八年级上册计算专题(期末复习)
- 格式:doc
- 大小:172.50 KB
- 文档页数:2
【期末复习专题卷】人教版数学八年级上册专题03 解答题一、解答题(共36小题)1.(2022秋•蕲春县期中)如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B =40°,∠C=72°,求∠AEC和∠DAE的度数.2.(2022秋•贵州期中)如图,已知:AD、CE是△ABC的高.试判断∠1与∠2的关系.并说明理由.3.(2022秋•香坊区校级期中)如图,DE⊥AC于E,BF⊥AC于F,∠1+∠2=180°,求证:∠AGF=∠ABC.4.(2022秋•东莞市校级期中)如图,在△ABC中,∠A=40°,∠ABD=30°,∠ACB =80°,且CE平分∠ACB,求∠BEC的度数.5.(2022秋•孝义市期中)如图,已知△ABC中,AD是BC边上的高,BE平分∠ABC,AD与BE相交于点P,∠ABC=70°,∠C=40°,求∠CAD和∠DPE的度数.6.(2022秋•西乡塘区校级期中)按要求完成下列各小题.(1)一个多边形的内角和比它的外角和多900°,求这个多边形的边数.(2)如图,若正五边形ABCDE和长方形AFCG按如图方式叠放在一起,求∠EAF 的度数.7.(2022秋•西城区校级期中)三角形内角和定理的推论:三角形的一个外角等于与它不相邻的两个内角的和.请完成这个定理的证明.已知:如图,∠ACD是△ABC的一个外角.求证:∠ACD=∠A+∠B.8.(2022秋•甘井子区期中)如图,点C是∠MAN的平分线上一点,CE⊥AB于E,B、D分别在AM、AN上,且2AE=AD+AB.求证:∠1+∠2=180°.9.(2022秋•海淀区校级期中)如图.在△ABC和△AEF中,AE=AB,AC=AF,∠CAF =∠BAE.求证:△ABC≌△AEF.10.(2022秋•广安区校级期中)如图,已知DE⊥AC于点E,BF⊥AC于点F,AD=BC,DE=BF.求证:(1)△AED≌△CFB;(2)AB∥DC.11.(2022秋•通山县期中)如图,点B,C,D在同一条直线上,∠B=∠D=90°,△ABC≌△CDE,AB=7,BC=24,CE=25.(1)求△ABC的周长;(2)求△ACE的面积.12.(2022秋•扬州期中)如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC=2,∠BAC=40°;(1)求∠BAD的度数;(2)若∠ADG=115°,求△CDG的面积.13.(2022秋•阳信县期中)如图,△ABC中,AB=AC,点D,E是BC上不与点B,C 重合的两点,且AD=AE.(1)求证:BD=CE.(2)过点B作BF∥AE交AD的延长线于点F,求证:△BDF是等腰三角形.14.(2022秋•北仑区期中)如图,点B,C分别在射线AM,AN上,点E,F都在∠MAN 内部的射线AD上,已知AB=AC,且∠BED=∠CFD=∠BAC.(1)求证:△ABE≌△CAF;(2)试判断EF,BE,CF之间的数量关系,并说明理由.15.(2022秋•姑苏区期中)在如图所示的正方形网格中,每个小正方形的边长都是1,已知△ABC的三个顶点的坐标分别为A(﹣3,6),B(﹣1,2),C(﹣5,4).(1)作出△ABC关于y轴对称的△A1B1C1.并写出点A1的坐标 .(2)在第(1)题的变换下,若点M(m,n)是线段AC上的任意一点,那么点M 的对应点M1的坐标为 .(3)在y轴上找一点P,使PA=PB,则P点坐标为 .16.(2022秋•扬州期中)如图,在等边△ABC中,点E在线段AB的延长线上,点D 在直线BC上,且ED=EC.若△ABC的边长为1,AE=3,求CD的长.17.(2022秋•通山县期中)如图,在△ABC中,BC=38.DG,EF分别垂直平分AB,AC,垂足分别为G,F,求△DAE的周长,18.(2022秋•阳信县期中)如图,在平面直角坐标系xOy中,点O(0,0),A(﹣1,2),B(2,1).(1)在图中画出△AOB关于y轴对称的△A1OB1,并直接写出点A1和点B1的坐标;(2)在x轴上画出点P,使得PA+PB的值最小(保留作图痕迹).19.(2022秋•鹿城区校级期中)如图,BD是等腰三角形ABC底边AC上的高线,DE∥BC,交AB于点E,求证:△BED是等腰三角形.证明:∵AB=BC,BD⊥AC∴∠1=∠ (等腰三角形 )∵ED∥BC∴∠1=∠ ( )∴∠ =∠ (等量代换)∴BE=ED(在同一个三角形中, )即△BDE是等腰三角形.20.(2022秋•临湘市期中)如图,在△ABC中,DE,DF分别为BC,AB边的垂直平分线,连接AD,CD.(1)若∠B=40°,求∠ACD的度数;(2)判断∠B与∠ACD之间的数量关系,并说明理由.21.(2022秋•北仑区期中)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC 于点E,∠B=69°,∠FAE=18°,求∠C的度数.22.(2022秋•任城区期中)因式分解:(1)x3+10x2+25x;(2)a4﹣8a2b2+16b4.23.(2022秋•如东县期中)已知(a m)n=a4,(a m)2÷a n=a3.(1)求mn和2m﹣n的值;(2)已知4m2﹣n2=15,求m+n的值.24.(2022秋•朝阳区校级期中)(1)计算:(a4)3+a8•a4;(2)计算:[(x+y)m+n]2;(3)已知2x+3y﹣2=0,求9x•27y的值.25.(2022秋•望城区期中)望城区某居民小组正在进行美丽乡村建设,为了提升居民的幸福指数,规划将一长为(9a﹣1)米、宽为(3b﹣5)米的矩形场地打造成居民健身场所.具体规划为:在这个场地中分割出一块长为(3a+1)米、宽为b米的矩形场地建篮球场,其余的地方安装各种健身器材,其中用于作篮球场的地面铺设塑胶地面,用于安装健身器材的区域建水泥地面.(1)求安装健身器材的区域面积;(2)在做施工预算时了解到铺设塑胶地面每平方米需100元,铺设水泥地面每平方米需50元,那么当a=9,b=15时,建设该居民健身场所所需地面费用为多少?26.(2022秋•西乡塘区校级期中)完全平方公式:(a±b)2=a2±2ab+b2,适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因为ab=1,所以a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)若(4﹣x)(x﹣5)=﹣8,求(4﹣x)2+(x﹣5)2的值;(3)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=6,两正方形的面积和S1+S2=18,求图中阴影部分面积.27.(2022秋•安溪县期中)对于形如x2+2ax+a2可用“配方法”将它分解成(x+a)2的形式,如在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,它不会改变整个式子的值,其变化过程如下:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣4a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这种“因式分解”的方法称为“配方法”.请完成下列问题:(1)利用“配方法”分解因式:x2+4xy﹣5y2;(2)已知a,b,c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC 的周长;(3)在实数范围内,请比较多项式2x 2+2x ﹣3与x 2+3x ﹣4的大小,并说明理由.28.(2022秋•鲤城区校级期中)我们知道,通过计算几何图形的面积可以解释代数恒等式的正确性,同样,利用几何图形的面积也可以解释不等式的正确性.请解答下列问题:(1)如图1,可以写出代数恒等式:(a +b +c )2= ;若a +b +c =11,ab +bc +ac =38,则a 2+b 2+c 2= ;(2)如图2,两个边长为a 、b 、c 的直角三角形和一个直角边为c 的等腰直角三角形拼成一个直角梯形,请根据梯形的面积推导a 、b 、c 之间的数量关系(要求写出推导过程);(3)如图3,已知线段的长度a 、b 、c 、a '、b '、c '满足a +a '=b +b '=c +c '=k .试画出一个几何图形,并在图形中标出线段的长度a 、b 、c 、a '、b '、c ',使得该几何图形的面积可以解释不等式ab '+bc '+a 'c <k 2.(不要求尺规作图)29.(2022秋•任城区期中)先化简,再求值:(1―x 1x 1)÷2x 2x 22x 1,x 取一个合适的值代入.30.(2022秋•西城区校级月考)计算:(1)(x 2y )2⋅xy x 2―xy 2xy 2÷2x ;(2)a 2b 3•(a 2b ﹣2)﹣2.31.(2022秋•沙坪坝区校级期中)某学校利用寒假维护其教学楼,若甲、乙两工程队合作10天可完成;若甲工程队先单独施工5天,再由乙工程队单独施工20天也可完成.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)现将该教学楼工程分成两部分,甲工程队做其中一部分工程用了m 天,每天需付施工费3万元,乙工程队做另一部分工程用了n 天,每天需付施工费1.4万元,若m ,n 都是正整数,乙工程队做的时间不到17天,求出此项工程总施工费用的最小值.32.(2022秋•贵港期中)先化简,再求值(1)(x 1x 21+x x 1)÷x 1x 22x 1,其中x =―12;(2)a 4a 24÷(4a 2―a ―2),其中a 满足a 2﹣2a ﹣1=0.33.(2022秋•文登区期中)计算:(1)x x 24―12x 4+1x 2;(2)3x 3―x 3x 3•x 23x x 26x 9;(3)(2a 1a 1―a +1)÷+1.34.(2022秋•三台县期中)我们知道:12×23=13,12×23×34=14,……,(1)12×23×34×⋯⋯×n n 1= .(2)试根据上面规律,计算:(119―1)(120―1)(121―1)……(12011―1).35.(2022秋•九龙坡区校级期中)某天运动员小伟沿平路从家步行去银行办理业务,到达银行发现没有带银行卡(停留时间忽略不计),立即沿原路跑回家,已知平路上跑步的平均速度是平路上步行的平均速度的4倍,已知小伟家到银行的平路距离为2800米,小伟从离家到返回家共用50分钟.(1)求小伟在平路上跑步的平均速度是多少?(2)小伟找到银行卡后,发现离银行下班时间仅剩半小时,为了节约时间,小伟选择另外一条近的坡路去银行,小伟先上坡再下坡,用时9分钟到达银行,已知上坡的平均速度是平路上跑步的平均速度的57,下坡的平均速度是平路上跑步的平均速度的54,且上坡路程是下坡路程的2倍,求这段坡路的总路程是多少米?36.(2022秋•淅川县期中)阅读下列文字,并解决问题.已知x 2y =3,求2xy (x 5y 2﹣3x 3y ﹣4x )的值.分析:考虑到满足x 2y =3的x ,y 的可能值较多,不可能逐一代入求解,故考虑整体思想,将x 2y =3整体代入.解:2xy (x 5y 2﹣3x 3y ﹣4x )=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab=2,求(2a3b2﹣3a2b+4a)•(﹣2b)的值;(2)已知x―1x =3,求x2+1x2的值.参考答案一、解答题(共36小题)1.解:∵∠BAC+∠B+∠C=180°,∠B=40°,∠C=72°,∴∠BAC=68°,∵AE平分∠BAC,∠BAC=34°,∴∠BAE=∠CAE=12∴∠AEC=∠B+∠BAE=74°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°﹣∠AEC=16°.2.解:∠1=∠2,理由如下:∵AD、CE是△ABC的高,∴∠ADB=∠CEB=90°,∴∠1+∠B=900,∠2+∠B=900,∴∠1=∠2.3.证明:∵DE⊥AC,BF⊥AC,∴∠AFB=∠AED=90°,∴BF∥DE,∴∠2+∠3=180°,又∵∠1+∠2=180°,∴∠1=∠3,∴GF∥BC,∴∠AGF=∠ABC.4.解:∵∠BDC是△ABD的外角,∠A=40°,∠ABD=30°,∴∠BDC=∠A+∠ABD=70°,∵CE平分∠ACB,∠ACB=80°,∠ACB=40°,∴∠DCE=12∴∠BEC=∠BDC+∠DCE=110°.5.解:∵△ABC中,∠ABC=70°,∠C=40°,AD是BC边上的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣40°=50°;∵BE平分∠ABC,∴∠CBE=1∠ABC=35°,2∵∠BPD=90°﹣∠CBE=55°,∴∠DPE=180°﹣∠BPD=180°﹣55°=125°.6.解:(1)解:设边数为n,根据题意,得(n﹣2)×180°=360°+900°,所以(n﹣2)×180°=1260°,所以n﹣2=7,所以n=9.答:这个多边形的边数是9.(2)正五边形内角和为540°,∴其每个内角为540°÷5=108°.∵长方形每个内角为90°,∴∠F=90°,∴∠ABC=108°,∠ABF=180°﹣∠ABC=180°﹣108°=72°,∴∠BAF=180°﹣∠F﹣∠ABF=180°﹣90°﹣72°=18°,∠EAF=∠EAB+∠BAF=108°+18°=126°.7.证明:∵∠A+∠B+∠ACB=180°,∠ACB+∠ACD=180°,∴∠A+∠B+∠ACB=∠ACB+∠ACD,∴∠A+∠B=∠ACD.8.证:∠1与∠2互补.法1:作CF⊥AN于F(如图),∵∠3=∠4,CE⊥AM,∴CF=CE,∠CFA=∠CEA=90°,∴△ACF ≌△ACE (AAS ),∴AF =AE .∵2AE =AD +AB∴AE =12(AD +AB )=12(AF ﹣DF +AE +EB )=AE +12(BE ﹣DF ),∴BE ﹣DF =0,∴BE =DF ,∴△DFC ≌△BEC (SAS ),∴∠5=∠2,∵∠1+∠5=180°,∴∠1+∠2=180°;法2:在AM 上截取AF =AD ,连接CF (如图),∵∠3=∠4,AC 为公共边,∴△ADC ≌△AFC (SAS ),∴∠1=∠5,∵2AE =AD +AB ,∴AE =12(AD +AB )=12(AF +AE +EB )=12(AE ﹣EF +AE +EB ),∴EB ﹣EF =0,∴EF =EB ,又∵CE ⊥AB ,∴BC =FC ,∴∠2=∠6,∵∠5+∠6=180°,∴∠1+∠2=180°.9.证明:∵∠CAF=∠BAE,∴∠CAF+∠CAE=∠BAE+∠CAE,即∠EAF=∠BAC,在△ABC和△AEF中,AB=AE∠BAC=∠EAF,AC=AF∴△ABC≌△AEF(SAS).10.证明:(1)在Rt△AED与Rt△CFB中,AD=BCDE=BF,∴Rt△AED≌Rt△CFB(HL);(2)∵△AED≌△CFB,∴AE=CF,∴AF=CE,在△AFB与△CED中,AF=CE∠AFB=∠CED,DE=BF∴△AFB≌△CED(SAS),∴∠BAF=∠DCE,∴AB∥DC.11.解:(1)∵△ABC≌△CDE,CE=25,∴AC=CE=25,∵AB=7,BC=24,∴△ABC的周长=AB+BC+AC=7+24+25=56;(2)∵∠B=90°,∴∠ACB+∠BAC=90°,∵△ABC≌△CDE,∴∠ECD=∠CAB,∴∠ACB+∠ECD=90°,∴∠ACE=90°,∵AC=CE=25,∴△ACE的面积=12×25×25=6252.12.解:∵BD⊥AE于点B,DC⊥AF于点C,且DB=DC=2,∴AD是∠BAC的平分线,∠BAC=40°,∴∠BAD=∠CAD=12∠BAC=20°;(2)∵∠ADG=115°,∴∠DGC=180°﹣∠CAD﹣∠ADG=45°,在Rt△CDG中,∴∠CDG=90°﹣45°=45°,∴∠DGC=∠CDG,∴CD=CG,∵DC=2,∴CG=2,∴△CDG的面积=12×2×2=2.13.(1)证明:∵AB=AC,∴∠ABD=∠C,∵AD=AE,∴∠ADE=∠AED,∴180°﹣∠ADE=180°﹣∠AED,∴∠ADB=∠AEC,在△ABD和△ACE中,∠ADB=∠AEC∠ABD=∠CAB=AC,∴△ABD≌△ACE(AAS),∴BD=CE.(2)证明:∵BF∥AE,∴∠FBD=∠AED,∵∠FDB=∠ADE=∠AED,∴∠FBD=∠FDB,∴FB=FD,∴△BDF是等腰三角形.14.(1)证明:∵∠BED=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∴∠ABE=∠CAF,同理:∠BAE=∠ACF,在△ABE和△CAF中,∠ABE=∠CAFAB=AC,∠BAE=∠ACF∴△ABE≌△CAF(ASA);(2)EF+CF=BE,理由如下:∵△ABE≌△CAF,∴AE=CF,BE=AF,∵AE+EF=AF,∴CF+EF=BE.15.解:(1)如图,△A1B1C1为所作,点A1的坐标为(3,6);(2)点M(m,n)关于y轴的对称点M1的坐标为(﹣m,n);故答案为:(﹣m,n);(3)P点坐标为(0,5);故答案为(0,5).16.解:过点E作EF⊥CD于点F,∵△ABC是等边三角形,边长为1,AE=3,∴BE=AE﹣AB=2,∠ABC=60°,∵EF⊥CD,∴∠EFB=90°,∴∠BEF=90°﹣60°=30°,BE=1,∴BF=12∴CF=BF+BC=2,∵ED=EC,EF⊥CD,∴DF=CF=2,∴CD=DF+CD=4.17.解:∵DG,EF分别垂直平分AB,AC,∴AD=BD,AE=EC,∴△DAE的周长=AD+DE+AE=BD+DE+EC=BC=38.18.解:(1)如图,△A1OB1为所求,A1(1,2),B1(﹣2,1);(2)如图,点P为所作.19.证明:∵AB=BC,BD⊥AC,∴∠1=∠2(等腰三角形三线合一),∵DE∥BC(已知),∴∠DBC=∠EDB(两直线平行,内错角相等),∴∠ABD=∠EDB,∴BE=DE(在同一个三角形中,等角对等边),∴△BDE是等腰三角形.故答案为:2;三线合一;3;两直线平行,内错角相等;2;3;等角对等边.20.解:(1)连接BD并延长,交AC于H,∵DE,DF分别为BC,AB边的垂直平分线,∴DA=DB,DC=DB,∴∠DAB=∠DBA,∠DCB=∠DBC,∴∠ADH=∠DAB+∠DBA=2∠DBA,∠CDH=∠DCB+∠DBC=2∠DBC,∴∠ADC=2∠ABC=80°,∵DA=DB,DC=DB,∴DA=DC,∴∠ACD=∠CAD=1(180°﹣80°)=50°;2(2)∠B+∠ACD=90°,理由如下:∵∠ACD+∠CAD+∠ADC=180°,∴2∠ACD+2∠ABC=180°,∴∠ACD+∠ABC=90°.21.解:∵DE是线段AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∴∠FAC=∠EAC+∠EAF=∠EAC+18°,∵AF平分∠BAC,∴∠BAC=2∠FAC=2∠EAC+36°=2∠C+36°,∵∠B+∠BAC+∠C=180°,∴69°+2∠C+36°+∠C=180°,解得∠C=25°.22.解:(1)原式=x(x2+10x+25)=x(x+5)2;(2)原式=(a2﹣4b2)2=(a+2b)2(a﹣2b)2.23.解:(1)∵(2m)n=4,(a m)2÷a n=a3,∴2mn=22,a2m﹣n=a3,∴mn=2,2m﹣n=3;(2)∵4m2﹣n2=15,∴(2m+n)(2m﹣n)=15,∵2m﹣n=3,∴2m+n=5,联立得2m+n=5 2m―n=3,解得m=2 n=1,∴m+n=3.24.解:(1)原式=a4×3+a8+4=a12+a12=2a12;(2)原式=(x+y)2(m+n);(3)9x•27y=(32)x•(33)y=32x•33y=32x+3y,由2x+3y﹣2=0,可得2x+3y=2,原式=32=9.25.解:(1)(9a﹣1)(3b﹣5)﹣b(3a+1)=27ab﹣45a﹣3b+5﹣3ab﹣b=24ab﹣45a﹣4b+5(平方米),答:安装健身器材的区域面积为(24ab﹣45a﹣4b+5)平方米;(2)根据题意,得需要总费用为100b(3a+1)+50(24ab﹣45a﹣4b+5)=300ab+100b+1200ab﹣2250a﹣200b+250=1500ab﹣2250a﹣100b+250,当a=9,b=15时,总费用为1500×9×15﹣2250×9﹣100×15+250=181000(元),答:建设该居民健身场所所需地面费用为181000元.26.解:(1)∵x+y=8,∴(x+y)2=64,即x2+2xy+y2=64,又∵x2+y2=40,∴2xy=64﹣40,∴xy=12,答:xy的值为12;(2)设m=4﹣x,n=x﹣5,则m+n=﹣1,mn=(4﹣x)(x﹣5)=﹣8,∴(4﹣x)2+(x﹣5)2=m2+n2=(m+n)2﹣2mn=(﹣1)2﹣2×(﹣8)=1+16=17;(3)设AE =a ,FG =b ,则AB =6=a +b ,由题意可知S 1+S 2=a 2+b 2=18,∵(a +b )2=a 2+2ab +b 2,∴36=18+2ab ,∴ab =9,∴阴影部分的面积为12ab =92,答:阴影部分的面积为92.27.解:(1)原式=x 2+4xy +4y 2﹣4y 2﹣5y 2=(x +2y )2﹣9y 2=(x +2y +3y )(x +2y ﹣3y )=(x +5y )(x ﹣y );(2)∵a 2+b 2+c 2+50=6a +8b +10c ,∴a 2﹣6a +9+b 2﹣8b +16+c 2﹣10c +25+50﹣9﹣16﹣25=0,则(a ﹣3)2+(b ﹣4)2+(c ﹣5)2=0,∵a ,b ,c 是△ABC 的三边长,∴a =3,b =4,c =5,∴C △abc =3+4+5=12;(3)2x 2+2x ﹣3﹣(x 2+3x ﹣4)=2x 2+2x ﹣3﹣x 2﹣3x +4=x 2﹣x +1=x 2―x +14―14+1=(x ―12)2+34∵(x ―12)2≥0,∴(x ―12)2+34≥34,∴2x 2+2x ﹣3>x 2+3x ﹣4.28.解:(1)图1中最大的正方形面积S =(a +b +c )2,最大的正方形面积是由3个小正方形的面积,6个小长方形的面积相加得到的,∴S =(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;当a +b +c =11,ab +bc +ac =38时,112=a 2+b 2+c 2+2×38,解得a 2+b 2+c 2=45,故答案为:a 2+b 2+c 2+2ab +2ac +2bc ,45;(2)∵S 梯形=12×(a +b )(a +b )=12(a +b )2,S 梯形=12×c 2+2×12×ab =12c 2+ab ,∴12c 2+ab =12(a +b )2,∴a 2+b 2=c 2;(3)∵a +a '=b +b '=c +c '=k ,∴以k 为边长作正方形,如图所示,∵S 正方形=k 2,∴由题可知ab '+bc '+a 'c <k 2.29.解:原式=(x 1x 1―x 1x 1)•(x 1)22(x 1)=2x 1•(x 1)22(x 1)=x 1x 1,由分式有意义的条件可知:x 可取0,∴原式=11=―1.30.解:(1)原式=x 24y 2•xyx 2―12y •x 2=x 4y ―x 4y=0.(2)原式=a2b3•(a﹣4b4)=a﹣2b7=b7a2.31.解:(1)设甲工程队单独完成此项工程需要x天,则甲工程队的工作效率为1x,乙工程队的工作效率为(110―1x),依题意得:5×1x +20(110―1x)=1,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴1÷(110―1x)=1÷(110―115)=30.答:甲工程队单独完成此项工程需要15天,乙工程队单独完成此项工程需要30天.(2)由题意得:m15+n30=1,整理得:2m+n=30,∴m=15―12n,设此项工程总施工费用为w,则w=3m+1.4n=3×(15―12n)+1.4n=﹣0.1n+45,∵﹣0.1<0,∴w随n的增大而减小,当n最大时,w最小,∵n<17,m,n都是正整数,∴n的最大值为16,∴当n=16时,w的最小值=﹣0.1×16+45=43.4,答:此项工程总施工费用的最小值为43.4万元.32.解:(1)原式=x1x(x1)(x1)(x1)⋅(x1)2x1=(x1)(x ⋅(x1)2x1=x﹣1,当x=―12时,原式=―12―1=―32;(2)原式=a 4a 24÷=a 4(a 2)(a 2)⋅a 2a 24a =a 4(a 2)(a 2)⋅a 2a(a 4) =―1a(a 2) =―1a 22a ,∵a 2﹣2a ﹣1=0,∴a 2﹣2a =1,当a 2﹣2a =1时,原式=―11=―1.33.解:(1)原式=x (x 2)(x 2)―12(x 2)+1x 2=2x 2(x 2)(x 2)―x 22(x 2)(x 2)+2x 42(x 2)(x 2) =3x 62(x 2)(x 2) =32x 4;(2)原式=3x 3―x 3x 3•x(x 3)(x 3)2=3x 3―xx 3 =3x x 3=﹣1;(3)原式=(2a 1a 1―a 21a 1)÷(a 2)2a 1+1=•a 1(a 2)2+1=a(a 2)a 1•a 1(a 2)2+1=―a a 2+a 2a 2 =―2a 2.34.解:(1)12×23×34×⋯⋯×n n 1=1n 1,故答案为:1n 1;(2)(119―1)(120―1)(121―1)……(12011―1)=(―1819)×(―1920)×(―2021)×……×(―20102011)=―182011.35.解:(1)设小伟在平路上跑步的平均速度是x 米/分钟,则小伟在平路上步行的平均速度是14x 米/分钟,依题意得:280014x +2800x =50,解得:x =280,经检验,x =280是原方程的解,且符合题意.答:小伟在平路上跑步的平均速度是280米/分钟.(2)设这段坡路的总路程是y 米,则上坡路程是23y 米,下坡路程是13y 米,依题意得:23y 57×280+13y 54×280=9,解得:y =2100.答:这段坡路的总路程是2100米.36.解:(1)∵ab =2,∴(2a 3b 2﹣3a 2b +4a )•(﹣2b )=﹣4a 3b 3+6a 2b 2﹣8ab=﹣4•(ab )3+6•(ab )2﹣8ab=﹣4×23+6×22﹣8×2=﹣4×8+6×4﹣8×2=﹣32+24﹣16=﹣24;(2)∵x ―1x =3,∴x 2+1x 2=(x ―1x )2+2=32+2=9+2=11.。
八上计算(多题型)期末专题培优1.(2019·南京)小明看到闪电后12.3s又听到雷声已知声音每3s传播的距离约为1000m,光速约为3×108m/s,于是他用12.3除以3很快估算出闪电发生位置到他的距离为41km。
假设声速或光速发生以下变化,这种估算方法不再适用的是()A.声速增大为原来的两倍B.声速减小为原来的一半C.光速减小为原来的一半D.光速减小为声速的两倍2.(2019·苏州)将凸透镜正对太阳,可在距凸透镜15cm处得到一个最小、最亮的光斑。
现将该凸透镜和蜡烛、光屏安装到光具座上,位置如图所示,下列说法正确的是()A.此时可以在光屏上观察到清晰缩小的像B.仅在凸透镜左侧附近放一合适的凹透袋,可模拟近视眼的矫正C.将蜡烛形到30cm刻度处,移动光屏可在屏上得到清晰等大的像D.将蜡烛移到40cm刻度处,动光屏可在光屏上很到清晰放大的像3.(2019·扬州)在测量液体密度的实验中,小明利用天平和量杯测量出液体和量杯的总质量m及液体的体积V,得到几组数据并绘出如图所示的m-V 图像,下列说法正确的是()A.量杯质量为40gB.40cm3的该液体质量为40gC.该液体密度为1.25g/cm3D.该液体密度为2g/cm34.(2019·盐城)雷雨天,小王观察到某次闪电经历的时间为t1,听到这次闪电发出的雷声持续时间为t2(不计云层间回声时间),刚开始看到闪电到刚开始听到雷声的时间为t3,声音和光传播速度分别为v和c,则()A.t1=t2,闪电发生位置到小王距离约为vt3B.t1<t2,闪电发生位置到小王距离约为vt3C.t1=t2,闪电发生位置到小王距离约为vt3+ct1D.t1=t2,闪电发生位置到小王距离约为vt3+ct15.(2019·眉山)某同学用托盘天平和量筒测量一小石块的密度,图甲是调节天平时的情形,图乙和图丙分别是测量石块质量和体积时的情形,下列说法中正确的是( )A .甲图中应将平衡螺母向左调,使横梁平衡B .乙图中测石块质量时,天平的示数是17.4gC .由丙图量筒的示数测得石块的体积是40cm 3D .利用图中信息,可计算出石块的密度是1.72×103kg/m 3 6.(2019·株洲)孙杨在里约奥运会上夺得自由泳200m 金牌。
期末复习复习(二)—代数学生/课程年级学科授课教师日期时段核心内容整式的乘除,分式课型教学目标1.会运用法则、乘法公式进行整式的乘除运算.2.通过对提公因式法和公式法的教学,让学生灵活地解决因式分解的题目/.3.掌握分式的基本运算,熟练解决分式的应用。
重、难点整式的乘法运算;因式分解;分式知识导图导学一整式的乘除知识点讲解 1:幂的运算例 1. 下列算式中:① (a3)3=a6;②[(x2)2]3=x12;③y·(y2)2=y5;④[(-x)3]4=-x12,其中正确的有.例 2. 计算:(1)-ab2(3a2b-abc-1) (2)(-5ab2x)·(-a2bx3y)例 3. 已知3x+5y=8,求8x·32y的值.我爱展示1. 计算:(1)(2)2. 已知一个多项式与单项式的积为,求这个多项式。
3. 当时,= .4. 已知,则的值为.5. 阅读材料:求1+2+22+23+24+…+22015的值.解:设S=1+2+22+23+24+…+22012+22015,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22016将下式减去上式得2S﹣S=22016﹣1即S=22016﹣1即1+2+22+23+24+…+22015=22016﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).知识点讲解 2:乘法公式例 1. [单选题] 下列计算正确的是()A. B.C. D.例 2. 计算:(1) (2)(3) (4)例 3. 化简求值:,其中.我爱展示1. [单选题] 计算的结果正确的是()A. B. C. D.2. [单选题] 若,,则的值为()A. B. C.1 D.23. [单选题] 有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的长方形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+b B.2a+b C.a+2b D.3a+b4. ,则.5. [单选题] 已知(m-n)2=8,(m+n)2=2,则m2+n2= ( )A.10B.6C.5D.36. 已知,则= .7. 先化简,再求值:(1)其中.(2) ,其中.知识点讲解 3:因式分解例 1. [单选题] 下列因式分解正确的是()A. B.C. D.例 2. [单选题] 把多项式分解因式的结果是()A. B. C. D.例 3. 已知长方形的周长为20,相邻两边长分别为(均为整数),且满足,求的值.我爱展示1.若,,则代数式的值是.2.分解因式:(1)(2)(3) 3. 先化简,然后对式子中a、b分别选择一个自己最喜欢的数代入求值.4. [单选题] 下列等式从左到右的变形,属于因式分解的是 ( )A.a(x-y)=ax-ayB.x2-1=(x+1)(x-1)C.(x+1)(x+3)=x2+4x+3D.x2+2x+1=x(x+2)+15. [单选题] 可利用x2+(p+q)x+pq=(x+p)(x+q)分解因式的是 ( )A.x2-3x+2B.3x2-2x+1C.x2+x+1D.3x2+5x+7导学二分式知识点讲解 1:分式的基本概念例 1. [单选题] 分式的值等于0时,x的值为()A.±2B.2 C.-2 D.我爱展示1.[单选题] 要使的值为0,则m的值为()A.3 B.-3 C.±3D.不存在2.当时,分式有意义.3. [单选题] 下列式子:,,,,,b,其中是分式的个数有() A. 2个 B. 3个 C. 4个 D. 5个知识点讲解 2:分式的运算例 1. [单选题] 下列运算正确的是()A. B. C. D.例 2. 计算:(1)(2)例 3. 计算:(1)我爱展示1. [单选题] 如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变2. 先化简,再求值:(1-)÷-,其中x满足x2-x-1=0.3.先化简:÷(- ),再从-2<x<3的范围内选取一个你喜欢的x值代入求值.4.先化简,在求值:,其中.5.[单选题] 已知为实数,且,设,则M、N的大小关系是().A.M=NB.M>NC.M<ND.不确定知识点讲解 3:分式方程的解及解法例 1. [单选题] 把方程去分母正确的是( )A. B.C. D.例 2. [单选题] 解分式方程分以下四步,其中错误的一步是( )A. 方程两边分式的最简公分母是B. 方程两边都乘以,得整式方程C. 解这个整式方程,得D. 原方程的解为例 3. [单选题] 若关于x的分式方程-1=无解,则m的值为()A.-B.1 C.-或2 D.-或-例 4. 已知关于x的分式方程=1的解为负数,求a的取值范围.我爱展示1.[单选题] 关于x的方程的解为,则a的值为()A.1B.3C.-1D.-32.[单选题] 若关于x的分式方程=2-的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,33.已知关于x的分式方程-=0无解,求a的值.4.若有增根,则增根是,k= .5.若分式无意义,当时,则m= .知识点讲解 4:分式方程的实际应用例 1. 某文化用品商店用2000元购进一批小学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果第二批用了2600元.若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?例 2. 王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?我爱展示1.[单选题] 为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x满足的方程是()A. B. C. D.2.某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件? (2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?3.[单选题] 完成某项工作,甲独做需a小时,乙独做需b小时,则两人合作完成这项工作的80%,所需要的时间是( ).A. 小时B. 小时C. 小时D. 小时4.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v千米/时,则它以最大航速顺流航行s 千米所需的时间是.5.甲、乙两地相距50km,A骑自行车,B乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B中途休息了0.5小时还比A早到2小时,求自行车和汽车的速度.导学三专题培优知识点讲解 1:乘法公式的灵活运用例 1. 用简便方法计算:1002-992+982-972+962-952+…+22-1.例 2. 如果a+b+c=0,a2+b2+c2=1,求ab+bc+ca的值.例 3. 已知(m-53)(m-47)=24,求(m-53)2+(m-47)2的值例 4. 对于任意一个正整数n,整式A=(4n+1)(4n-1)-(n+1)(n-1)能被15整除吗?请说明理由.我爱展示1. 计算:(1)(a+b)3 (2)(x-y-m+n)(x-y+m-n)2. 已知(x+y)2=25,(x-y)2=16,求xy的值.3.已知求的值.4.如果一个正整数能表示为两个连续偶数的和与差的乘积,那么我们就称这个正整数为“和谐数”,如4=(2+0)(2-0),12=(4+2)(4-2),20=(6+4)(6-4),因此4,12,20这三个数都是“和谐数”.(1)当28=(m+n)(m-n)时,m+n= ;(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?知识点讲解 2:因式分解的应用例 1. [单选题] 计算:.例 2. △ABC的三边长分别为,且,请判断△ABC是等边三角形、等腰三角形还是直角三角形?说明理由.例 3. 如果是整数,且,求的值.我爱展示1.已知可因式分解成,其中均为整数,求的值.2.不解方程组,求的值.3.已知为△ABC的三角边的长,试判断代数式的值的符号,并说明理由4.如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成4个小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为;(2)观察图2,请你写出式子(m+n) 2,(m-n) 2,mn之间的等量关系:; (3)若x+y=-6,xy=2.75,则x-y=; (4)实际上有许多恒等式可以用图形的面积来表示,如图3,它表示等式:.5.某商业大楼共有四层,第一层有商品种,第二层有商品种,第三层有商品种,第四层有商品种,若,则这座商业大楼共有商品多少种?知识点讲解 3:分式的条件求值例 1. 已知+=3,求的值.【学有所获】归一代入法:将条件式和所求分式作适当的恒等变形,然后整体代入,使分子、分母化归为同一个只含相同字母积的分式,便可约分求值.例 2. 已知a2-a+1=2,求+a-a2的值.【学有所获】整体代入法:将条件式和所求分式作适当的恒等变形,然后整体代入求值.例 3. 已知==,求的值.【学有所获】设辅助元代入法:在已知条件中有连比或等比时,一般可设参数k,往往立即可解.例 4. 已知m2+=4,求m+和m-的值.【学有所获】构造互倒式代入法:构造x2+=(x± )2∓2迅速求解,收到事半功倍之效.例 5. 已知3x-4y-z=0,2x+y-8z=0,求的值.【学有所获】主元法:若两个方程有三个未知数,故将其中两个看作未知数,剩下的第三个看作常数,联立解方程组,思路清晰、解法简洁.例 6. 已知x+=3,求的值.【学有所获】倒数法:已知条件和待求式同时取倒数后,再逆用分式加减法法则对分式进行拆分,然后将三个已知式相加,这样解非常简捷.我爱展示1.已知-=5,求的值.2. 已知a+b+c=0,求c( + )+b( + )+a( + )的值.3. 已知==≠0,则的值为.4. 已知三个数x、y、z满足=-2,=,=- .求的值.5. 若4x-3y-6z=0,x+2y-7z=0(xyz≠0),求代数式的值.6. 已知,求式子的值.6.已知,求的值.限时考场模拟______ 分钟完成1. [单选题] 若9x2-kxy+4y2是一个完全平方式,则k的值()A.6 B.±6C.12 D.±122.在横线填上“+”或“-”,使等式成立:(1)(y-x)2= (x-y)2; (2)(1-x)(2-x)= (x-1)(x-2)3.[单选题] 下列关于x的方程中,是分式方程的是( )A. B. C. D.3x-2y=14. 已知关于x的分式方程的解为负数,则k的取值范围是.5.[单选题] 每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,则这种杂拌糖每千克的价格为() A.元B.元C.元D.元6.已知a、b、c是△ABC的三边,且满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状,并说明理由。
小专题(一) 构造全等三角形的方法技巧类型1 连结线段构造全等三角形【例1】 如图,已知AB =AD ,BC =CD ,求证:∠B =∠D.证明:连结AC ,在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS ). ∴∠B =∠D.【方法归纳】 通过连结两点,构造出三角形,再证明两个三角形全等,然后利用全等三角形的性质说明角相等或边相等.1.如图,已知AB ∥CD ,AD ∥BC ,求证:∠A =∠C.证明:连结BD , ∵AB ∥CD , ∴∠ABD =∠CDB. ∵AD ∥BC , ∴∠ADB =∠CBD. 又∵BD =DB ,∴△ABD ≌△CDB(ASA ).∴∠A =∠C.2.如图,在△ABC 中,AB =AC ,点M 为BC 中点,MD ⊥AB 于点D ,ME ⊥AC 于点E.求证:MD =ME.证明:连结AM.在△ABM 和△ACM 中,⎩⎨⎧AB =AC ,AM =AM ,BM =CM ,∴△ABM ≌△ACM(SSS ). ∴∠BAM =∠CAM.∵MD ⊥AB ,ME ⊥AC ,∴MD =ME.类型2 利用“截长补短”构造全等三角形【例2】 如图,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB.求证:CD =AD +BC.证明:在CD 上截取DF =DA ,连结FE.在△ADE 和△FDE 中,⎩⎨⎧AD =FD ,∠ADE =∠FDE ,DE =DE ,∴△ADE ≌△FDE. ∴∠A =∠DFE.又∵AD ∥BC ,∴∠A +∠B =180°. ∵∠DFE +∠EFC =180°. ∴∠B =∠EFC.在△EFC 和△EBC 中,⎩⎨⎧∠EFC =∠B ,∠ECF =∠ECB ,EC =EC ,∴△EFC ≌△EBC. ∴FC =BC.∴CD =DF +FC =AD +BC.【方法归纳】 遇到证明线段的和差倍分问题时,通常利用截长法或补短法,具体的作法是在某条线段上截取一条线段与特定线段相等,或者延长某条线段,使之与特定线段相等,再利用三角形全等的有关性质解决.3.如图,在△ABC 中,∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,BD ,CE 交于点O ,试判断BE ,CD ,BC 的数量关系,并加以证明.解:BC =BE +CD.证明:在BC 上截取BF =BE ,连结OF. ∵BD 平分∠ABC , ∴∠EBO =∠FBO. 又∵BO =BO , ∴△EBO ≌△FBO.∴∠EOB =∠FOB.∵∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,∴∠BOC =180°-∠OBC -∠OCB =180°-12∠ABC -12∠ACB =180°-12(180°-∠A)=120°.∴∠EOB =∠DOC =60°.∴∠BOF =60°,∠FOC =∠DOC =60°. ∵CE 平分∠DCB ,∴∠DCO =∠FCO.又∵CO =CO ,∴△DCO ≌△FCO.∴CD =CF.∴BC =BF +CF =BE +CD.4.(德州中考)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.点E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是:延长FD 到点G ,使DG =BE ,连结AG.先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是EF =BE +DF ;(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由.解:EF =BE +DF 仍然成立.证明:延长FD 到G ,使DG =BE ,连结AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°, ∴∠B =∠ADG.在△ABE 和△ADG 中,⎩⎨⎧BE =DG ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG(SAS ). ∴AE =AG ,∠BAE =∠DAG . ∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF. ∴∠EAF =∠GAF.在△AEF 和△AGF 中,⎩⎨⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF(SAS ).∴EF =FG .∵FG =DG +DF =BE +DF ,∴EF =BE +DF.类型3 利用“中线倍长”构造全等三角形【例3】 如图,在△ABC 中,AD 是BC 边上的中线,AC>AB ,求证:AB +AC>2AD>AC -AB.证明:延长AD 至E ,使AD =DE ,并连结CE , ∵D 是BC 上的中点,∴CD =BD.又∵AD =DE ,∠ADB =∠CDE , ∴△ADB ≌△EDC(SAS ). ∴AB =CE.∵AC +CE>2AD>AC -CE ,∴AB +AC>2AD>AC -AB.【方法归纳】 当题目中出现中线时,常常延长中线,使所延长部分与中线的长度相等,然后连结相应的端点,便可以得到全等三角形.5.已知:如图,AD ,AE 分别是△ABC 和△ABD 的中线,且BA =BD.求证:AE =12AC.证明:延长AE 至F ,使EF =AE ,连结DF. ∵AE 是△ABD 的中线, ∴BE =DE.又∵∠AEB =∠FED ,∴△ABE ≌△FDE.∴∠B =∠BDF ,AB =DF. ∵BA =BD ,∴∠BAD =∠BDA ,BD =DF.∵∠ADF =∠BDA +∠BDF ,∠ADC =∠BAD +∠B , ∴∠ADF =∠ADC.∵AD 是△ABC 的中线, ∴BD =CD. ∴DF =CD. 又∵AD =AD ,∴△ADF ≌△ADC(SAS ). ∴AC =AF =2AE ,即AE =12AC.6.如图,AB =AE ,AB ⊥AE ,AD =AC ,AD ⊥AC ,点M 为BC 的中点,求证:DE =2AM.证明:延长AM至点N,使MN=AM,连结BN,∵M为BC中点,∴BM=CM.又∵AM=MN,∠AMC=∠NMB,∴△AMC≌△NMB(SAS).∴AC=BN,∠C=∠NBM.∴∠ABN=∠ABC+∠NBM=∠ABC+∠C=180°-∠BAC=∠EAD. ∵AD=AC,AC=BN,∴AD=BN.又∵AB=AE,∴△ABN≌△EAD(SAS).∴DE=NA.又∵AM=MN,∴DE=2AM.小专题(二) 等腰三角形中的分类讨论类型1 对顶角和底角的分类讨论对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.1.等腰三角形中有一个角为52°,它的一条腰上的高与底边的夹角为多少度?解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°; ②若已知的这个角为底角,则一腰上的高与底边的夹角为38°. 故所求的一腰上的高与底边的夹角为26°或38°.类型2 对腰长和底长的分类讨论在解答已知等腰三角形边长的问题时,当题目条件中没有明确说明哪条边是“腰”、哪条边是“底”时,往往要进行分类讨论.判定的依据是:三角形的任意两边之和大于第三边;两边之差小于第三边. 2.(1)已知等腰三角形的一边长等于6 cm ,一边长等于7 cm ,求它的周长;(2)等腰三角形的一边长等于8 cm ,周长等于30 cm ,求其他两边的长. 解:(1)周长为19 cm 或20 cm .(2)其他两边的长为8 cm ,14 cm 或11 cm ,11 cm .3.若等腰三角形一腰上的中线分周长为9 cm 和12 cm 两部分,求这个等腰三角形的底和腰的长.解:如图,由于条件中中线分周长的两部分,并没有指明哪一部分是9 cm 、哪一部分是12 cm ,因此,应有两种情形.设这个等腰三角形的腰长为x cm ,底边长为y cm ,根据题意,得⎩⎨⎧x +12x =9,12x +y =12或⎩⎨⎧x +12x =12,12x +y =9.解得⎩⎨⎧x =6,y =9,或⎩⎪⎨⎪⎧x =8,y =5.故腰长是6 cm ,底边长是9 cm 或腰长是8 cm ,底边长是5 cm .类型3 几何图形之间的位置关系不明确的分类讨论4.已知C 、D 两点在线段AB 的中垂线上,且∠ACB =50°,∠ADB =80°,求∠CAD 的度数.解:①如图1,当C 、D 两点在线段AB 的同侧时, ∵C 、D 两点在线段AB 的垂直平分线上,∴CA =CB.∴△CAB 是等腰三角形. 又∵CE ⊥AB ,∴CE 是∠ACB 的平分线.∴∠ACE =∠BCE. ∵∠ACB =50°,∴∠ACE =25°. 同理可得∠ADE =40°,∴∠CAD =∠ADE -∠ACE =40°-25°=15°;图1 图2②如图2,当C 、D 两点在线段AB 的两侧时,同①的方法可得∠ACE =25°,∠ADE =40°,∴∠CAD =180°-(∠ADE +∠ACE)=180°-(40°+25°)=180°-65°=115°. 故∠CAD 的度数为15°或115°.类型4 运动过程中等腰三角形中的分类讨论5.(下城区校级期中)在Rt △ABC 中,∠C =90°,BC =8 cm ,AC =6 cm ,在射线BC 上一动点D ,从点B 出发,以2厘米每秒的速度匀速运动,若点D 运动t 秒时,以A 、D 、B 为顶点的三角形恰为等腰三角形,则所用时间t 为258或5或8秒. 解析:①当AD =BD 时,在Rt △ACD 中,根据勾股定理,得AD 2=AC 2+CD 2,即BD 2=(8-BD)2+62, 解得BD =254cm .则t =2542=258(秒);②当AB =BD 时,在Rt △ABC 中,根据勾股定理,得 AB =AC 2+BC 2=62+82=10(cm ), 则t =102=5(秒);③当AD =AB 时,BD =2BC =16 cm ,则t =162=8(秒).综上所述,t 的值可以是:258,5,8.6.(杭州期中)如图,已知△ABC 中,∠B =90°,AB =8 cm ,BC =6 cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A →B 方向运动,且速度为每秒1 cm ,点Q 从点B 开始沿B →C 方向运动,且速度为每秒2 cm ,它们同时出发,设出发的时间为t 秒.(1)当t =2秒时,求PQ 的长;(2)求出发时间为几秒时,△PQB 是等腰三角形?(3)若Q 沿B →C →A 方向运动,则当点Q 在边CA 上运动时,求能使△BCQ 成为等腰三角形的运动时间.解:(1)BQ =2×2=4(cm ),BP =AB -AP =8-2×1=6(cm ), ∵∠B =90°,∴PQ =BQ 2+BP 2=42+62=213(cm ). (2)根据题意,得BQ =BP , 即2t =8-t , 解得t =83.∴出发时间为83秒时,△PQB 是等腰三角形.(3)分三种情况:①当CQ =BQ 时,如图1所示, 则∠C =∠CBQ , ∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°. ∴∠A =∠ABQ. ∴BQ =AQ.∴CQ =AQ =5 cm . ∴BC +CQ =11 cm . ∴t =11÷2=5.5(秒).②当CQ =BC 时,如图2所示, 则BC +CQ =12 cm . ∴t =12÷2=6(秒).③当BC =BQ 时,如图3所示, 过B 点作BE ⊥AC 于点E , 则BE =AB·BC AC =6×810=4.8(cm ).∴CE =BC 2-BE 2=3.6 cm .∴CQ =2CE =7.2 cm . ∴BC +CQ =13.2 cm . ∴t =13.2÷2=6.6(秒).由上可知,当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.小专题(三) 利用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题1.如图所示,有一张直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为(A )A .1 cmB .1.5 cmC .2 cmD .3 cm第1题图 第2题图2.如图,长方形ABCD 的边AD 沿折痕AE 折叠,使点D 落在BC 上的F 处,已知AB =6,△ABF 的面积是24,则FC 等于(B )A .1B .2C .3D .43.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为(D )A .252cmB .152cm C .254cmD .154cm第3题图 第4题图4.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C′处,BC ′交AD 于点E ,则线段DE 的长为(B )A .3B .154C .5D .1525.(上城区期末)在矩形纸片ABCD 中,AB =3,AD =5,如图所示,折叠纸片,使点A 落在BC 边上的A′处,折痕为PQ ,当点A′在BC 边上移动时,折痕的端点P 、Q 也随之移动,若限定点P 、Q 分别在线段AB 、AD 边上移动,则点A′在BC 边上可移动的最大距离为(B )A .1B .2C .3D .4解析:如图1,当点D 与点Q 重合时,根据翻折对称性可得 A′D =AD =5.在Rt △A ′CD 中,A ′D 2=A′C 2+CD 2, 即52=(5-A′B)2+32,解得A′B =1.如图2,当点P 与点B 重合时,根据翻折对称性可得A′B =AB =3. ∵3-1=2,∴点A′在BC 边上可移动的最大距离为2. 故选B .6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为7.第6题图 第7题图7.如图,在Rt △ABC 中,∠C =90°,BC =6 cm ,AC =8 cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C′点,那么△ADC′的面积是6_cm 2.8.如图,长方形ABCD 中,CD =6,BC =8,E 为CD 边上一点,将长方形沿直线BE 折叠,使点C 落在线段BD 上C′处,求DE 的长.解:∵在长方形ABCD 中,∠C =90°,DC =6,BC =8, ∴BD =62+82=10.由折叠可得BC ′=BC =8,EC ′=EC ,∠BC ′E =∠C =90°, ∴C ′D =2,∠DC ′E =90°. 设DE =x ,则C ′E =CE =6-x . 在Rt △C ′DE 中,x 2=(6-x )2+22, 解得x =103.∴DE 的长为103.类型2 利用勾股定理解决立体图形的最短路径问题9.如图是一个封闭的正方体纸盒,E 是CD 中点,F 是CE 中点,一只蚂蚁从一个顶点A 爬到另一个顶点G ,那么这只蚂蚁爬行的最短路线是(C )A .A ⇒B ⇒C ⇒G B .A ⇒C ⇒G C .A ⇒E ⇒GD .A ⇒F ⇒G10.如图,在一个长为2 m ,宽为1 m 的长方形草地上,放着一根长方体的木块,它的棱和场地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2 m 的正方形,一只蚂蚁从点A 处到达点C 处需要走的最短路程是2.60m .(精确到0.01 m )第10题图第11题图11.(凉山中考)如图,圆柱形玻璃杯,高为18 cm,底面周长为24 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为20cm.12.一位同学要用彩带装饰一个长方体礼盒.长方体高6 cm,底面是边长为4 cm的正方形,从顶点A到顶点C′如何贴彩带用的彩带最短?最短长度是多少?解:把长方体的面DCC′D′沿棱CD展开至面ABCD上,如图.构成矩形ABC′D′,则A到C′的最短距离为AC′的长度,连结AC′交DC于O,易证△AOD≌△C′OC.∴OD=OC,即O为DC的中点.由勾股定理得AC′2=AD′2+D′C′2=82+62=100,∴AC′=10 cm.即从顶点A沿直线到DC中点O(或A′B′中点O′),再沿直线到顶点C′,贴的彩带最短,最短长度为10 cm.13.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.解:(1)如图,木柜的表面展开图是两个矩形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97;蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89. ∵l1>l2,∴最短路径的长是89.小专题(四) 全等三角形的基本模型类型1 平移型把△ABC 沿着某一条直线l 平行移动,所得到△DEF 与△ABC 称为平移型全等三角形.图1,图2是常见的平移型全等三角形.在证明平移型全等的试题中,常常要碰到移动方向的边加(减)公共边.如图1,若BE =CF ,则BE +EC =CF +CE ,即BC =EF.如图2,若BE =CF ,则BE -CE =CF -CE ,即BC =EF.1.如图,已知EF ∥MN ,EG ∥HN ,且FH =MG ,求证:△EFG ≌NMH.证明:∵EF ∥MN ,EG ∥HN , ∴∠F =∠M ,∠EGF =∠NHM. ∵FH =MG ,∴FH +HG =MG +HG , 即GF =HM.在△EFG 和△NMH 中,⎩⎨⎧∠F =∠M ,GF =HM ,∠EGF =∠NHM ,∴△EFG ≌△NMH(ASA ).2.(金华六校10月联考)如图,A 、B 、C 、D 四点在同一直线上,请你从下面四项中选出三个选项作为条件,余下一个作为结论,构成一个真命题,并进行证明.①AB =CD ;②∠ACE =∠D ;③∠EAG =∠FBG ;④AE =BF. 你选择的条件是:①②③,结论是:④.(填写序号)证明:∵∠EAG =∠FBG , ∴∠EAD =∠FBD. ∵AB =CD ,∴AB +BC =BC +CD , 即AC =BD.在△ACE 和△BDF 中,⎩⎨⎧∠ACE =∠D ,AC =BD ,∠EAD =∠FBD ,∴△ACE ≌△BDF(ASA).类型2翻折型将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条件,即公共边或公共角相等.3.(下城区校级期中)如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连结CD、EB.(1)不添加辅助线,找出图中其他的全等三角形;(2)求证:CF=EF.解:(1)图中其他的全等三角形为:△ACD≌△AEB,△DCF≌△BEF.(2)证明:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD.∴∠CAB-∠DAB=∠EAD-∠DAB,即∠CAD=∠EAB.∴△CAD≌△EAB.∴CD=EB,∠ADC=∠ABE.又∵∠ADE=∠ABC,∴∠CDF=∠EBF.又∵∠DFC=∠BFE,∴△CDF≌△EBF(AAS).∴CF=EF.类型3旋转型将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.识别旋转型三角形时,如图1,涉及对顶角相等;如图2,涉及等角加(减)等角的条件.4.已知:如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE.证明:∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,∠BAD=∠CAE,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE.5.如图,△ABC ,△CDE 是等边三角形,B ,C ,E 三点在同一直线上.(1)求证:AE =BD ;(2)若BD 和AC 交于点M ,AE 和CD 交于点N ,求证:CM =CN ; (3)连结MN ,猜想MN 与BE 的位置关系,并加以证明. 解:(1)证明:∵△ABC 和△DCE 均为等边三角形, ∴AC =BC ,CE =CD ,∠ACB =∠DCE =60°. ∴∠BCD =∠ACE =120°.在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△ACE ≌△BCD(SAS ). ∴AE =BD.(2)证明:∵△ACE ≌△BCD ,∴∠CBD =∠CAE.∵∠ACN =180°-∠ACB -∠DCE =60°, ∴∠BCM =∠ACN.在△BCM 和△ACN 中,⎩⎨⎧∠CBM =∠CAN ,CB =CA ,∠BCM =∠ACN ,∴△BCM ≌△ACN(ASA ). ∴CM =CN.(3)MN ∥BE.证明:∵CM =CN ,∠MCN =60°, ∴△MCN 为等边三角形. ∴∠CMN =60°. ∴∠CMN =∠ACB. ∴MN ∥BE.类型4 双垂型基本图形如图:此类图形通常告诉BD ⊥DE ,AB ⊥AC ,CE ⊥DE ,那么一定有∠B =∠CAE. 6.如图,AD ⊥AB 于点A ,BE ⊥AB 于点B ,点C 在AB 上,且CD ⊥CE ,CD =CE.求证:AD =CB.证明:∵AD ⊥AB ,BE ⊥AB , ∴∠A =∠B =90°. ∴∠D +∠ACD =90°. ∵CD ⊥CE ,∴∠ACD +∠BCE =180°-90°=90°. ∴∠D =∠BCE .在△ACD 和△BEC 中,⎩⎨⎧∠A =∠B ,∠D =∠BCE ,CD =CE ,∴△ACD ≌△BEC (AAS). ∴AD =CB . 7.如图,△ABC 为等腰直角三角形,∠ACB =90°,直线l 经过点A 且绕点A 在△ABC 所在平面内转动,作BD ⊥l ,CE ⊥l ,D 、E 为垂足.求证:DA +DB =2DE.证明:在l 上截取FA =DB ,连结CD 、CF.∵△ABC 为等腰直角三角形,∠ACB =90°,BD ⊥l , ∴AC =BC ,∠BDA =90°.∴∠CBD +∠CAD =360°-∠BDA -∠ACB =360°-90°-90°=180°. 又∵∠CAF +∠CAD =180°, ∴∠CBD =∠CAF.在△CBD 和△CAF 中,⎩⎨⎧CB =CA ,∠CBD =∠CAF ,BD =AF ,∴△CBD ≌△CAF(SAS ). ∴CD =CF. ∵CE ⊥l ,∴DE =EF =12DF =12(DA +FA)=12(DA +DB).∴DA +DB =2DE.小专题(五) 一元一次不等式(组)的解法1.解下列不等式(组):(1)(金华金东区期末)5x +3<3(2+x); 解:去括号,得5x +3<6+3x. 移项,得5x -3x <6-3. 合并同类项,得2x <3. 系数化为1,得x <32.(2)(黄冈中考)x +12≥3(x -1)-4;解:去分母,得x +1≥6(x -1)-8. 去括号,得x +1≥6x -6-8. 移项,得x -6x ≥-6-8-1. 合并同类项,得-5x ≥-15. 两边都除以-5,得x ≤3.(3)⎩⎪⎨⎪⎧x +1≥2,①3(x +1)>x +5;② 解:由①,得x ≥1. 由②,得x>1.所以,不等式组的解集为x>1.(4)(莆田中考)⎩⎪⎨⎪⎧x -3(x -2)≥4,①1+2x 3>x -1;②解:由①,得x ≤1.由②,得x <4.所以原不等式组的解集为x ≤1.(5)(金华金东区期末)⎩⎪⎨⎪⎧5x -2>3(x +1),①12x -1≤7-32x.② 解:解不等式①,得x >52.解不等式②,得x ≤4. 故不等式组的解集为52<x ≤4.2.(苏州中考)解不等式2x -1>3x -12,并把它的解集在数轴上表示出来.解:去分母,得4x -2>3x -1. 移项,得4x -3x >2-1. 合并同类项,得x >1.将不等式解集表示在数轴上如图:3.(萧山区校级月考)解不等式x3<1-x -36,并求出它的非负整数解.解:去分母,得2x<6-(x -3).去括号,得2x<6-x +3. 移项,得x +2x<6+3. 合并同类项,得3x<9. 系数化为1,得x<3.所以,非负整数解为0,1,2.4.(杭州经济开发区期末)解不等式组⎩⎪⎨⎪⎧x -4≥3(x -2),①x +113-1>-x.②并把它的解在数轴上表示出来.解:解不等式①,得x ≤1.解不等式②,得x >-2. ∴原不等式组的解为-2<x ≤1. 在数轴上表示为:5.(十堰中考)x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?解:根据题意解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),①12x ≤2-32x.② 解不等式①,得x >-52.解不等式②,得x ≤1. 所以-52<x ≤1.故满足条件的整数有-2、-1、0、1.小专题(六) 一元一次不等式的实际应用1.建设“新丝绸之路经济带”和“21世纪海上丝绸之路”的战略构想,强调相关各国要打造互利共赢的“利益共同体”和共同发展繁荣的“命运共同体”.某国有企业在“一带一路”的战略合作中,向东南亚销售A 、B 两种外贸产品共6万吨.已知A 种外贸产品每吨800元,B 种外贸产品每吨400元.若A 、B 两种外贸产品销售额不低于3 200万元,则至少销售A 产品多少万吨?解:设销售A 产品x 万吨.根据题意,得 800x +400(6-x)≥3 200. 解得x ≥2.答:至少销售A 产品2万吨.2.(来宾中考)已知购买一个足球和一个篮球共需130元,购买2个足球和一个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4 000元,问最多可买多少个篮球? 解:(1)设每个足球的售价为x 元,每个篮球的售价为y 元.根据题意,得⎩⎪⎨⎪⎧x +y =130,2x +y =180. 解得⎩⎪⎨⎪⎧x =50,y =80. 答:每个足球和每个篮球的售价分别为50元、80元. (2)设可购买z 个篮球.根据题意,得 50(54-z)+80z ≤4 000.解得z ≤1303.∵z 取整数,∴z 最大可取43.答:最多可买43个篮球.3.2017年的5月20日是第17个中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息(如图),若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,这份快餐最多含有多少克的蛋白质?信 息1.快餐成分:蛋白质、脂肪、碳水化合物和其他. 2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.解:设这份快餐含有x 克的蛋白质.根据题意,得x +4x ≤400×70%.解得x ≤56.答:这份快餐最多含有56克的蛋白质.4.(玉林中考)蔬菜经营户老王近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少钱?(2)今天因进价不变,老王仍用10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)解:(1) 设老王批发青菜x 市斤,西兰花y 市斤,根据题意,得⎩⎪⎨⎪⎧x +y =200,2.8x +3.2y =600.解得⎩⎪⎨⎪⎧x =100,y =100. (4-2.8)×100+(4.5-3.2)×100=250(元). 答:当天售完后老王一共能赚250元钱. (2)设青菜的售价定为a 元,根据题意,得 100×(1-10%)a +4.5×100-600≥250. 解得a ≥409≈4.44.答:青菜售价至少定为4.5元/市斤.小专题(七) 一次函数的图象与性质类型1 一次函数的图象与字母系数的关系1.在平面直角坐标系中,正比例函数y =kx(k<0)的图象可能是(C )2.(怀化中考)一次函数y =kx +b(k ≠0)在平面直角坐标系中的图象如图所示,则k 和b 的取值范围是(C )A .k >0,b >0B .k <0,b <0C .k <0,b >0D .k >0,b <0第2题图 第3题图3.(江山期末)已知一次函数y =kx +b 的图象如图所示,则下列语句中不正确的是(B )A .函数值y 随x 的增大而增大B .当x >0时,y >0C .k +b =0D .kb <04.已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是(C )5.已知一次函数y =(2k -1)x +b -1的图象经过第一、二、四象限,则k ,b 的取值范围为(B )A .k>12,b>1B .k<12,b>1C .k>12,b<1D .k<12,b<16.对于一次函数y =kx +b ,其中b 实际是该函数的图象与y 轴交点的纵坐标.在画图实践中我们发现当k>0,b>0时,其图象经过第一、二、三象限.请你随意画几个一次函数的图象继续探究:(1)当b>0时,图象与y 轴的交点在x 轴上方;当b<0时,图象与y 轴的交点在x 轴下方;(2)当k 、b 取何值时,图象经过第一、三、四象限?第一、二、四象限?第二、三、四象限?请写出你的探究结论和同伴交流.解:当k>0,b<0时,图象经过第一、三、四象限; 当k<0,b>0时,图象经过第一、二、四象限; 当k<0,b<0时,图象经过第二、三、四象限.7.一次函数y =mx +n 的图象如图所示.(1)试化简代数式:m 2-|m -n|;(2)若点(-2,a),(3,b)在函数图象上,比较a ,b 的大小.解:(1)由图象可知,m <0,n >0, 所以m -n<0.所以m 2-|m -n|=-m +m -n =-n.(2)因为一次函数y =mx +n 的图象从左往右逐渐下降, 所以y 随x 的增大而减小.又因为点(-2,a),(3,b)在函数图象上,且-2<3,所以a >b.类型2 一次函数图象上点的坐标特征8.(遂宁中考)直线y =2x -4与y 轴的交点坐标是(D )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)9.一次函数y =5x -2的图象经过点A(1,m),如果点B 与点A 关于y 轴对称,那么点B 所在的象限是(B )A .第一象限B .第二象限C .第三象限D .第四象限10.已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y =-3x +2上,则y 1,y 2,y 3的大小关系是(A )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 3>y 1D .y 3>y 2>y 111.(钦州中考)一次函数y =kx +b(k ≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第三象限.12.(株洲中考)已知直线y =2x +(3-a)与x 轴的交点在A(2,0),B(3,0)之间(包括A ,B 两点),则a 的取值范围是7≤a ≤9.类型3 一次函数表达式的确定13.(金华金东区期末)将直线y =2x 向右平移2个单位长度所得的直线的表达式是(C )A .y =2x +2B .y =2x -2C .y =2(x -2)D .y =2(x +2)14.如图,A 、B 两点在坐标平面上,已知A(-3,0),B(0,-4),那么直线AB 关于y 轴对称的直线表达式为(B )A .y =-43x -4B .y =43x -4C .y =43x +4D .y =-43x +415.(江山期末)一次函数的图象经过M(3,2),N(-1,-6)两点.(1)求函数表达式;(2)请判定点A(1,-2)是否在该一次函数图象上,并说明理由. 解:(1)设y =kx +b(k ≠0),将点(3,2)(-1,-6)代入,得⎩⎨⎧2=3k +b ,-6=-k +b ,解得⎩⎪⎨⎪⎧k =2,b =-4. ∴y =2x -4.(2)当x =1时,y =2×1-4=-2, ∴点A(1,-2)在一次函数图象上.16.(益阳中考)如图,直线l 上有一点P 1(2,1),将点P 1先向右平移1个单位长度,再向上平移2个单位长度得到像点P 2,点P 2恰好在直线l 上.(1)写出点P 2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位长度,再向上平移6个单位长度得到像点P 3.请判断点P 3是否在直线l 上,并说明理由.解:(1)P 2(3,3).(2)设直线l 所表示的一次函数的表达式为y =kx +b(k ≠0). 因为点P 1(2,1),P 2(3,3)在直线l 上,所以⎩⎨⎧2k +b =1,3k +b =3,解得⎩⎪⎨⎪⎧k =2,b =-3.所以直线l 所表示的一次函数的表达式为y =2x -3.(3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9). 因为2×6-3=9, 所以点P 3在直线l 上.小专题(八) 一次函数与方程、不等式的综合应用类型1 一次函数与一元一次方程的综合应用 1.方程2x +12=0的解是直线y =2x +12(C )A .与y 轴交点的横坐标B .与y 轴交点的纵坐标C .与x 轴交点的横坐标D .与x 轴交点的纵坐标2.已知方程kx +b =0的解是x =3,则函数y =kx +b 的图象可能是(C )A B C D3.一次函数y =kx +b(k ,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx +b =0的解为(A )A .x =-1B .x =2C .x =0D .x =3第3题图 第4题图4.如图,已知直线y =3x +b 与y =ax -2的交点的横坐标为-2,则关于x 的方程3x +b =ax -2的解为x =-2. 5.已知方程3x +9=0的解是x =-3,则函数y =3x +9与x 轴的交点坐标是(-3,0),与y 轴的交点坐标是(0,9).类型2 一次函数与二元一次方程组的综合应用6.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是(B )A .⎩⎪⎨⎪⎧x =-2y =-4B .⎩⎪⎨⎪⎧x =-4y =-2 C .⎩⎪⎨⎪⎧x =2y =-4D .⎩⎪⎨⎪⎧x =-4y =2第6题图 第7题图7.如图,两条直线l 1和l 2的交点坐标可以看作下列哪个方程组中的解(B )A .⎩⎪⎨⎪⎧y =2x +1y =x +2B .⎩⎪⎨⎪⎧y =-x +3y =3x -5C .⎩⎪⎨⎪⎧y =-2x +1y =x -1D .⎩⎪⎨⎪⎧y =-2x +1y =x +1 8.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y)恰好是两条直线的交点坐标,则这两条直线的表达式是(C )A .y =x +9与y =23x +223B .y =-x +9与y =23x +223C .y =-x +9与y =-23x +223D .y =x +9与y =-23x +2239.利用一次函数的图象解二元一次方程组:⎩⎪⎨⎪⎧x +y =1,2x -y =5.解:根据图象可得出方程组⎩⎪⎨⎪⎧y =-x +1,y =2x -5的解是⎩⎪⎨⎪⎧x =2,y =-1.10.在平面直角坐标系中,直线l 1经过点(2,3)和点(-1,-3),直线l 2经过原点O ,且与直线l 1交于点P(-2,a).(1)求a 的值;(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设直线l 1与y 轴交于点A ,试求出△APO 的面积. 解:(1)设直线l 1的表达式为y =kx +b , ∵直线l 1经过(2,3)和(-1,-3),∴⎩⎪⎨⎪⎧2k +b =3,-k +b =-3.解得⎩⎪⎨⎪⎧k =2,b =-1. ∴直线l 1的表达式为y =2x -1.把P(-2,a)代入y =2x -1,得a =2×(-2)-1=-5.(2)设直线l 2的表达式为y =mx ,把P(-2,-5)代入,得-5=-2m ,解得m =52.∴直线l 2的表达式为y =52x.∴(-2,-5)可以看作是二元一次方程组⎩⎪⎨⎪⎧y =2x -1,y =52x 的解.(3)对于y =2x -1,令x =0,解得y =-1,则A 点坐标为(0,-1). ∴S △APO =12×2×1=1.11.(青岛中考)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l 1和l 2分别表示甲、乙两人跑步的路程y(m )与甲跑步的时间x(s )之间的函数关系,其中l 1的关系式为y 1=8x ,问甲追上乙用了多长时间?解:设l 2的关系式为y 2=kx +b(k ≠0),根据题意,可得方程组⎩⎪⎨⎪⎧10=b ,22=2k +b.解得⎩⎪⎨⎪⎧k =6,b =10.∴y 2=6x +10.当y 1=y 2时,8x =6x +10,解得x =5.答:甲追上乙用了5 s .类型3 一次函数与不等式的综合应用12.一次函数y =kx +b(k ≠0)的图象如图所示,当kx +b <0时,x 的取值范围是(D )A .x <0B .x >0C .x <2D .x >2第12题图 第14题图 13.对于函数y =-x +4,当x >-2时,y 的取值范围是(D )A .y <4B .y >4C .y >6D .y <614.如图,函数y =2x -4与x 轴、y 轴分别交于点(2,0),(0,-4),当-4<y <0时,x 的取值范围是(C )A .x <-1B .-1<x <0C .0<x <2D .-1<x <215.(杭州开发区期末)一次函数y =kx +b(k ≠0)的图象如图所示,当y <0时,自变量x 的取值范围是(A )A .x <-2B .x >-2C .x >2D .x <2第15题图 第16题图16.(绍兴五校联考期末)直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b<k 2x +c 的解集为x<1.17.已知函数y 1=kx -2和y 2=-3x +b 相交于点A(2,-1).(1)求k 、b 的值,在同一坐标系中画出两个函数的图象;(2)利用图象求出:当x 取何值时有:①y 1<y 2;②y 1≥y 2;(3)利用图象求出:当x 取何值时有:①y 1<0且y 2<0;②y 1>0且y 2<0. 解:(1)k =12,b =5.图象略.(2)①当x<2时,y 1<y 2. ②当x ≥2时,y 1≥y 2.(3)①当53<x<4时,y 1<0且y 2<0.②当x>4时,y 1>0且y 2<0.小专题(九)分段函数1.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是(A )第1题图第2题图2.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费(A )A.0.4元B.0.45 元C.约0.47元D.0.5元3.如图是某工程队在一项修筑公路的工程中,修筑的公路长度y(米)与时间x(天)之间的关系函数(图象为折线).根据图象提供的信息,可知到第七天止,该工程队修筑的公路长度为(D )A.630米B.504米C.480米D.450米第3题图第4题图4.(绍兴五校联考期末)小波、小威从学校出发到青少年宫参加书法比赛,小波步行一段时间后,小威骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小波出发时间t(分)之间的函数关系如图所示.下列说法:①小威先到达青少年宫;②小威的速度是小波速度的2.5倍;③a=24;④b=480.其中正确的是(B ) A.①②③B.①②④C.①③④D.①②③④5.(江山期末)在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间x(小时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.。
八年级物理上学期计算题汇总1、如图所示,轿车从某地往大同方向匀速行驶,当到达A地时,车内的钟表显示为8时03分,到达B地时,钟表显示为8时33分.求:(1)轿车从A地到B地的速度;(2)轿车若以该速度继续匀速行驶,从B地到达大同需要多长时间?(3)若该轿车每100km消耗的汽油为9L,已知汽油的密度为ρ=0.71×103 kg/m3.则轿车从B地到达大同需要消耗的汽油质量是多少?2、如图所示是我国自主研发的战略重型运输机“运20”,能跻身全球十大运力最强运输机之列,它对于推进我国经济和国防现代化建设,应对抢险救灾,人道主义援助等紧急情况,具有重要意义.求:(1)该机的最大速度约为700km/h,从我国广州到澳大利亚珀斯的距离大约为6160km,该机从广州飞到珀斯至少需要多长时间?(2)该机有14个轮子,每个轮子与地面的接触面积约为0.2m2,某次试飞时的总质量约为2.1×105kg,该机静止在水平跑道上时对地面的压强约为多少?该机从地面飞到10000米高空时,克服重力所做的功约为多少?(g 取10N/kg)3、汽车遇到意外情况时,紧急停车要经历司机的反应和制动两个过程,汽车在司机的反应过程中做匀速直线运动,在司机的制动过程中做变速直线运动,如图所示。
若汽车以20m/s的速度在平直的公路上行驶,紧急停车时,在反应过程中汽车行驶了14m,制动过程中所用的时间为2.3s。
汽车在这两个过程中通过的总距离为30m。
(1)当你乘坐在此行驶的汽车上时,紧急停车时,以自己为参照物,司机是(填“静止的”或“运动的”);(2)汽车在反应过程中所用的时间为多少;(3)紧急停车全过程的平均速度为多少;(4)冬天坐汽车时,经常发现在汽车前挡风玻璃上出现“雾气”,打开暖风可消除,试说明其中的道理。
4、如图所示,轿车从某地往南宁方向匀速行驶,当到达A地时,车内的钟表显示为10时15分,到达B地时,钟表显示为10时45分.求:(1)轿车从A地到B地的速度;(2)轿车若以该速度继续匀速行驶,从B地到达南宁需要多长时间?(3)若该轿车每100 km消耗的汽油为8 L,已知汽油的密度为ρ=0.71×103 kg/m3 .则轿车从B地到达南宁需要消耗的汽油质量是多少?5、(6分)山地自行车具有节能环保、灵活方便和安全系数高等优点.因此,它越来越受到驴友们的青睐,是驴友健身、郊游出行的首选工具.已知车架由碳纤维制成,其体积为2500cm3,车架质量为5kg,整车质量为10kg.问:(1)该车架的密度是多少?(2)双休日,冬冬到城外郊游,匀速骑行了3km,用时10min,则他骑行的速度是多少?7、一辆装有6m3河沙的卡车经全长861m的杨柳河大桥,把河沙从海城运到鞍山。
八年级上期末计算题复习一、计算题(共6小题)1. [一般] 如图所示,底面积为S的圆柱形容器甲中装有适量的水,将密度均匀的体积为V的木块A放入水中静止时,有的体积露出水面,如图乙所示,此时水对容器底部的压强比图甲水对容器底部的压强增大了P1.若在木块A上表面再轻放一个质量为m1的物块,静止时木块A仍有部分体积露出水面,如图丙所示,此时水对容器底部的压强比图甲中水对容器底部的压强增加了P2.若将容器中的水换成另一种液体,在木块A上表面轻放一个质量为m2的物块,静止时使木块A露出液面部分与丙图相同,如图丁所示。
若m1:m2=5:1,P1:P2=3:4,求:(1)在乙图中,画出木块A的所受力的示意图。
(2)在木块A上表面轻放一个质量为m1的物块静止时(如图丙所示),求木块A浸入水中体积V′:V的比值是多少?(3)另一种液体的密度为多少?2. [一般] 如图所示,用细线将正方体A和物体B相连放入水中,两物体静止后恰好悬浮,此时A上表面到水面的高度差为0.12m。
已知A的体积为1.0×10﹣3m3,所受重力为8N;B的体积为0.5×10﹣3m3.(水的密度ρ水=1.0×103kg/m3,g取10N/kg)求:(1)水对正方体A上表面的压强;(2)物体B的重力;(3)细线对物体B的拉力。
3. [一般] 如图甲所示,将一底面积为0.01m2的长方体木块用细线栓在个空容器的底部,然后向容器中缓慢加水直到木块上表面与液面相平。
在此整个过程中,木块底部受到水的压强随容器中水的深度的变化如图乙所示,(g取10Nkg)求:①木块重力是多少?②细线对木块的最大拉力是多少?4. [一般] 今年初,“ofo共享单车”现身扬州街头。
ofo小黄车是一个无桩共享单车出行平台,缔造了“无桩单车共享”模式,致力于解决城市出行问题,它具有节能环保,随取随用、随时随地停靠方便快捷和安全系数高等优点。
因此,它越来越受到市民的青睐,是出行的工具之一。
北师大版数学八年级上册期末复习代数、方程、函数计算训练1.(1)(2)2.计算:(1)|﹣|×()﹣1﹣(π+)0﹣(﹣1)2020﹣|﹣| (2)(+2)(﹣3)+(﹣)(+)3.计算:(1)+3﹣5;(2);(3).4.计算:(1)(2)5.计算:+|﹣1|﹣.6.解方程组:(1)(2)7.解方程组:(1)(2)8.解方程组:(1)(2)9.解方程组:(1);(2).10.解下列方程组:(1)(2)11.如图,已知自行车与摩托车从甲地开往乙地,OA与BC分别表示自行车、摩托车与甲地距离s(千米)和自行车出发时间t(小时)的关系.根据图象回答:(1)摩托车每小时行驶千米,自行车每小时行驶千米;(2)自行车出发后小时,两车相遇;(3)求摩托车出发多少小时时,两车相距15千米?12.甲乙两位老师同住一小区,该小区与学校相距2000米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,骑行若干米到达还车点后,立即步行走到学校.已知乙骑车的速度为170米/分,甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA 与折线B﹣C﹣D分别表示甲、乙离小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给的信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求直线BC的解析式;(3)在图2中,画出当20≤x≤25时,s关于x的函数的大致图象.13.甲、乙两人在净月大街上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA﹣AB﹣BC ﹣CD所示.(1)甲的速度为米/分,乙的速度为米/分;乙用分钟追上甲;乙走完全程用了分钟.(2)请结合图象再写出一条信息.14.轿车和货车同时从甲地出发驶往乙地,轿车到达乙地后立即返回甲地,货车到达乙地后停止.如图所示,y1、y2分别表示货车、轿车离甲地的距离(千米)与轿车所用时间(小时)的关系.(1)求y1与x之间的函数关系式;(2)当轿车从乙地返回甲地的途中与货车相遇时,求相遇处到甲地的距离.15.如图(1)所示,在A、B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地,如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x (小时)之间的函数关系的图象.(1)求图中a的值以及AB两地的距离;(2)求线段PM、MN所对应的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?参考答案1.解:(1)原式=2﹣5+3﹣=;(2)原式=3﹣2+2﹣3﹣3。
八年级上册计算专题(期末复习)work Information Technology Company.2020YEAR八年级上册计算专题(期末复习)一.与速度有关的计算类型题1.声音遇到障碍物能反射回来。
一个同学向一口枯井的井底大喊一声,经过1.5秒听到回声,那么这口枯井的深度大约是多少米?2.小明在跑百米时前50m用时6s,后50m用时7s,小明前、后50及百米全程的平均速度各是多少?3(2013佛山)张先生驾车从广州到肇庆旅游,汽车以90Km/h的平均速度行驶0.5h到达三水,休息0.5h后,再以80Km/h的平均速度行驶1h到达肇庆。
请求:(1)广州到三水,汽车行驶的路程是多少Km(2)广州到肇庆,汽车的平均速度是多少Km/h4、“五一”假期,小明一家驾车外出旅游。
一路上,小明注意到了如右上图所示交通标志牌的标志,则(1)请你说出这两个数据的含义,“40”的含义:,“上桥18km”的含义:(2)在遵守交通规则的前提下,试计算从标志牌到上桥最快需要用几分钟?(3)如果小明的爸爸驾车通过标志所示的这段路程用时20min,则汽车的平均速度为多少km/h,是否超速度(4)你对小明的爸爸有什么忠告?5、已知一辆汽车在合宁高速公路上行驶,一位乘客在车到如图8所示的A处时,看了一下手表,时间正好是8时整;当车到B处时,他又看了一下手表,时间是8时48分.则(1)汽车从A地到B地所用时间是多少小时?(2)汽车从A地到B地的速度为多少千米/小时?(3)若汽车仍以该速度匀速行驶,从B地到达南京需要多长时间?6.一列队长360m的军队匀速通过一条长1.8km的大桥,测得军队完全通过大桥用时9min,求:(1)军队前进的速度(2)这列军队全部在大桥上行走的时间7.喜羊羊发现后方100m处的灰太狼正以15m/s的速度向自己猛扑过来,此时喜羊羊与前方的羊村相距200m。
问:喜羊羊至少要用多大的速度才能安全跑进羊村?28、北京南站到上海虹桥站的G11次高速列车运行时刻表(2011)如下表所示。
八年级上册计算专题(期末复习)
一.与速度有关的计算类型题
1.声音遇到障碍物能反射回来。
一个同学向一口枯井的井底大喊一声,经过1.5秒听到回声,那么这口枯井的深度大约是多少米?
2.小明在跑百米时前50m用时6s,后50m用时7s,小明前、后50及百米全程的平均速度各是多少?
3(2013佛山)张先生驾车从广州到肇庆旅游,汽车以90Km/h的平均速度行驶0.5h到达三水,休息0.5h后,再以80Km/h的平均速度行驶1h到达肇庆。
请求:(1)广州到三水,汽车行驶的路程是多少Km?(2)广州到肇庆,汽车的平均速度是多少Km/h?
4、“五一”假期,小明一家驾车外出旅游。
一路上,小明
注意到了如右上图所示交通标志牌的标志,则
(1)请你说出这两个数据的含义,“40”的含
义:,
“上桥18km”的含义:
(2)在遵守交通规则的前提下,试计算从标志牌到上桥最快需要用几分钟?
(3)如果小明的爸爸驾车通过标志所示的这段路程用时20min,则汽车的平均速度为多少km/h?,是否超速度?(4)你对小明的爸爸有什么忠告?
5、已知一辆汽车在合宁高速公路上行驶,一位乘客在车到如图
8所示的A处时,看了一下手表,时间正好是8时整;当车到B处时,他又看了一下手表,时间是8时48分.则
(1)汽车从A地到B地所用时间是多少小时?
(2)汽车从A地到B地的速度为多少千米/小时?
(3)若汽车仍以该速度匀速行驶,从B地到达南京需要多长时间?
6.一列队长360m的军队匀速通过一条长1.8km的大桥,测得军队完全通过大桥用时9min,求:(1)军队前进的速度?(2)这列军队全部在大桥上行走的时间?
7.喜羊羊发现后方100m处的灰太狼正以15m/s的速度向自己猛扑过来,此时喜羊羊与前方的羊村相距200m。
问:喜羊羊至少要用多大的速度才能安全跑进羊村?
8、北京南站到上海虹桥站的
G11次高速列车运行时刻表
(2011)如下表所示。
根据列车运行时刻表回答下
列问题(要有详细的计算过
程):(1)列车由北京南站
驶往上海虹桥站全程的平均速度是多少?
(2)列车在济南西到南京南、南京南到上海虹桥这两个路段的运行过程中,哪个路段运行得快?
二.与密度速度有关的计算类型题
1.一个澡盆大致是长方体,长,宽,高分别是1.2m,0.5m,0.3m,它最多能装多少千克的水?
2(2013•湘西州)纯牛奶的密度为(1.1~1.2)×103kg/m3,李明很想知道学校每天营养餐中的牛
奶是不是纯牛奶.他和几个同学根据所学密度知识进行了如下测定:首先用天平称出一盒牛奶的质量是250g,喝完再称得空盒质量是26g,然后认真观察牛奶盒,发现牛奶的净含量是200ml.问:经他们检测计算同学们喝的牛奶是否符合纯牛奶标准?(1mL=1cm3)
3.一捆铜线,质量是89kg,铜线的横截面积是25mm2.不用尺量,你能知道这捆铜线的长度吗?它有多长?
4.建筑工地需用沙石400m3,若用载重4t 的卡车运送,需运多少车?(ρ沙=2.6×103kg/m3)
5. 1cm3的冰块熔化成水后,质量是多少?体积是多少?
6.一个容积为2.5L的瓶子,用它装水,最多能装 kg的水,用它装植物油最多能装
kg的植物油(ρ植物油=0.9×103kg/m3)
7(2012江西)我省富“硒”的矿泉水资源非常丰富.如果要将其开发为瓶装矿泉水,且每瓶净装550g,则:(1)每个矿泉水瓶的容积至少是多少ml?
(2)若用该矿泉水瓶来装满家庭常用的酱油,装满后至少能装多少g的酱油?
(ρ矿泉水=1.0x103kg/m3,ρ酱油=1.1x103kg/m3)
8.人类在新材料探索的道路上总进行着不懈的努力,世界上密度最小的固体“气凝胶”就是新材料探索的重要成果,该物质的坚固耐用程度不亚于钢材,且能承受1400℃的高温,而密度只有3kg /m3。
已知某大型飞机采用现在盛行的超高强度结构钢( 钢=7.8×103 kg/m3)制造,耗钢130吨;若采用“气凝胶”代替钢材来制造一架同样大小的飞机,则需“气凝胶”的质量为多少? 9(2013齐齐哈尔)一个空瓶子的质量是150g,当装满水时,瓶和水的总质量是400g;当装满另一种液体时,瓶和液体的总质量是350g.则这个瓶子的容积是是多少cm3,液体的密度是多少?
10(2012南通)小明利用天平和量杯测量
某种液体的密度,得到的数据如下表,根
据数据绘出的图象如图所示.则量杯的质
量与液体的密度各是多少?
11、一个容积为3×10-4m3的瓶子内盛有0.2kg的水,一只口渴的乌鸦每次将一块
质量为0.01kg的小石头投入瓶中,当乌鸦投了25块相同的小石子后,水面
升到瓶口,求:(1)瓶内石块的总体积?(2)石块的密度?
12、有一体积为30 cm3的空心铜球,它的质量为178g,(铜的=8.9g/ cm3) 问:(1)它是空心的还是实心的?(2) 如果是空心的, 空心部分体积多大?(3)若在空心部分装满水,求该球的总质量?。