高一数学函数单调性的定义图象及应用
- 格式:doc
- 大小:102.00 KB
- 文档页数:2
高中数学必修一函数——单调性考纲解读: 了解单调函数及单调区间的意义,掌握判断函数单调性的方法;掌握增,减函数的意义,理解函数单调函数的性质。
能力解读:函数单调性的判断和函数单调性的应用。
利用函数单调性判断方法来判断函数的单调性,利用函数的单调性求解函数的最值问题。
掌握并熟悉抽象函数以及符合函数的单调性判断方法。
知识要点:1.函数单调性的定义, 2.证明函数单调性; 3.求函数的单调区间4.利用函数单调性解决一些问题; 5.抽象函数与函数单调性结合运用一、单调性的定义(1)设函数)(x f y =的定义域为A ,区间A I ⊆如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间(2)设函数)(x f y =的定义域为A如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为)(x f y =的最大值;如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为)(x f y =的最小值。
二、函数单调性的证明重点:函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须 先求函数的定义域; (1)定义法求单调性函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即)(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;定义法判断单调性:如果用定义证明)(x f y =在某区间I 上的单调性,那么就要用严格的四个步骤,即①取值;②作差;③判号(关键化成因式的乘积);④下结论。
高一数学单调性知识点总结在高中数学学习中,单调性是一个非常重要的概念。
单调性可以帮助我们理解函数的增减趋势以及函数图像的形状。
在本文中,我们将总结高一数学中与单调性相关的知识点,并探讨其应用。
一、函数的单调性函数的单调性是指函数在定义域内的增减趋势。
具体来说,我们可以分为递增和递减两种情况进行讨论。
1. 函数的递增性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)<f(b),那么我们称函数为递增函数。
简单来说,递增函数的函数值随着自变量的增大而增大。
通过求导可以帮助我们判断函数的递增性。
如果函数的导数大于零,则函数递增;如果导数小于零,则函数递减;如果导数等于零,则函数在该区间内的单调性不确定,需要进行进一步的分析。
2. 函数的递减性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)>f(b),那么我们称函数为递减函数。
递减函数的函数值随着自变量的增大而减小。
二、函数图像的单调性分析在图像上观察函数的单调性,可以通过以下几个方面来判断。
1. 函数图像在某个区间内递增或递减通过观察函数图像,在某个区间内如果图像整体上升,则该区间内函数递增;如果图像整体下降,则该区间内函数递减。
2. 函数图像在特定点的切线斜率通过求导函数,可以得到函数的导函数。
根据导函数的正负性,可以判断函数图像在特定点的切线斜率的正负。
如果导函数大于零,则函数图像在该点的切线斜率大于零,即函数递增;如果导函数小于零,则函数图像在该点的切线斜率小于零,即函数递减。
3. 函数图像的拐点与极值点在函数图像上,拐点和极值点可能对函数的单调性产生影响。
如果在拐点或极值点的左侧函数递增,在右侧函数递减,或者相反,那么拐点或极值点就是函数单调性发生改变的点。
三、应用举例单调性是数学中的一个重要概念,有许多实际应用。
1. 市场需求曲线在经济学中,市场需求曲线通常被认为是递减函数。
这意味着当商品价格上涨时,需求量下降;当价格下降时,需求量增加。
高一数学中函数的单调性4种求法-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高一数学中函数的单调性非常重要,分析函数的单调性方法有:定义法,图像法,性质法,复合法.下边结合例题加以说明:1.定义法例题已知函数y=x^3-x在(0,a]上是减函数,在[a,+)上是增函数,求a的值。
解分析函数在R+上的单调性任取x1>x2>0Y1-Y2=(X1^3-X2^3)-(X1-X2)=(X1-X2)(X1^2+X1X2+X2^2)-(X1-X2)=(X1-X2)(X1^2+X1X2+X2^2-1)令y1-y2>0 所以 X1^2+X1X2+X2^2-1>0因为X1^2+X1X2+X2^2-1>X2^2+X2X2+X2^2-1=3X2^2-1当3X2^2-1>=0时即X2^2>=1/3 X2>=根号3/3时 y1-y2>0 函数是递增的同理当3X1^2-1<=0时即X1<=根号3/3时 y1-y2<0 函数是递减的故函数在R+上的增区间为[根号3/3,+)减区间为(0,根号3/3)因此 a=根号3/3一般情况下,用定义求函数的单调区间就是求出使y1-y2>0(<0)的x1,x2的取值范围,要变换不等式,求出x1和x2的范围,就可求出函数的单调区间。
2.图像法例题求y=x+3/x-1的单调区间解函数定义域为(-,1)并(1,+)Y=X+3/X-1=X-1+4/X-1=1+4/X-1由图像可知函数在(-,1)和(1,+0)上递减。
函数的图像是解决这类问题的关键。
3.性质法性质:增+增=增减+减=减y=f(x)与y=kf(x) 当k>0 有相同的单调性当k<0有相反的单调性y=f(x)(y>0)与y=k/f(x) 当k>0 有相反的单调性,当k<0 有相同的单调性例题求y=x^3+x的单调区间。
高一数学知识点函数的单调性一、函数单调性知识结构【知识网络】1.函数单调性的定义,2.证明函数单调性;3.求函数的单调区间4.利用函数单调性解决一些问题;5.抽象函数与函数单调性结合运用二、重点叙述1. 函数单调性定义(一)函数单调性概念(1)增减函数定义一般地,设函数y=f(x)的定义域为I,对于定义域I内某个区间D上的任意两个自变量的值x1、x2 :如果当x1<x2时,都有f(x1 ) <f(x2 ),那么就说函数y=f(x)在区间D上是增函数;如果当x1<x2时,都有f(x1 ) >f(x2 ),那么就说函数y=f(x)在区间D上是减函数。
如果函数在区间D上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间D叫做的单调区间。
(2)函数单调性的内涵与外延⑴函数的单调性也叫函数的增减性。
函数的单调性是对某个区间而言的,是一个局部概念。
⑵由函数增减性的定义可知:任意的x1、x2∈D,① x1<x2 ,且f(x1 ) <f(x2 ),y=f(x)在区间D上是增函数;(可用于判断或证明函数的增减性)② y=f(x)在区间D上是增函数,且x1<x2 , f(x1 ) <f(x2 ) ;(可用于比较函数值的大小)③ y=f(x)在区间D上是增函数,且f(x1 ) <f(x2 ), x1<x2。
(可用于比较自变量值的大小)2. 函数单调性证明方法证明函数单调性的方法有:定义法(即比较法);导数法。
实际上,用导数方法证明一般函数单调性是很便捷的方法,定义法是基本方法,常用来证明解决抽象函数或不易求导的函数的单调性。
(1)定义法:利用增减函数的定义证明。
在证明过程中,把数式的大小比较转化为求差比较(或求商比较)。
⑴转化为求差比较证明程序:①设任意的x 1、x 2∈D,使x 1<x 2 ;②求差—变形—判断正负;此为关键步骤,变形大多要“因式分解”。
求差:; 变形:化简、因式分解; 判断:差的符号的正或负。
函数的单调性习题
一. 选择题:
1.函数1
1
--=x y 的单调区间是 ( )
),.(+∞-∞A )0,.(-∞B ),1(),1,.(+∞-∞C ()+∞-∞,1)1,.(Y D
2.如果函数)(x f 在],[b a 上是增函数,那么对于任意的)(],,[,2121x x b a x x ≠∈,下列结论中不正确的是 ( )
0)
()(.
2
121>--x x x f x f A 0)]()()[.(2121>--x f x f x x B
)()()()(.21b f x f x f a f C <<< 0)
()(.
121
2>--x f x f x x D 3.函数2)1(2)(2+-+=x a x x f 在区间]4,(-∞上单调递减,则a 的取值范围是( )
),3.[+∞-A ]3,.(--∞B ]5,.(-∞C ),3[+∞
4.函数2
1
)(++=
x ax x f 在区间),2(+∞-上单调递增,则a 的取值范围是( ) )21,0.(A ),1()1,.(+∞--∞Y B ),2
1
.(+∞C ),2.(+∞-D
5.函数)2(,2
3
-≠+=x x y 在区间]5,0[上的最大值、最小值分别是( )
0,73.A 0,23.B 73,23.C .D 最大值7
3
,无最小值。
6.函数23)(2++=x x x f 在区间)5,5(+-上的最大值、最小值分别是( )
12,42.A 41,42.-B 41,12.-C D 最小值4
1
-,无最大值。
7.下列命题正确的是 ( )
A 定义在),(b a 上的函数)(x f ,若存在),(21b a x x ∈,使得21x x <时有
)()(21x f x f <,那么)(x f 在),(b a 上为增函数。
B 定义在),(b a 上的函数)(x f ,若有无穷多对),(21b a x x ∈,使得21x x <时有
)()(21x f x f <,那么)(x f 在),(b a 上为增函数。
C 若)(x f 在区间1I 上为增函数,在区间2I 上也为增函数,那么)(x f 在21I I Y 上也一定为增函数,
D 若在)(x f 区间I 上为增函数且),(),()(2121I x x x f x f ∈<,那么21x x <。
8.设),(),,(d c b a 都是)(x f 的单调增区间,且),(),,(21d c x b a x ∈∈21x x <,则)(1x f 与)(2x f 的大小关系为 ( )
)()(.21x f x f A < )()(.21x f x f B > )()(.21x f x f C = D 不能确定
9.考察函数:①x y =;②x x
y =;③x
x y 2
-=;④x x x y +=。
其中在)0,(-∞上
为增函数的有( )
.A ①② B 。
②③ C 。
③④ .D ①④
10.已知函数32)(2+-=x x x f 在闭区间],0[m 上有最大值3,最小值2,则m 的取值范围是( )
),1.[+∞A ]2,0.[B ]2,.(--∞C ]2,1.[D
二. 填空题:
1. 函数x y -=在),[+∞a 上是减函数,则a 的取值范围是 2. 函数x
x y 1
2-
=的单调递增区间是 3. 函数562+-=x x y 的单调增区间是
4. 已知函数)(x f 在区间),0(+∞上是减函数,那么)1(2+-a a f 与)4
3
(f 的大小关
系为
5. 函数245x x y --=的单调递增区间是
三. 解答题:
1. 试证明函数b b x y (,3-=是常数)在R 上是增函数。
2.讨论函数)11(,1
)(2<<--=x x ax
x f 的单调性。
3.已知函数)0(22)(2≠++-=a b ax ax x f 在]3,2[有最大值5和最小值2,求b a ,的值。
4.设函数44)(2+-=x x x f 的定义域为[]1,2--t t ,求函数)(x f 的最小值)(t y ϕ=的解析式。
5.已知)(x f 的定义域为),0(+∞,且在其定义域 内为增函数,满足
)()()(y f x f xy f +=,1)2(=f ,试解不等式: 3)2()(>--x f x f。