重庆八中2014届高三上学期第一次月考试题 数学文试题 Word版含答案
- 格式:pdf
- 大小:372.54 KB
- 文档页数:7
高三第一次月考试卷数学及答案一、选择题(共15题,每小题4分,共60分)1. 一幢大厦的边长为6米,高度为20米。
一个人从这座大厦的一侧往上望去,他的目视线与大厦顶端连线与大厦相交的角的大小为()。
A. 30°B. 45°C. 60°D. 90°2. 若函数 f(x) 在区间 (-∞, a) 上是增函数,在区间(a, +∞) 上为减函数,则 a 的值为()。
A. 0B. 1C. 2D. 33. 已知集合 A = {2, 4, 6, 8},集合 B = {3, 6, 9, 12},则A ∩ B 的元素个数为()。
A. 0B. 1C. 2D. 34. 若等差数列 {a_n} 的前 5 项和为 15,且公差为 2,则 a_5 等于()。
A. -1B. 0C. 1D. 25. 已知正整数 n 的个位数是 5,十位数是 3,百位数是 1,其千位数是()。
A. 0B. 1C. 3D. 56. 设甲, 乙两车同时从 A, B 两地相向而行,两车相遇后又同时返回原地,已知甲车以每小时 60 公里的速度行驶,求相对速度小的车(乙车)的速度是几公里每小时。
7. 已知等比数列 {a_n} 的前 3 项分别是 1, 2, 4,若 a_4 = 16,则 a_5 = ()。
A. 16B. 20C. 24D. 328. 已知函数 f(x) 关于 y 轴对称,且图像经过点 (1, 1),则函数图像在点 (-1, -1) 是否对称?()A. 是B. 否9. 在直角坐标系中,已知点 A(-1, 3)、B(4, -2),则 AB 的中点坐标为()。
A. (0.5, 0.5)B. (1.5, 0.5)C. (1.5, 2.5)D. (2.5, 0.5)10. 设函数 f(x) = x^2 - 2x - 3,则过点 (1, -4) 的切线方程为()。
A. y = -2x - 6B. y = 2x + 6C. y = 2x - 6D. y = -2x + 611. 已知向量 a = <2, -3>,向量 b = <6, -1>,则 |a + b| = ()。
2016-2017学年重庆市第八中学高三上学期适应性月考(三)文数一、选择题:共12题1.已知集合,则A. B. C. D.【答案】C【解析】本题考查集合的交集和不等式的解法.由已知得,集合,所以.【备注】分式不等式的一般解法是:第一步移项,第二部通分,第三步是转化为整式不等式(注意分母不为)2.复数的实部与虚部相等,且在复平面上对应的点在第三象限,则A.1B.2C.1或2D.【答案】A【解析】考查复数的基本概念,属于基础题.由题意,解得它在复平面上对应的点在第一象限,不符合题意,舍去,所以,故选A.【备注】在计算过程中产生增根,要注意取舍.3.函数的部分图象如图所示,则A. B.C. D.【答案】C【解析】考查已知三角函数图象求三角函数的解析式问题.由图象可得又因为所以函数的解析式可以写成因为,即.因为,所以,从而得出函数的解析式是.【备注】求三角函数的解析式的一般顺序是先求A,即振幅,再求,最后求,注意题目中的取值范围.4.直三棱柱中,,则该三棱柱的外接球的表面积为A. B. C. D.【答案】C【解析】考查几何体外接球的表面积.由题意得,所给的直三棱柱各个边长均相等,接上下底面为等腰直角三角形,若将该几何体补上它的本身,可以得出边长为2的正方体,如下图所示.因为正方体的外接球的球心在正方体体对角线的中点,所以外接球的半径是所以外接球的表面积是.【备注】割补法是求几何体表面积或者体积一中非常好的方法.5.已知直线被圆所截得弦长为2,则实数的值为A. B. C. D.【答案】C【解析】考查直线与圆的位置关系中的相交关系,点到直线的距离公式的应用,勾股定理等知识,属基础题.首先将直线方程化成标准形式为:,圆心为.圆心到直线的距离为,因为直线被圆所截得弦长为2,一半弦长为1.如图所示:由勾股定理得:,解得.【备注】求解直线与圆的位置关系问题时,一般的方法是利用圆心到直线的距离,弦长的一半和半径构成的直角三角形,利用勾股定理求解相关量.求解时,可画一个草图,帮助求解,不用在直角坐标系中精确作图.6.已知直线与两坐标轴围成的区域为,不等式组所形成的区域为,现在区域中随机放置一点,则该点落在区域的概率是A. B. C. D.【答案】B【解析】本题考查线性规划和几何概型,属基础题.由题意得,在平面直角坐标系中,分别做出区域和,如图所示,面积为,面积为,所以该点落在区域的概率是.【备注】线性规划问题的关键是准确做出可行域,注意边界是实线还是虚线. 7.某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.【答案】B【解析】本题考查三视图和几何体的体积.由题目所给的三个三视图可知,该几何体是由一个圆柱和半个圆锥构成,如图所示圆柱的体积是,半个圆锥的体积是,所以该几何体的体积为【备注】要熟悉常见几何体的三视图,熟记常见几何体的体积公式.8.已知直线过点,且倾斜角为,当此直线与抛物线交于时,A. B.16 C.8 D.【答案】A【解析】本题考查的是直线与抛物线的位置关系,借助弦长公式求焦点弦.由题意得:直线的方程为,与抛物线线方程联立得:,由弦长公式,计算的.【备注】过抛物线 (p>0)的焦点F作一条直线L和此抛物线相交于A、B两点结论1:结论2:若直线L的倾斜角为,则弦长证: (1)若时,直线L的斜率不存在,此时AB为抛物线的通径,,∴结论得证(2)若时,设直线L的方程为:即代入抛物线方程得由韦达定理由弦长公式得9.阅读如图所示的程序框图,运行相应的程序,则程序运行后输出的结果为A.8B.9C.10D.11【答案】B【解析】本题考查程序款图,注意循环结构退出的条件,属基础题.当时,;当时,;当时,…当时,,故输出,故选B.【备注】程序框图问题要按照运算流程,写出每次运行的结果,多运行两遍,或者验证,减少失误.10.已知函数且,则A. B. C. D.【答案】D【解析】考查分段函数和对数函数性质问题,属基础题.由题意得:当时,若,即,解得(舍去)或;当,即,解得.所以.则.【备注】分段函数问题要分段求解,注意自变量的取值范围.11.设当时,函数取得最小值,则A. B. C. D.【答案】C【解析】本题考查三角恒等变换,属基础题.由题意得:.当,函数取得最小值,则即. 所以.【备注】此类题目需要注意的意义.12.设函数,则使得成立的的取值范围是A. B.C. D.【答案】B【解析】考查函数的性质和不等式解法,注意函数的等价变形,有一定的难度.由题意得:函数为偶函数,所以.当时,为减函数,所以得等价于,即,解得.【备注】在选择题中函数问题主要考查函数的图象和性质,注意挖掘题目的隐含条件,用好树形结合和等价转化的数学思想.二、填空题:共4题13.已知向量,且,则实数 .【答案】【解析】考查向量的坐标运算和向量垂直的坐标表示.由题意得:,若,则,解得.【备注】若.14.若双曲线的一条渐近线过点,则 .【答案】4【解析】考查双曲线的渐近线的定义,属基础题.由题意得:双曲线的渐近线为,因为渐近线过点,解得【备注】注意双曲线渐近线的形式,若双曲线方程为双曲线,则渐近线方程为15.的内角的对边分别为,若,则的面积为 .【答案】【解析】考查解三角形的知识,考查正弦定理和三角形的面积公式.由题意得:角A为钝角有正弦定理得.由.得,在中,的面积为【备注】解三角形问题注意正弦定理和余弦定理的运用,特别需要注意的是边角的互化.16.重庆好食寨鱼火锅底料厂用辣椒、花椒等原材料由甲车间加工水煮鱼火锅底料,由乙车间加工麻辣鱼火锅底料.甲车间加工1吨原材料需耗费工时10小时,可加工出14箱水煮鱼火锅底料,每箱可获利80元;乙车间加工1吨原材料需耗费工时6小时,可加工出8箱麻辣鱼火锅底料,每箱可获利100元.甲、乙两车间每天总获利最大值为元.【答案】60 800【解析】本题考查线性规划问题.设甲车间加工原材料吨,乙车间加工原材料吨,甲、乙两车间每天获利为元,则,目标函数,作出可行域,如图所示.当对应的直线过直线与的交点A时,目标函数取得最大值.由,得,故,即甲、乙两车间每天总获利最大值为60 800元.【备注】线性规划问题相当于一个应用题,需要认真读题,准确写出目标函数和限制条件,做出可行域,找到最值.三、解答题:共7题17.已知是递增的等差数列,是函数的两个零点.(1)求数列的通项公式;(2)记,求数列的前项和.【答案】(1)函数的两个零点为3,7,由题意得.设数列的公差为,则故所以的通项公式为(2)由(1)知则,,两式相减得==,所以.【解析】考查数列的通项公式和错位相减法求数列的前项和,属中低档题.(1)由题意,是函数的两个零点,且是递增的等差数列,解得.从而求出数列的通项公式;(2)由第一问的结论,得出所以数列的前项和的求法使用错位相减法.【备注】数列求和的常用方法有公式法,错位相减法,裂项相消法,倒序相加法,分组求和法等.求和方法的选用要看通项公式的特点.18.发改委10月19日印发了<中国足球中长期发展规划(2016-2050年)重点任务分工>通知,其中“十三五”校园足球普及行动排名第三,为了调查重庆八中高一高二两个年级对改政策的落实情况,在每个年级随机选取20名足球爱好者,记录改政策发布后他们周平均增加的足球运动时间(单位:),所得数据如下:高一年级的20位足球爱好者平均增加的足球运动时间:1.6 3.4 3.7 3.3 3.8 3.22.8 4.2 2.5 4.53.5 2.5 3.3 3.74.0 3.9 4.1 3.6 2.2 2.2高二年级的20位足球爱好者平均增加的足球运动时间:4.2 2.8 2.9 3.1 3.6 3.4 2.2 1.8 2.3 2.72.6 2.4 1.53.5 2.1 1.9 2.2 3.7 1.5 1.6(1)分别计算两组数据的平均数,从计算结果看,哪个年级政策落实得更好?(2)根据两组数据完成上图的茎叶图,从茎叶图简单分析哪个年级政策落实得更好?【答案】(1)设高一年级所得数据的平均数为,高二年级所得数据的平均数为.由记录数据可得=3.73.23.53.73.6=,=3.12.31.52.2=,由以上计算结果可得,因此可看出高一年级政策落实得更好.(2)由记录结果可绘制如图所示的茎叶图:从以上茎叶图可以看出,高一年级的数据有的叶集中在茎3,4上,而高二年级的数据有的叶集中在茎1,2上,由此可看出高一年级政策落实得更好.【解析】考查数字的基本特征和茎叶图的基础知识,属基础题.(1)由题意得,利用公式,分别求出高一年级和高二年级的平均数,比较得出得,因此可看出高一年级政策落实得更好;(2)第二问考查茎叶图的画法,并通过茎叶图的数据分布情况,分析两个年级的落实情况,通过分析可以看出高一年级的大部分数据集中在茎3,4上;而高二年级的数据集中在茎1,2上.【备注】认真计算,规范作图是解决这种题目的关键.19.如图所示,四边形是边长为2的正方形,四边形是平行四边形,点分别是的中点.(1)求证:平面;(2)若是等边三角形且平面平面,记三棱锥的体积为,四棱锥的体积为,求的值.【答案】(1)证明:如图4,取的中点,连接,点分别是的中点,.是平行四边形,且点是的中点,,又=,,所以平面平面,又平面,平面.(2)平面平面,平面,==,又平面平面,平面,===,.【解析】本题考查立体几何的证明和锥体体积的比值,属中档题.(1)要证平面,这是证明线面平行,一般有两种方法,一是证明线线平行,二是证明面面平行,通过分析图形可以看出,直线所在的平面,平行于平面,从而得出结论;(2)利用等积法分析三棱锥的体积和四棱锥的体积之间的关系,因为, 且平面平面,所以点F到平面的距离等于点D平面的距离,所以==,而四棱锥底面的面积是三角形ABD面积的二倍,且两个锥体同高,所以【备注】解决立体几何证明问题,要注意平行、垂直的判定定理和性质定理的使用,注意定理成立的条件缺一不可;等积法是求解几何体体积一中非常好的方法,本题的等价转化的思想非常好,值得反思.20.已知椭圆的长轴是圆的一条直径,且右焦点到直线的距离为.(1)求椭圆的标准方程;(2)是否存在直线与椭圆交于两点,使得成立?若存在,求出实数的取值范围;若不存在,请说明理由.【答案】(1)由已知,解得,所以,椭圆的标准方程为.(2)假设存在这样的直线.由得,=设,则=,,===,由得,即,故,代入式得或.【解析】本题考查椭圆的标准方程的求解和直线与椭圆的位置关系,属于难题.第一问可以利用椭圆焦点到直线的距离公式,以及椭圆的长轴长轴是圆的一条直径,求解出,从而得出椭圆方程;第二问要注意将题目的向量表达式合理运算,即将=两边平方在化简可以得出,在利用韦达定理,得出直线方程中的关系,因为要求的取值范围,所以需要保证直线与椭圆有两个交点,即将直线与椭圆联立之后的一元二次不等式方程的,从而求出的取值范围.【备注】圆锥曲线题目一般有两问,第一问是求曲线方程,第二问是直线与圆锥曲线的位置关系,需要学生用好设而不求的方法,分析出量与量之间的关系,再使用韦达定理求解.需要注意的是计算能力的培养.21.设函数.(1)当时,求在处的切线方程;(2)若对任意恒成立,求整数的最大值.【答案】(1)当时,,则,所以在处的切线方程为,即.(2)对任意恒成立对任意恒成立,令,则.令,则,在上单调递增,又,存在使得,其中在上单调递减,在上单调递增,,又,即,,,,,的最大值为2.【解析】本题考查切线方程,函数的恒成立问题,考查学生的等价转化能力和运算求解能力,属于难题.第一问,先利用导数的运算法则,求出函数,当时的导数,即,从而得出在处的切线方程;第二问将不等式变形,利用分离参数的方法,得出对任意恒成立,即需要求函数的最小值.对函数求导得:.再构造函数,对函数求导发现是增函数,且,,从而得出存在使得,即在上单调递减,在上单调递增,且,在通过运算求出的值.【备注】导数题目注重考查学生的分析能力和等价转化的数学思想.平时学习时,要注意积累方法,比如恒成立问题的解题思路一般是转化为最值问题,含有参数函数最值问题的问题一般用分类讨论或者分离参数.22.已知圆和圆的极坐标方程分别为和,点为圆上任意一点.(1)若射线交圆于点,且其方程为,求的长;(2)已知,若圆和圆的交点为,求证:为定值.【答案】(1)把代入得到点的极径,而点的极径为,所以.(2)证明:联立和解得,其直角坐标为,圆的直角坐标方程为.则==.【解析】本题考查圆的极坐标方程,定值问题. (1)利用,根据条件分别求出,即可. (2)利用圆和圆的极坐标方程解出,,转换成直角坐标系上的点,直接计算出.即证命题成立.23.若且.(1)求的最小值;(2)是否存在使得?并说明理由.【答案】(1)由条件知.所以,.当且仅当,即时取等,所以的最小值为6.(2)因为,当且仅当时取等,所以,故不存在使得.【解析】本题考查均值不等式,注意均值不等式的灵活变形和等号成立的条件,属于中档题. 第一问由题意可得,所以=,从而得出答案;第二问要用到第一问的结论,和均值不等式的变式:,即,从而得证.【备注】均值不等式的应用非常灵活,要掌握它常见的几种变形,同时要注意使用均值不等式时注意的三点:一正二定三相等.。
2014-2015学年度上学期高三起点考试数 学 试 卷(文科)命题人 蒋红伟一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U ={1,2,3,4,5,6},M ={1,4},N ={2,3},则集合{5,6}等于( )A .M ∪NB .M ∩NC .(∁U M )∪(∁U N )D .(∁U M )∩(∁U N ) 2.i 为虚数单位,512iz i=-, 则z 的共轭复数为 ( ) A .2-i B .2+i C .-2-i D .-2+i 3.若某程序框图如图所示,则输出的n 的值是 ( )A .3B .4C .5D .64.已知命题 p :,cos 1,x R x ∀∈≤则 ( )A .00:,cos 1p x R x ⌝∃∈≥B .:,cos 1p x R x ⌝∀∈≥C .:,cos 1p x R x ⌝∀∈>D .00:,cos 1p x R x ⌝∃∈>5.若,x y 满足10210y x y x y m -≥⎧⎪--≥⎨⎪+≤⎩,若目标函数z x y =-的最小值为-2,则实数m 的值为( )A .0B .2C .8D .-16.直线:1l y k x =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件7.若函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25,则f (x )可以是( )A .f (x )=4x -1B .f (x )=(x -1)2C .f (x )=e x-1D .f (x )=ln(x -0.5)8.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C,(1D ,若 1S ,2S ,3S 分别表示三棱锥D A B C -在xO y ,yO z ,zOx 坐标平面上的正投影图形的面积,则 ( )A .123S S S ==B .23S S =且 31S S ≠C .13S S =且 32S S ≠D .12S S =且 13S S ≠9.已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C的离心率之积为,则2C 的渐近线方程为 ( )A0y ±= B.0x = C .20x y ±= D .20x y ±= 10.已知定义在实数集R 上的函数()f x 满足(1)2f =,且()f x 的导函数()f x '在R 上恒有()1f x <',则不等式 ()1f x x <+的解集为 ( )A .(,1)-∞-B .(1,)+∞C .(1,1)-D .(,1)(1,)-∞-+∞二、填空题(本大题共7小题,每小题5分,共35分)11.某几何体的三视图如右图所示,根据所给尺寸(单位:cm ),则该几何体的体积为 3cm 。
重庆八中2013—2014学年度(上) 高三年级第二次月考数 学 试 题 (文史类)数学试题(文史类)共4页,满分150分,考试时间120分钟 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡相应的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0。
5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4。
所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个备选项中,只有一项是符合题目要求的(1)复数11Z i =-(i 为虚数单位)的模为 (A )12(B)2 ((D )2 (2)已知向量)2,(),,1(m b m a ==,若b a //, 则实数m 等于(A) (B(C)(D )0(3)设等差数列{}n a 的前n 项和为n S ,若7S 14=,则4a =(A )2 (B )3 (C )4(D)7(4)函数1()ln(1)f x x =++ (A)]2,0()0,2[ - (B )(1,2]- (C)[2,2]- (D )]2,0()0,1( - (5)设实数y x ,满足不等式组1103300x y x y x +-≤⎧⎪-+≤⎨⎪≥⎩,则y x z +=2的最大值为(A )13 (B )19 (C)24 (D )29(6)设,a b ∈R , 则 “a b >”是“2()0a b b ->”的(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件(7)将函数)2sin(θ-=x y 的图象F 向右平移6π个单位长度得到图象'F ,若'F 的一个对称中心是)0,83(π,则θ(A )1112π- (B )1112π (C )(8)一个几何体的三视图如图所示,(A )π212+ (B ) (C )π238+ (D )π+38(9)已知定义在R 上的函数)(x f ,对任意R x ∈,都有(2)()(1)f x f x f +=-+成立,若函数(1)y f x =+的图象关于点(1,0)-对称,则(2014)f =(A )0 (B )2014 (C)3(D )—2014(10)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆,是正三角形,,2,//=EF AB EF ,则该多面体的体积为(A)2 (B) 32 (C) 322 (D)2二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应的位置上(11)求值:=︒420tan ________.(12)若3||,2||,1||=+==b a b a ,则向量b a ,的夹角为________。
重庆八中高2014级高三(上)第一次月考(共110分)化学试题相对原子量:H 1 O 16 Na 23 Si 28 Fe 56第Ⅰ卷选择题(本题共7小题,每题6分,每题仅有一个正确选项)1. 下列说法正确的是①铁元素位于元素周期表中第四周期第ⅧB族②保存FeSO4溶液,为防止其变质,需向溶液中加入铁粉和稀硫酸③工业上通过电解氯化镁溶液制取单质镁④将SiO2和水加热可制得H2SiO3⑤氯水久置之后,最终会变成稀盐酸⑥向偏铝酸钠溶液中通入二氧化碳,产生白色沉淀,继续通入二氧化碳,沉淀不溶解A ①②⑥B ②③⑥C ②⑤⑥D ②④⑤2. 设阿伏伽德罗常数为N A,下列说法正确的是A常温常压下,7.8gNa2O2与足量CO2 完全反应,转移电子数为0.2 N AB 28g 硅单质中所含的Si—Si共价键数目为2N AC 标况下22.4LC2H4和C3H6的混合气体完全燃烧后,生成的CO2分子数目为2.5N AD pH=13的NaOH溶液中所含的OH- 的数目为0.1N A3. 在给定条件下,下列离子一定..能大量共存的是A 加入铝粉能产生氢气的溶液中:NH4+、Fe2+、NO3-、SO42-B C(H+) / C(OH-) = 1012的溶液中: Cl- K+ ClO- NH4+C 含有大量Al3+的溶液中: Br- HCO3- Na+ AlO2-D 向含有Ca2+,Cl-,NO3-,Ba2+的溶液通入CO2 气体4. 下列离子方程式书写正确的是A向明矾溶液中滴加Ba(OH)2溶液,恰好使SO42-沉淀完全:2Al3++3SO42-+3Ba2++6OH -=2 Al(OH)3↓+3BaSO4↓B向FeI2溶液中通入少量氯气: 2Fe2+ + Cl2 = 2Fe3+ + 2Cl-C 向Ba(OH)2溶液中加入过量的NaHCO3:Ba2+ + 2OH- + 2HCO3- = BaCO3↓+ 2H2O + CO32-D足量Cl2通入1.0 mol·L-1 Na2SO3溶液中:2SO32-+Cl2 = 2S↓+2ClO3-5. 甲、乙、丙、丁四种物质中,甲、乙、丙均含有相同的某种元素,它们之间具有如下转化关系:甲丁乙丙丁甲。