高中数学极坐标与参数方程知识汇编及高考题型汇总
- 格式:doc
- 大小:729.00 KB
- 文档页数:7
第7讲 极坐标与参数方程【基础知识】一.极坐标知识点1.极坐标系的概念:在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可. 2.极坐标与直角坐标的互化: 二.参数方程知识点1.参数方程的概念:在平面直角坐标系中,若曲线C 上的点(,)P x y 满足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数。
(在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数⎩⎨⎧==),(),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。
) 相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。
2.曲线的参数方程(1)圆222)()(r b y a x =-+-的参数方程可表示为)(.sin ,cos 为参数θθθ⎩⎨⎧+=+=r b y r a x .(2)椭圆12222=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数ϕϕϕ⎩⎨⎧==b y a x .(3)抛物线px y 22=的参数方程可表示为)(.2,22为参数t pt y pt x ⎩⎨⎧==. (4)经过点),(o o O y x M ,倾斜角为α的直线l 的参数方程可表示为⎩⎨⎧+=+=.sin ,cos o o ααt y y t x x (t 为参数).3.在建立曲线的参数方程时,要注明参数及参数的取值范围。
在参数方程与普通方程的互化中,必须使y x ,的取值范围保持一致. 规律方法指导:1.把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法.常见的消参方法有:代入消法 ;加减消参;平方和(差)消参法;乘法消参法;比值消参法;利用恒等式消参法;混合消参法等. 2.把曲线的普通方程化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性, 注意方程中的参数的变化范围。
极坐标与参数方程知识点一、极坐标2.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0). 二、参数方程1.常见曲线的参数方程的一般形式(1)经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).设P 是直线上的任一点,则t 表示有向线段P 0P →的数量. (2)圆的参数方程⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数).(3)圆锥曲线的参数方程椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).双曲线x 2a 2-y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a sec φ,y =tan φ(φ为参数).抛物线y 2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).2.参数方程的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).与曲线C(以抛物线px y 22=为例)相交于A 、B 两点,将直线的标准参数方程带入曲线C 中,得到关于t 的一元二次方程,由参数t 的几何意义可得如下结论:(1)||||||21t t PB PA =⋅ (2) ||||||||21t t PB PA +=+ (3)21221214)(||||t t t t t t AB -+=-=极坐标与参数方程高考题考点一、求最值(取值范围) 1.【2012高考新课标】已知曲线C 1的参数方程是⎩⎨⎧==ϕϕsin 3cos 2y x (φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π3)(Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围.2.(2014云南省第二次统测)已知曲线C 的参数方程为⎩⎨⎧==ααsin 3,cos 3y x (α为参数),以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()16πρθ+=.(Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)设M 是曲线C 上的点,求M 到直线l 的距离的最大值.3.[2014·全国新课标卷Ⅰ] 选修4-4:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程、直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.4.(2012洛阳示范高中联考高三理) (本小题满分10分)选修4—4;坐标系与参数方程.已知直线: t t y t x (.23,211⎪⎪⎩⎪⎪⎨⎧=+=为参数), 曲线:1C cos ,sin ,x y θθ=⎧⎨=⎩ (θ为参数). (Ⅰ)设 与1C 相交于B A ,两点,求||AB ; (Ⅱ)若把曲线1C 上各点的横坐标压缩为原来的21倍,纵坐标压缩为原来的23倍,得到曲线2C ,设点P 是曲线2C 上的一个动点,求它到直线 的距离的最小值.5 .(云南省昆明三中2013届高三高考适应性月考(三)理科数学)在直角坐标系xoy 中,直线l 经过点P (-1,0),其倾斜角为α,以原点O 为极点,以x 轴非负半轴为极轴,与直角坐标系xoy 取相同的长度单位,建立极坐标系.设曲线C 的极坐标方程为26cos 50.ρρθ-+=(1)若直线l 与曲线C 有公共点,求α的取值范围; (2)设()y x M ,为曲线C 上任意一点,求x y +的取值范围.6.(云南省玉溪一中2013届高三第五次月考理科数学)坐标系与参数方程在平面直角坐标系xOy 中,椭圆C 方程为5cos (3sin x y ϕϕϕ=⎧⎨=⎩为参数)(1)求过椭圆的右焦点,且与直线42(3x tt y t =-⎧⎨=-⎩为参数)平行的直线l 的普通方程。
《极坐标与参数方程》高考高频题型除了简单的极坐标与直角坐标的转化、参数方程与普通方程的转化外,还涉及(一)有关圆的题型题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较相离,无交点;:r d > 个交点;相切,1:r d = 个交点;相交,2:r d <用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=,算出d ,在与半径比较。
题型二:圆上的点到直线的最值问题(不求该点坐标,如果求该点坐标请参照距离最值求法)思路:第一步:利用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=第二步:判断直线与圆的位置关系第三步:相离:代入公式:r d d +=max ,r d d -=min 相切、相交:r d d +=max min 0d =题型三:直线与圆的弦长问题弦长公式222d r l -=,d 是圆心到直线的距离延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题 (弦长:直线与曲线相交两点,这两点之间的距离就是弦长) 弦长公式21t t l -=,解法参考“直线参数方程的几何意义”(二)距离的最值: ---用“参数法”1.曲线上的点到直线距离的最值问题2.点与点的最值问题“参数法”:设点---套公式--三角辅助角①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ①套公式:利用点到线的距离公式①辅助角:利用三角函数辅助角公式进行化一例如:【2016高考新课标3理数】在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为(I )写出的普通方程和的直角坐标方程;(II )设点在上,点在上,求的最小值及此时的直角坐标的直角坐标方程为.这里没有加减移项省去,直接化同,那系数除到左边(①)由题意,可设点的直角坐标为 因为是直线,所以的最小值即为到的距离的最小值,xOy 1C ()sin x y ααα⎧=⎪⎨=⎪⎩为参数x 2C sin()4ρθπ+=1C 2C P 1C Q 2C PQ P 2C 40x y +-=P ,sin )αα2C ||PQ P 2C ()d α.(欧萌说:利用点到直接的距离列式子,然后就是三角函数的辅助公式进行化一)当时)(13sin =+πα即当时,,此时的直角坐标为.(三)直线参数方程的几何意义1.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|P A |·|PB |=|t 1·t 2|(5)⎪⎩⎪⎨⎧>+<-+=-=+=+0,0,4)(212121212212121t t t t t t t t t t t t t t PB PA 当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-; 2.解题思路第一步:曲线化成普通方程,直线化成参数方程()sin()2|3d παα==+-2()6k k Z παπ=+∈()d αP 31(,)22第二步:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第三步:韦达定理:a ct t a b t t =-=+2121,第四步:选择公式代入计算。
1.弦长问题模型11.在平面直角坐标系中,圆C 的方程为()25622=++y x(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的参数方程为t t y t x (sin cos ⎩⎨⎧==αα为参数),l 与C 交于点B A ,, ①若43πα=,求AB , ①若10=AB ,求l 的斜率。
2.已知直线t ty tx (32⎩⎨⎧=+=为参数)与曲线θθρcos 8sin 2=交于B A ,,求AB2.弦长问题模型2(只对直线过原点才可以)注意:若直线倾斜角为α且过原点,则该直线的直角坐标方程为αtan x y=,其参数方程为⎧==ααsin cos t y t x ,其极坐标方程为)(R ∈=ραθ3.在极坐标系中,以点(2,)2C π为圆心,半径为3的圆C 与直线:()3l R πθρ=∈交于,A B 两点.(1)求圆C 及直线l 的普通方程.(2)求弦长AB .3.参数方程最值问题模型4.已知曲线θθθ(sin 2cos 1:1⎩⎨⎧+=+=y x C 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,且曲线:2C4πθ=()R ∈ρ(1)写出1C 的极坐标方程,2C 的一个参数方程;(2)设1C 与2C 交于N M ,两点,P 为1C 上一动点,求PMN ∆面积的最大值。
4.利用直线参数方程中t 的几何意义问题模型5.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.6.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建坐标系,已知曲线()2:sin 2cos 0C a a ρθθ=>,已知过点()2,4P --的直线l 的参数方程为:2,4x y ⎧=-⎪⎪⎨⎪=-⎪⎩直线l 与曲线C 分别交于,M N(1)写出曲线C 和直线l 的普通方程; (2)若||,||,||PM MN PN 成等比数列,求a 的值.5.综合问题例题1在平面直角坐标系xoy 中,曲线13:221=+y x C ,以坐标原点为极轴,以x 轴的正半轴为极轴,建立极坐标系,曲线a C 222)4sin(:2+=+πθρ(1)写出1C 的参数方程,2C 的普通方程;(2)设点P 在1C 上,点Q 在2C ,求PQ 的最小值以及此时P 点坐标。
高中数学极坐标与参数方程知识点汇编及题型汇总【知识汇编】参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+⎧⎨=+⎩为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定点00(,)x y 的数量;圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+⎧⎨=+⎩为参数(a,b)为圆心,r 为半径; 椭圆22221x y a b +=的参数方程是cos ()sin x a y b θθθ=⎧⎨=⎩为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=⎧⎨=⎩为参数; 抛物线22y px =的参数方程是22()2x pt t y pt⎧=⎨=⎩为参数 极坐标与直角坐标互化公式:若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y ,则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan yx θ=。
【题型1】参数方程和极坐标基本概念1.已知曲线C的参数方程为⎪⎩⎪⎨⎧+=+=ααsin 51cos 52y x (α为参数),以直角坐标系原点为极点,Ox 轴正半轴为极轴建立极坐标系。
1)求曲线c 的极坐标方程2)若直线l 的极坐标方程为ρ(sinθ+cosθ)=1,求直线l 被曲线c 截得的弦长。
解:(1)∵曲线c 的参数方程为⎪⎩⎪⎨⎧+=+=ααsin 51cos 52y x (α为参数)∴曲线c 的普通方程为(x-2)2+(y-1)2=5将⎩⎨⎧==θρθρsin cos y x 代入并化简得:ρ=4cosθ+2sinθ 即曲线c 的极坐标方程为ρ=4cosθ+2sinθ (2)∵l 的直角坐标方程为x+y-1=0∴圆心c 到直线l 的距离为d=22=2∴弦长为225-=23 .2.极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知曲线C 1的极坐标方程为ρ=sin (θ+4π),曲线C2的极坐标方程为ρsin θ=a (a >0),射线θ=ϕ,θ=ϕ+4π,θ=ϕ-4π,θ=2π+ϕ与曲线C1分别交异于极点O 的四点A ,B ,C ,D .(1)若曲线C1关于曲线C2对称,求a 的值,并把曲线C1和C2化成直角坐标方程; (2)求|OA |·|OC |+|OB |·|OD |的值. 解:(1)1C :2)1()1(22=-+-y x , 2C :a y =, 因为曲线1C 关于曲线2C 对称,1=a ,2C :1=y (2))4sin(22||πϕ+=OA ;ϕsin 22||=OC ,【题型2】直线参数方程几何意义的应用1.在平面直角坐标系xOy 中,直线l的参数方程为122x t y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t为参数),直线l 与曲线C :22(2)1y x --=交于A ,B 两点.(1)求AB的长;(2)在以O 为极点,x轴的正半轴为极轴建立的极坐标系中,设点P的极坐标为⎛⎝,求点P 到线段AB 中点M 的距离.解:(1)直线l的参数方程为1222x t y ⎧=-+⎪⎪⎨⎪=⎪⎩,,(t为参数),代入曲线C 的方程得24100t t +-=.设点A ,B 对应的参数分别为12t t ,,则124t t +=-,1210t t =-,所以12||||AB t t =-=(2)由极坐标与直角坐标互化公式得点P 的直角坐标为(22)-,, 所以点P 在直线l 上,中点M 对应参数为1222t t +=-,由参数t 的几何意义,所以点P 到线段AB 中点M 的距离||2PM =. 2.已知直线l 经过点(1,1)P ,倾斜角6πα=,(1)写出直线l 的参数方程。
极坐标与参数方程一、基础知识点梳理(一)极坐标 极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3、极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y 极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩ 222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4、常见曲线的极坐标方程 曲线图形极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或(2)(0)(0)θαρθπαρ=≥=+≥和。
1. 极坐标及参数方程知识点1.伸缩变换:设点),(y x P 是平面直角坐标系中旳任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ旳作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中旳坐标伸缩变换,简称伸缩变换。
2.极坐标系旳概念:在平面内取一种定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一种长度单位、一种角度单位(一般取弧度)及其正方向(一般取逆时针方向),这样就建立了一种极坐标系。
3.点M 旳极坐标:设M 是平面内一点,极点O 与点M 旳距离||OM 叫做点M 旳极径,记为ρ;以极轴Ox 为始边,射线OM 为终边旳xOM ∠叫做点M 旳极角,记为θ。
有序数对),(θρ叫做点M 旳极坐标,记为),(θρM .极坐标),(θρ与)Z )(2,(∈+k k πθρ表达同一种点。
极点O 旳坐标为)R )(,0(∈θθ. 4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ有关极点对称,即),(θρ-与),(θπρ+表达同一点。
假如规定πθρ20,0≤≤>,那么除极点外,平面内旳点可用唯一旳极坐标),(θρ表达;同步,极坐标),(θρ表达旳点也是唯一确定旳。
5.极坐标与直角坐标旳互化:6。
圆旳极坐标方程:在极坐标系中,以极点为圆心,r 为半径旳圆旳极坐标方程是 r =ρ;在极坐标系中,以 )0,(a C )0(>a 为圆心, a 为半径旳圆旳极坐标方程是 θρcos 2a =; 在极坐标系中,以 )2,(πa C )0(>a 为圆心,a 为半径旳圆旳极坐标方程是θρsin 2a =;7.在极坐标系中,)0(≥=ραθ表达以极点为起点旳一条射线;)R (∈=ραθ表达过极点旳一条直线.在极坐标系中,过点)0)(0,(>a a A ,且垂直于极轴旳直线l 旳极坐标方程是a =θρcos .8.参数方程旳概念:在平面直角坐标系中,假如曲线上任意一点旳坐标y x ,都是某个变数t 旳函数⎩⎨⎧==),(),(t g y t f x 并且对于t 旳每一种容许值,由这个方程所确定旳点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线旳参数方程,联络变数y x ,旳变数t 叫做参变数,简称参数。
极坐标与参数方程知识点、题型总结一、伸缩变换:点是平面直角坐标系中的任意一点,在变换),(y x P 的作用下,点对应到点,称伸缩变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ),(y x P ),(y x P '''一、1、极坐标定义:M 是平面上一点,表示OM 的长度,是,则有序实数实ρθMOx ∠数对,叫极径,叫极角;一般地,,。
,点P 的直角坐标、(,)ρθρθ[0,2)θπ∈0ρ≥极坐标分别为(x ,y )和(ρ,θ)2、直角坐标极坐标 2、极坐标直角坐标⇒cos sin x y ρθρθ=⎧⎨=⎩⇒222tan (0)x y yx xρθ⎧=+⎪⎨=≠⎪⎩3、求直线和圆的极坐标方程:方法一、先求出直角坐标方程,再把它化为极坐标方程方法二、(1)若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0二、参数方程:(一).参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数 并且对于的每一个允许值,由这个方程所确y x ,t ⎩⎨⎧==),(),(t g y t f x t 定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数),(y x M 的变数叫做参变数,简称参数。
相对于参数方程而言,直接给出点的坐标间关系的y x ,t 方程叫做普通方程。
(二).常见曲线的参数方程如下:直线的标准参数方程1、过定点(x 0,y 0),倾角为α的直线:(t 为参数)ααsin cos 00t y y t x x +=+=(1)其中参数t 的几何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t| (2)直线上对应的参数是。
选做题部分 极坐标系与参数方程一、极坐标系1.极坐标系与点的极坐标(1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2点M 直角坐标(x ,y )极坐标(ρ,θ)互化公式题型一 极坐标与直角坐标的互化1、已知点P 的极坐标为)4,2(π,则点P 的直角坐标为 ( )A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( ) A .3(32,)4π B .5(32,)4π- C .5(3,)4π D .3(3,)4π-3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( )A .ρ=cos θB .ρ=sin θC .ρcos θ=1D .ρsin θ=15.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π4(ρ>0)所表示的图形的交点的极坐标.题型二 极坐标方程的应用由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.1.在极坐标系中,已知圆C 经过点P(2,π4),圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的直角坐标方程.2.圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,则|CP|=________.3.在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝ ⎛⎭⎪⎫1,π4,圆的半径为1.(i)则圆C 的极坐标方程是________; (ii)直线l 被圆C 所截得的弦长等于________.4.在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π6=a 截得的弦长为23,则实数a 的值是________.二、参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数)题型一 参数方程与普通方程的互化 【例1】把下列参数方程化为普通方程: (1)⎩⎨⎧x =3+cos θ,y =2-sin θ; (2)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t .题型二 直线与圆的参数方程的应用1、已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C 所截得的弦长.2、曲线C 的极坐标方程为:ρ=acos θ(a >0),直线l 的参数方程为:(1)求曲线C 与直线l 的普通方程;(2)若直线l 与曲线C 相切,求a 值.3、在直角坐标系xoy 中,曲线C 1的参数方程为,(α为参数),以原点O为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为.(Ⅰ)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(Ⅱ)设P 为曲线C 1上的动点,求点P 到C 2上点的距离最小值.综合应用1、曲线25()12x tt y t =-+⎧⎨=-⎩为参数与坐标轴的交点是( )A 21(0,)(,0)52、B 11(0,)(,0)52、C (0,4)(8,0)-、D 5(0,)(8,0)9、3、参数方程222sin sin x y θθ⎧=+⎪⎨=⎪⎩(θ为参数)化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤3.判断下列结论的正误.(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是(2,-π3)( ) (3)在极坐标系中,曲线的极坐标方程不是唯一的( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线( )4.(2013·北京高考)在极坐标系中,点⎝⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离等于________.5、平面直角坐标系中,将曲线2cos 2(sin x y ααα=+⎧⎨=⎩为参数)上的每一点横坐标不变,纵坐标变为原来的2倍得到曲线1C ,以坐标原点为极点,x 轴的非负半轴为极轴,建立的极坐标系中,曲线2C 的方程为4sin ρθ=(Ⅰ)求1C 和2C 的普通方程:(Ⅱ)求1C 和2C公共弦的垂直平分线的极坐标方程.6、已知曲线C 的极坐标方程是0sin 2cos 2=+-θθρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧=+=t y t x 222221(t 为参数).(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)若直线l 与曲线C 交于B A ,两点,求AB 的值.7、已知圆C :⎩⎨⎧ x =1+cos θ,y =sin θ(θ为参数)和直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(其中t 为参数,α为直线l 的倾斜角).(1)当α=2π3时,求圆上的点到直线l 距离的最小值;(2)当直线l与圆C有公共点时,求α的取值范围.。
极坐标与参数方程-题型归纳高考高频题型整理汇总——《极坐标与参数方程》除了简单的极坐标与直角坐标的转化、参数方程与普通方程的转化外,还涉及以下部分问题。
一)有关圆的题型题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较根据圆心到直线的距离公式,即可算出圆心到直线的距离d,再与半径r比较大小,得出圆与直线的位置关系。
当d>r 时,圆与直线相离,无交点;当d=r时,圆与直线相切;当d<r时,圆与直线相交,有两个交点。
题型二:圆上的点到直线的最值问题根据圆心到直线的距离公式,算出圆上任意一点到直线的距离d,再根据圆与直线的位置关系,分别代入公式dmax=d+r和dmin=d-r,得出圆上距离直线最远的点和距离直线最近的点。
题型三:直线与圆的弦长问题根据圆心到直线的距离公式,算出圆心到直线的距离d,再根据弦长公式l=2√(r^2-d^2),得出直线与圆的弦长。
延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题弦长公式为l=t1-t2,其中t1和t2为直线与曲线的交点在曲线参数方程中的参数值。
二)距离的最值:用“参数法”1.曲线上的点到直线距离的最值问题2.点与点的最值问题参数法”:设点的坐标用该点在所在曲线的参数方程来表示,利用点到线的距离公式求出该点到直线的距离,再利用三角函数辅助角公式进行化简,得出距离的最值。
解:1)将圆C的参数方程化为普通方程:x = 3\cos t。
y = 3\sin t$则圆C的普通方程为:x^2 + y^2 = 9$将直线l的极坐标方程$r=2\cos\theta$化为直角坐标方程:r^2 = x^2 + y^2$r\cos\theta = x$代入$r=2\cos\theta$中得:x = 2\cos^2\theta$r\sin\theta = y$代入$r=2\cos\theta$中得:y = 2\sin\theta\cos\theta$则直线l的直角坐标方程为:x = 2y$2)在极坐标系中,圆C的半径为3,直线l的极坐标方程为$r=2\cos\theta$,则直线l与圆C的交点分别为$(\frac{4}{3},\frac{2\sqrt{2}}{3})$和$(\frac{4}{3},-\frac{2\sqrt{2}}{3})$。
高中数学极坐标与参数方程知识点汇编及题型汇总编者:邬小军【知识汇编】参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+⎧⎨=+⎩为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定点00(,)x y 的数量;圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+⎧⎨=+⎩为参数(a,b)为圆心,r 为半径; 椭圆22221x y a b+=的参数方程是cos ()sin x a y b θθθ=⎧⎨=⎩为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=⎧⎨=⎩为参数; 抛物线22y px =的参数方程是22()2x pt t y pt⎧=⎨=⎩为参数 极坐标与直角坐标互化公式:若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y ,则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan yx θ=。
【题型1】参数方程和极坐标基本概念1.点M 的直角坐标是(1,3)-,则点M 的极坐标为( C )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈2.圆5cos 53sin ρθθ=-的圆心坐标是( A )A .4(5,)3π--B .(5,)3π-C .(5,)3πD .5(5,)3π- 3.已知P 为半圆C : (θ为参数,πθ≤≤0)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧的长度均为3π。
1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; 2)求直线AM 的参数方程。
解:1)由已知,M 点的极角为3π,且M 点的极径等于3π,故点M 的极坐标为(3π,3π).2)M 点的直角坐标为(36ππ,A (0,1),故直线AM 的参数方程为1(1)6x t y π⎧=+-⎪⎪⎨⎪=⎪⎩(t为参数)4.已知曲线C 的参数方程为⎪⎩⎪⎨⎧+=+=ααsin 51cos 52y x (α为参数),以直角坐标系原点为极点,Ox 轴正半轴为极轴建立极坐标系。
1)求曲线c 的极坐标方程2)若直线l 的极坐标方程为ρ(sinθ+cosθ)=1,求直线l 被曲线c 截得的弦长。
解:(1)∵曲线c 的参数方程为⎪⎩⎪⎨⎧+=+=ααsin 51cos 52y x (α为参数)∴曲线c 的普通方程为(x-2)2+(y-1)2=5将⎩⎨⎧==θρθρsin cos y x 代入并化简得:ρ=4cosθ+2sinθ 即曲线c 的极坐标方程为ρ=4cosθ+2sinθ (2)∵l 的直角坐标方程为x+y-1=0∴圆心c 到直线l 的距离为d=22=2∴弦长为225-=23 .5.极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知曲线C 1的极坐标方程为ρ=sin (θ+4π),曲线C2的极坐标方程为ρsin θ=a (a >0),射线θ=ϕ,θ=ϕ+4π,θ=ϕ-4π,θ=2π+ϕ与曲线C1分别交异于极点O 的四点A ,B ,C ,D .(1)若曲线C1关于曲线C2对称,求a 的值,并把曲线C1和C2化成直角坐标方程; (2)求|OA |·|OC |+|OB |·|OD |的值.解:(1)1C :2)1()1(22=-+-y x , 2C :a y =, 因为曲线1C 关于曲线2C 对称,1=a ,2C :1=y (2))4sin(22||πϕ+=OA ;ϕsin 22||=OC ,【题型2】直线参数方程几何意义的应用1.已知直线113:()24x tl t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =52。
2.直线2()1x t t y t=-+⎧⎨=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为( C ) A..1404C3.在平面直角坐标系xOy 中,直线l的参数方程为122x t y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),直线l 与曲线C :22(2)1y x --=交于A ,B 两点.(1)求AB的长;(2)在以O 为极点,x轴的正半轴为极轴建立的极坐标系中,设点P的极坐标为34π⎛⎫ ⎪⎝⎭,求点P 到线段AB 中点M 的距离.解:(1)直线l的参数方程为1222x t y ⎧=-+⎪⎪⎨⎪=⎪⎩,,(t为参数),代入曲线C 的方程得24100t t +-=.设点A ,B 对应的参数分别为12t t ,,则124t t +=-,1210t t =-,所以12||||AB t t =-=(2)由极坐标与直角坐标互化公式得点P 的直角坐标为(22)-,, 所以点P 在直线l 上,中点M 对应参数为1222t t +=-,由参数t 的几何意义,所以点P 到线段AB 中点M 的距离||2PM =. 4.已知直线l 经过点(1,1)P ,倾斜角6πα=,(1)写出直线l 的参数方程。
(2)设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积。
解:(1)直线的参数方程为1cos 61sin 6x t y t ππ⎧=+⎪⎪⎨⎪=+⎪⎩,即1112x y t ⎧=⎪⎪⎨⎪=+⎪⎩(2)把直线31112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入422=+y x 得22231(1)(1)4,(31)202t t t t +++=++-= 122t t =-,则点P 到,A B 两点的距离之积为25.设经过点(1,0)P -的直线l 交曲线C :2cos 3sin x y θθ=⎧⎪⎨=⎪⎩(θ为参数)于A 、B 两点.(1)写出曲线C 的普通方程;(2)当直线l 的倾斜角60α=o时,求||||PA PB +与||||PA PB ⋅的值.解:(1)C :22143x y +=.(2)设l :1123x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数)联立得:254120t t --=()212121216||||||45PA PB t t t t t t +=-=+-=,1212||||||5PA PB t t ⋅==6.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点M 的极坐标为(3,)2π,若直线l 过点P ,且倾斜角为6π,圆C 以M 为圆心,3为半径.(1)求直线l 的参数方程和圆C 的极坐标方程; (2)设直线l 与圆C 相交于,A B 两点,求PA PB⋅.解:(1)直线l 的参数方程为31,12,2x y t ⎧=+⎪⎪⎨⎪=+⎪⎩为参数)t (,(答案不唯一,可酌情给分)圆的极坐标方程为θρsin 6=.(2)把31,12,2x y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入22(3)9x y +-=,得2(31)70t t +--=,127t t ∴=-,设点,A B 对应的参数分别为12,t t , 则12,PA t PB t ==,∴7.PA PB ⋅=7.以平面直角坐标系的坐标原点O 为极点,以x 轴的非负半轴为极轴,以平面直角坐标系的长度为长度单位建立极坐标系. 已知直线l 的参数方程为2312x ty t =-⎧⎨=-+⎩(t 为参数),曲线C 的极坐标方程为2sin 4cos ρθθ=.(1)求曲线C 的直角坐标方程; (2)设直线l 与曲线C 相交于A B 、两点,求AB.解:(1)Q 由θθρcos 4sin 2=,既θρθρcos 4sin 22= ∴曲线C 的直角坐标方程为x y 42=.(2)Q l 的参数方程为代入24y x =,整理的07842=-+t t ,所以122t t +=-,1274t t =-所以14374134)(132)3(212212122=+⨯=-+⨯=-+-=t t t t t t AB .【题型3】两类最值问题1.已知曲线C :2219x y +=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()4πρθ-(1)写出曲线C 的参数方程,直线l 的直角坐标方程; (2)设P 是曲线C 上任一点,求P 到直线l 的距离的最大值.解:(1)曲线C 的参数方程为3cos sin x y αα=⎧⎨=⎩(α为参数), 直线l 的直角坐标方程为20x y -+= (2)设(3cos ,sin )P αα,P 到直线l的距离d =ϕ为锐角,且1tan 3ϕ=)当cos()1αϕ+=时,P 到直线l的距离的最大值max d =2.已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,曲线13cos :2sin x C y αα=⎧⎨=⎩(α为参数).(1)求曲线1C 的普通方程;(2)若点M 在曲线1C 上运动,试求出M 到曲线C 的距离的最小值.解:(1)曲线1C 的普通方程是:22194x y +=(2)曲线C 的普通方程是:2100x y +-= 设点(3cos ,2sin )M αα,由点到直线的距离公式得:)10d αϕ--其中34cos ,sin 55ϕϕ==0αϕ∴-=时,mind =98(,)55M3.在平面直角坐标系xOy 中,直线l的参数方程是2x y ⎧=⎪⎪⎨⎪⎪⎩(t 为参数),以原点O 为极点,以x 轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为)4ρθπ=+. (1)将圆C 的极坐标方程化为直角坐标方程;(2)若直线l 与圆C 交于A ,B 两点,点P 的坐标为(2,0),试求11PA PB+的值.解:(1)由)4ρθπ=+,展开化为2cos sin )4(cos sin )ρρθρθρθρθ=-=-,将cos sin x y ρθρθ=⎧⎨=⎩代入,得22440x y x y +-+-, 所以,圆C 的直角坐标方程是22440x y x y +-+-. (2)把直线l的参数方程2x y ⎧=+⎪⎪⎨⎪=⎪⎩(t为参数)代入圆的方程并整理,可得:240t +-=.设A ,B 两点对应的参数分别为12,t t ,则121240t t t t +=-⋅=-<,所以12t t -==∴1212121111t t PA PB t t t t -+=+==⋅.4.已知曲线1C 的参数方程是)(3sin y 2cos x 为参数ϕϕϕ⎩⎨⎧==,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π(1)求点,,,A B C D 的直角坐标;(2)设P 为1C 上任意一点,求2222PA PB PC PD+++的取值范围.解:(1)点,,,A B C D 的极坐标为5411(2,),(2,),(2,),(2,)3636ππππ点,,,A B C D的直角坐标为1,1)--(2)设00(,)P x y ;则002cos ()3sin x y ϕϕϕ=⎧⎨=⎩为参数。