点法画出函数的草图.《函数的单调性》教学设计说明一、教学内容的分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据.对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.二、教学目标的确定根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.三、教学方法和教学手段的选择本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.四、教学过程的设计为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.(3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.。
高中数学函数单调性的教案一、教学目标1. 理解函数的单调性的概念,了解函数单调递增和单调递减的定义及特点。
2. 能够通过函数的导数或图像来判断函数的单调性。
3. 能够应用函数的单调性解决实际问题。
二、教学重点1. 函数的单调性的概念和特点。
2. 通过导数或图像判断函数的单调性。
三、教学难点1. 如何通过导数或图像来判断函数的单调性。
2. 应用函数的单调性解决实际问题。
四、教学内容1. 函数的单调性的定义和特点。
2. 利用导数判断函数的单调性。
3. 利用图像判断函数的单调性。
4. 单调性在实际问题中的应用。
五、教学过程1. 导入教学:通过一个生活实例引入函数的单调性的概念。
2. 讲解函数的单调性的定义和特点,引导学生理解。
3. 通过对几个函数的图像进行观察,讨论函数的单调递增和单调递减的特点。
4. 讲解如何通过导数或导数图像判断函数的单调性。
5. 练习:让学生通过计算导数或观察导数图像判断给定函数的单调性。
6. 应用:给学生一个实际问题,让他们利用函数的单调性来解决问题。
7. 总结:回顾本节课所学内容,强调函数的单调性在解决问题中的重要性。
六、教学资源1. 课件2. 教科书3. 练习题七、教学评估1. 课堂练习题2. 作业布置并检查八、拓展延伸1. 思考函数的极值点与单调性的关系。
2. 探究其他函数性质与单调性的联系。
以上是本节课的教学内容和组织安排,希望能够帮助学生更好地理解和掌握函数的单调性。
祝学习顺利!。
函数的单调性教学目标:1.知识目标:理解函数单调性的概念;2.能力目标:〔1〕.能由函数图象判断某些函数的单调性;〔2〕.通过模仿学会证明函数单调性的方法;〔3〕.培养学生观察、比拟、分析的能力;掌握数形结合的方法.3.德育目标:熟悉从感性认识到理性认识,从抽象到具体的研究问题的方法。
教学重点:函数单调性的概念与判断教学难点:利用概念证明或判断函数的单调性教学用具:多媒体、实物投影仪教学过程:一.问题情境:日常生活中,我们有过这样的体验:从阶梯教室前向后走,逐步上升,从从阶梯教室后向前走,逐步下降。
1.观察以下图表,体会图形上升或下降的变化在实际生活中作用:洞庭湖沿不同观测站1954年洪水过程图春兰股份线性图在哪些时段内气温是升高的?2.很多函数也具有类似性质。
如〔电脑给出图象〕:y=3x+2 y=1x(x>0)这就是我们要研究的函数的重要性质之一:函数的单调性〔电脑给出课题〕二.学生活动问题1:观察以下函数的图象,指出函数从左向右是怎样变化的?函数y=x2、y=x3的图象〔电脑给出〕y yO O x这些说明某些函数在定义域内的某些区间上图象呈现上升趋势,在某些区间上呈现下降趋势。
问题2:你能用数学语言刻画“图象呈上升或下降的趋势〞吗?三.建构数学:问题3:如何用数学语言来准确地表述这种y值随着x的值增大而增大〔减小〕呢?进而抽象出单调性的定义〔电脑给出〕:一般地,设函数y=f(x)的定义域为A,区间I⊆A如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1 )<f(x2 ),那么就说y=f(x)在区间I上是增函数。
I称为y=f(x)的单调增区间。
如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1 )>f(x2 ),那么就说在这个区间I上是减函数。
I称为y=f(x)的单调减区间。
如果函数y=f(x)在区间I上是单调增函数或是单调减函数,那么就说函数y=f(x)在区间I上具有单调性.问题4:由函数单调性定义,你发现哪些特点?(1)自变量属于定义域(2)自变量的任意性(3)x1、x2的大小与f(x1 )、f(x2)的大小要对应.为了让学生更直观地看出单调函数定义的内涵,用电脑演示动画。
教案高中数学函数单调性分析
教学目标:学生能够掌握函数的单调性分析方法,能够熟练应用单调性分析解决相关问题。
教学重点:函数的单调性分析方法的掌握和应用。
教学难点:复杂函数的单调性分析。
教学准备:教材、黑板、彩色粉笔、教学PPT。
教学步骤:
一、导入(5分钟)
引导学生回顾函数的定义,引入单调性的概念,并介绍单调递增和单调递减的概念。
二、讲解(15分钟)
1. 解释函数的单调递增和单调递减的定义和性质。
2. 介绍函数的单调性的判断方法,包括一阶导数的判断法和函数图像的判断法。
3. 通过示例讲解单调性的判断方法和应用。
三、练习(20分钟)
1. 让学生进行单项选择题练习,巩固函数的单调性分析方法。
2. 给学生几道应用题,让学生运用单调性分析方法解决问题。
四、讲解(10分钟)
复杂函数的单调性分析方法,包括复合函数的单调性和反函数的单调性。
五、总结(5分钟)
总结本节课的内容,强调函数的单调性分析方法的重要性,鼓励学生多加练习。
六、作业布置(5分钟)
布置相关作业,要求学生做相关练习题,复习本节课的内容。
教学反思:
通过本节课的教学,学生对函数的单调性分析方法有了初步认识,学生的观念变化很明显,能够更好地运用单调性分析方法解决问题。
下一步,我将设计更多的实际应用题,让学生
从中感受到函数单调性分析的实际意义。
同时,我将鼓励学生多加练习,加深对函数单调
性分析方法的理解和掌握。
《函数单调性教案》word版章节一:引言1.1 课程背景本节课主要讲解函数的单调性。
函数单调性是数学中的一个重要概念,也是高中数学的核心内容之一。
通过学习函数单调性,学生可以更好地理解函数的性质,提高解决问题的能力。
1.2 教学目标1. 理解函数单调性的概念及意义。
2. 学会判断函数的单调性。
3. 能够应用函数单调性解决实际问题。
章节二:单调性的定义与性质2.1 单调性的定义本节课我们将引入单调性的定义。
一个函数在某个区间内,如果对于任意的x1和x2,当x1 < x2时,都有f(x1) ≤f(x2),则称该函数在区间内是单调递增的;如果对于任意的x1和x2,当x1 < x2时,都有f(x1) ≥f(x2),则称该函数在区间内是单调递减的。
2.2 单调性的性质本节课我们将学习单调性的几个重要性质。
如果函数在某个区间内是单调递增的,它在该区间内的任意子区间内也是单调递增的;同样地,如果函数在某个区间内是单调递减的,它在该区间内的任意子区间内也是单调递减的。
如果两个函数在某个区间内具有相同的单调性,它们的和函数在该区间内也具有相同的单调性。
章节三:判断单调性3.1 判断单调性的方法本节课我们将介绍几种判断函数单调性的方法。
可以通过求导数来判断函数的单调性。
如果函数在某个区间内的导数大于0,则函数在该区间内是单调递增的;如果函数在某个区间内的导数小于0,则函数在该区间内是单调递减的。
可以通过观察函数的图像来判断函数的单调性。
如果函数的图像在某个区间内是上升的,则函数在该区间内是单调递增的;如果函数的图像在某个区间内是下降的,则函数在该区间内是单调递减的。
3.2 判断单调性的应用本节课我们将通过一些实际问题来应用单调性的判断方法。
例如,我们可以通过判断函数的单调性来确定函数的最大值和最小值所在的区间,或者判断两个函数的交点位置等。
章节四:单调性与实际应用4.1 单调性与最值本节课我们将学习单调性与函数最值的关系。
高中必修一数学教案《函数的单调性》教材分析函数的单调性与最值指的是在初中基础上对函数的单调性的再认识,是利用集合与对应的思想理解函数的定理,从而加深对抽象函数单调性的定义理解,根据定义,证明函数的单调性,理解单调区间以及理解函数最大(小)值的定义并掌握其求法。
因为函数的单调性是初等数学与高等代数学衔接的枢纽,是函数的第一个也是最基本的性质,为研究指数函数、对数函数、幂函数、三角函数以及导函数的内容,对函数定性分析、求极值最值、比较大小、解不等式、判定零点都有重要的作用,所以具有重要的地位。
学情分析本节课的教学对象是高一理科的学生,他们的参与意识强,思维活跃,对于真实情境以及现实生活中的数学问题具有极大的学习兴趣,不过由于年龄和思维原因,看问题容易片面。
在之前的学习中,学生已经掌握了函数的三要素,并且学生初中学过y随x的增大而增大(或减小),这些都有利于学生的理解。
但是本节课的单调性的定义更抽象,对学生而言是一个较大的考验。
教学目标1、理解增函数、减函数、单调区间、单调性等概念;2、掌握增(减)函数的证明和判别,学会运用函数图象理解和研究函数的性质,能利用函数图象划分函数的单调区间。
教学重点形成增减函数的定义。
教学难点在形成增减函数概念的过程中,从函数升降的直观认识,过渡到增减函数的数学符号语言表述;用定义证明函数的单调性。
教学方法讲授法,演示法,讨论法,练习法教学过程一、情境导学我们知道,“记忆”在我们的学习过程中扮演着非常重要的角色,因此有关记忆的规律一直都是人们研究的课题。
德国心理学家艾宾浩斯曾经对记忆保持量进行了系统的实验研究,并给出了类似图3-1-7所示的记忆规律。
如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则不难看出,图3-1-7中,y是x的函数,记这个函数为y = f(x)这个函数反映出记忆具有什么规律?你能从中得到什么启发?二、教学过程1、单调性的定义与证明情境中的函数y = f(x)反映出记忆的如下规律:随着时间间隔x的增大,记忆保持量y将减小。
高中数学教案——函数的单调性与极值教学目标:1. 理解函数单调性的概念,掌握判断函数单调性的方法。
2. 理解函数极值的概念,掌握求函数极值的方法。
3. 能够运用函数的单调性和极值解决实际问题。
教学内容:一、函数单调性的概念与判断方法1. 引入单调性的概念,给出单调增和单调减的定义。
2. 讲解如何判断函数的单调性,通过实例进行分析。
二、函数的极值概念与求法1. 引入极值的概念,讲解极大值和极小值的定义。
2. 讲解如何求函数的极值,通过实例进行分析。
三、应用举例1. 通过实际问题引入函数的单调性和极值的重要性。
2. 举例说明如何运用函数的单调性和极值解决实际问题。
四、练习与巩固1. 给出练习题目,让学生独立完成,巩固所学知识。
2. 针对学生的练习情况进行讲解和解答疑问。
五、总结与拓展1. 对本节课的内容进行总结,强调函数单调性和极值的重要性。
2. 给出拓展问题,激发学生进一步学习的兴趣。
教学方法:1. 采用讲授法,讲解函数单调性和极值的概念及求法。
2. 利用实例进行分析,让学生更好地理解函数单调性和极值的应用。
3. 布置练习题目,巩固所学知识。
教学评价:1. 通过课堂讲解和练习,评价学生对函数单调性和极值的理解程度。
2. 结合学生的练习情况和提问,评价学生对函数单调性和极值的掌握情况。
教学资源:1. PPT课件,用于讲解函数单调性和极值的概念及应用。
2. 练习题,用于巩固所学知识。
教学时间:1课时(45分钟)教学步骤:一、导入(5分钟)1. 引入单调性的概念,让学生回顾初中阶段学习的单调增和单调减的概念。
2. 提问:如何判断一个函数的单调性?引发学生思考。
二、讲解(15分钟)1. 讲解如何判断函数的单调性,通过实例进行分析。
2. 讲解函数的极值概念,讲解如何求函数的极值。
三、应用举例(10分钟)1. 举例说明如何运用函数的单调性和极值解决实际问题。
2. 让学生思考并回答:如何利用函数的单调性和极值优化问题?四、练习与巩固(10分钟)1. 给出练习题目,让学生独立完成。
高中数学函数单调性教
案
Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
课题:§1.3.1函数的单调性
肥东县城关中学马亚东
教学目的:
(1)通过已学过的函数,学会运用函数图象理解和研究函数的性质;
(2)理解函数的单调性的定义及单调函数的图象特征;
(3)能够熟练应用定义判断函数在某一区间上的的单调性;
(4)通过本节知识的学习,培养学生严密的逻辑思维能力,用运动变化、数形结合、分类讨论的思想方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看待问题.
教学重点:函数单调性的定义及单调函数的图象特征.
教学难点:利用函数的单调性的定义判断或证明函数的单调性.
教法与学法:启发式教学,充分发挥学生的主体作用.
教学用具:黑板、计算机多媒体
教学过程:
一.情景引入:
德国着名心理学家艾宾浩斯的研究数据:
将表中数据绘制在坐标系中连出草图,这就是着名的艾宾浩斯记忆遗忘曲线. 观察这条曲线,你能得出什么规律呢(学生回答)
这是一条衰减曲线,随着时间的推移,记忆的保持量逐渐减小. 第一天遗忘的速度最快,一天之后遗忘的速度趋于缓慢. 这一规律就提醒我们:在学习新知识的时候,一定要及时进行复习和巩固,以便加深理解和记忆.
象这样,在生活中,我们关心很多数据的变化,了解这些数据的变化规律,对我们的生活是很有帮助的. 观察数据的方法往往是看:随着自变量的变化,函数值是如何变化的. 这就是我们今天要研究的函数的单调性.
二.学习新课:
观察以下几幅图,你能发现图象在升降上有什么特点吗 (学生回答)
(1
,,所以称函数()f x x =在R (y (-∞,0]上当x 增大时()f x 随着减小,在区间(0,+∞)上当x 增大时()f x 随着增大. 所以称函数2()x f x =在
(-∞,0] 上是减函数,在(0,+∞)上是增函数.
那么如何用数学语言来描述增函数与减函数呢
考察函数2 ()f x x =在(0,+∞)上任取1x ,2x 则112 ()f x x =,222 ()f x x =,对任意
120x x << ,都有2212x x < ,所以在区间(0,+∞)上,对任意12x x <,都有12()()f x f x <,即2 ()f x x =在(0,+∞)上, 当x 增大时, 函数值()f x 相应地随着增大.这与观察图象所得结果
是一致的. 所以2 ()f x x =在区间(0,+∞)上是增函数.
由此归纳出增函数的定义,类似地得出减函数的定义(学生讨论、回答).
定义:一般地,设函数f (x )的定义域为I:
如果对于定义域I 内某个区间D 上的任意两个自变量的值12x x 、,当12x x <时,都有12()()f x f x <,那么就说函数f (x )在区间D 上是增函数.
如果对于定义域I 内某个区间D 上的任意两个自变量的值12x x 、,当12x x <时,都有12()()f x f x >,那么就说函数f (x )在区间D 上是减函数.
分析定义可得:
(1)增函数的图象从左到右上升,减函数的图象从左到右下降.
(2)12x x 、的三大特征:①属于同一区间;②任意性; ③有大小:通常规定12x x < 2(2)()f x x =(1)()f x x =x
根据图像判断:函数1()x f x =在(-∞,0)和(0,+∞)上都是减函数. 问:能否说函数1()x f x =在区间(-∞,0)∪(0,+∞)上也是减函数
答:不能. 因为不是对任意的12x x 、 ,当12x x <时,都有12()()f x f x >.
反例如:-1<1,-1=f (-1)< f (1)=1. 如果函数1()x f x =在区间D 上是增函数或减函数,那么就说函数()y f x =)在区间D
上具有(严格的)单调性,区间D 叫做函数f (x )的单调区间.
三.概念应用:
例1.如图是定义在闭区间[-5,5] 上的函数y=f (x )的图象,
根据图象说出函数的单调区间,以及在每一单调区间上,
函数是增函数还是减函数(学生活动)
解:函数()y f x =的单调区间有
其中()y f x =在区间[-5, -2),[1在区间[-2,1),[3,5]上是增函数注意:(1)在书写时区间与区间之间用逗号隔开,不能用集合中的“∪”连接.
(2)因为孤立的点没有单调性,所以区间端点处若有定义写开写闭均可.
例2.证明函数2()1f x x =-+在+∞(0,)
是单调减函数.(学生分组讨论、分别演板展示) 证明:设12x x 、是+∞(0,)上任意两个值,且12x x <则
∴12()()0, f x f x ->即1()(f x f x >∴函数2()1f x x =-+在+∞(0,总结证明函数单调性的步骤:
1.设值:设任意12x x 、属于给定区间,且12x x <;
2.作差变形:差12()()f x f x -变形的常用方法有:因式分解、配方、有理化等;
3.定号:确定12()()f x f x -的正负;
4.下结论:由定义得出函数的单调性.
四、课堂小结
设值 作差变形 定号
()()()
221212()11f x f x x x -=-+--+2221=x x -
1.描述函数单调性的三种方法:
图形语言、自然语言、符号语言
2.函数单调性定义中的几个关键词:
定义域内某个区间任意都有
3.研究函数性质的常用方法:
观察图象猜想性质数学化结论数学严格证明
4.图象法判断函数的单调性:增函数的图象从左到右上升,减函数的图象从左到右下降.
5.(定义法)证明函数单调性的步骤:
五.布置作业
1.课本39页A组第1、2题.
2.课下思考题:如何确定函数
4
() , [1 , 5]
f x x x
x
=+∈的单调区间,并证明你的结论.
六.板书设计、教后感(略)判断差符号
作差变形下结论设值。