2020-2021学年江苏省无锡市宜兴市八年级下学期期末数学试卷
- 格式:docx
- 大小:313.03 KB
- 文档页数:17
某某省某某市宜兴市2015-2016学年八年级数学上学期期末试题一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中,是轴对称图形的是( )A.(1)(2) B.(1)(3) C.(1)(4) D.(2)(3)2.下列实数中,是无理数的为( )A.B.C.0 D.﹣33.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF 的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E4.满足下列条件的△ABC不是直角三角形的是( )A.a=1、b=2,c=B.a=1、b=2,c=C.a:b:c=3:4:5 D.∠A:∠B:∠C=3:4:55.如图,直线l是一条河,P,Q是两个村庄.计划在l上的某处修建一个水泵站M,向P,Q两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )A.B.C.D.6.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( ) A.2 B.﹣2 C.4 D.﹣47.如图,在平面直角坐标系中,点P坐标为(﹣4,3),以点B(﹣1,0)为圆心,以BP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A.﹣6和﹣5之间B.﹣5和﹣4之间C.﹣4和﹣3之间D.﹣3和﹣2之间8.在平面直角坐标系中,点A(1,1),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为( )A.2 B.3 C.4 D.5二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是__________.10.点A(﹣3,4)关于y轴对称的坐标为__________.11.地球上七大洲的总面积约为149 480 000km2,把这个数值精确到千万位,并用科学记数法表示为__________.12.函数中自变量x的取值X围是__________.13.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=__________°.14.如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,则AF的长为__________.15.如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为__________.16.如图,直线y=kx+b与x轴交于点(2,0),若y<0时,则x的取值X围是__________.17.已知点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,则点P的坐标为__________.18.函数y=kx+b(k≠0)的图象平行于直线y=3x+2,且交y轴于点(0,﹣1),则其函数表达式是__________.19.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为__________.三、解答题:(本大题满分54分,解答需写必要演算步骤)20.计算:(1)计算:+﹣(2)求4x2﹣9=0中x的值.(3)求(x﹣1)3=8中x的值.21.已知某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2.求﹣b﹣a的算术平方根.22.如图,四边形ABCD的对角线AC与BD相交于点O,AB=AD,CB=CD.求证:(1)△ABC≌△ADC;(2)AC垂直平分BD.23.近年来,某某省实施“村村通”工程和农村医疗卫生改革,宜兴市计划在某镇的X村、李村之间建一座定点医疗站P,X、李两村座落在两相交公路内(如图所示),医疗站必须满足下列条件:①使其到两公路的距离相等;②到X、李两村的距离也相等.请你利用尺规作图确定P点的位置.(不写作法,保留作图痕迹)24.如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的顶点称为格点.在①、②两个网格中分别标注了5个格点,按下列要求画图:在图①图②中以5个格点中的三个格点为顶点,各画一个成轴对称的三角形;并计算它的面积分别等于__________ 与__________.25.如图,一次函数y=(m+1)x+的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP的函数表达式.26.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.27.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息回答下列问题:(1)甲的速度是__________千米/小时,乙比甲晚出发__________小时;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?28.如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是__________;(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.2015-2016学年某某省某某市宜兴市八年级(上)期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中,是轴对称图形的是( )A.(1)(2) B.(1)(3) C.(1)(4) D.(2)(3)【考点】轴对称图形.【分析】根据轴对称图形的概念对各小题分析判断即可得解.【解答】解:(1)是轴对称图形,(2)不是轴对称图形,(3)不是轴对称图形,(4)是轴对称图形;综上所述,是轴对称图形的是(1)(4).故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列实数中,是无理数的为( )A.B.C.0 D.﹣3【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是无理数,选项正确;B、是分数,是有理数,选项错误;C、是整数,是有理数,选项错误;D、是整数,是有理数,选项错误.故选A.【点评】此题主要考查了无理数的定义,其中初中X围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF 的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可.【解答】解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选B.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.4.满足下列条件的△ABC不是直角三角形的是( )A.a=1、b=2,c=B.a=1、b=2,c=C.a:b:c=3:4:5 D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理对A、B、C进行逐一判断,再利用三角形内角和定理可得D 选项中最大角的度数,进而可进行判断.【解答】解:A、∵12+()2=22,∴能构成直角三角形,故本选项不符合要求;B、∵12+22=()2,∴能构成直角三角形,故本选项不符合要求;C、∵32+42=52,∴能构成直角三角形,故本选项不符合要求;D、∵180°×=5°,∴不能构成直角三角形,故本选项符合要求.故选:D.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.如图,直线l是一条河,P,Q是两个村庄.计划在l上的某处修建一个水泵站M,向P,Q两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )A.B.C.D.【考点】轴对称-最短路线问题.【分析】用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点P关于直线l的对称点P′,连接QP′交直线l于M.根据两点之间,线段最短,可知选项B修建的管道,则所需管道最短.故选D.【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.6.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( ) A.2 B.﹣2 C.4 D.﹣4【考点】正比例函数的性质.【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B【点评】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0,图象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y值随x的增大而减小.7.如图,在平面直角坐标系中,点P坐标为(﹣4,3),以点B(﹣1,0)为圆心,以BP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A.﹣6和﹣5之间B.﹣5和﹣4之间C.﹣4和﹣3之间D.﹣3和﹣2之间【考点】勾股定理;估算无理数的大小;坐标与图形性质.【分析】先根据勾股定理求出BP的长,由于BA=BP,得出点A的横坐标,再估算即可得出结论.【解答】解:∵点P坐标为(﹣4,3),点B(﹣1,0),∴OB=1,∴BA=BP==3,∴OA=3+1,∴点A的横坐标为﹣3﹣1,∵﹣6<﹣3﹣1<﹣5,∴∴点A的横坐标介于﹣6和﹣5之间.故选:A.【点评】本题考查了勾股定理、估算无理数的大小、坐标与图形性质,根据题意利用勾股定理求出BP的长是解答此题的关键.8.在平面直角坐标系中,点A(1,1),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为( )A.2 B.3 C.4 D.5【考点】等腰三角形的判定;坐标与图形性质.【分析】首先根据线段的中垂线上的点到线段两端点的距离相等,求出AB的中垂线与x轴的交点,即可求出点C1的坐标;然后再求出AB的长,以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;最后判断出以点B为圆心,以AB的长为半径画弧,与x轴没有交点,据此判断出点C的个数为多少即可.【解答】解:如图,∵AB所在的直线是y=x,∴设AB的中垂线所在的直线是y=﹣x+b,∵点A(1,1),B(3,3),∴AB的中点坐标是(2,2),把x=2,y=2代入y=﹣x+b,解得b=4,∴AB的中垂线所在的直线是y=﹣x+4,∴C1(4,0)以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;AB==2,∵2<3,∴以点B为圆心,以AB的长为半径画弧,与x轴没有交点.综上,可得若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为3.故选:B.【点评】此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是±4.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.点A(﹣3,4)关于y轴对称的坐标为(3,4).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:点A(﹣3,4)关于y轴对称的坐标为(3,4).故答案为:(3,4);【点评】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.11.地球上七大洲的总面积约为149 480 000km2,把这个数值精确到千万位,并用科学记数法表示为1.5×108.【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.函数中自变量x的取值X围是x≥2.【考点】函数自变量的取值X围.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值X围,考查的知识点为:二次根式的被开方数是非负数.13.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=15°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴A D=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.14.如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,则AF的长为3.【考点】全等三角形的判定与性质.【分析】先证出∠DBF=∠DAC,由AAS证明△BDF≌△ADC,得出对应边相等AD=BD=BC﹣CD=5,DF=CD=2,即可得出AF的长.【解答】解:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠DAC+∠C=90°,∴∠DBF=∠DAC,在△BDF与△ADC中,∴△BDF≌△ADC(ASA),∴AD=BD=BC﹣CD=7﹣2=5,DF=CD=2,∴AF=AD﹣DF=5﹣2=3;故答案为:3.【点评】本题考查了全等三角形的判定和性质;证明三角形的全等得出对应边相等是解此题的关键.15.如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为48.【考点】勾股定理.【分析】分别在两个直角三角形中求得线段BD和线段CD的长,然后求得BC的长,从而求得周长.【解答】解:在直角三角形ABD中,AB=17,AD=8,根据勾股定理,得BD=15;在直角三角形ACD中,AC=10,AD=8,根据勾股定理,得CD=6;∴BC=15+6=21,∴△ABC的周长为17+10+21=48,故答案为:48.【点评】此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度,本题因给出了图形,故只有一种情况.16.如图,直线y=kx+b与x轴交于点(2,0),若y<0时,则x的取值X围是x>2.【考点】一次函数与一元一次不等式.【分析】根据函数的图象直接解答即可.【解答】解:由直线y=kx+b的图象可知,当x>2时函数的图象在x轴的下方.故答案为x>2.【点评】此题考查了一次函数与不等式,利用数形结合是解题的关键.17.已知点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,则点P的坐标为(﹣2,4).【考点】点的坐标.【分析】直接利用第二象限点的坐标性质结合到y轴的距离为2,得出a的值,进而得出点P的坐标.【解答】解:∵点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,∴a﹣1=﹣2,解得:a=﹣1,∴a+5=4,则点P的坐标为:(﹣2,4).故答案为:(﹣2,4).【点评】此题主要考查了点的坐标,正确利用坐标性质得出a的值是解题关键.18.函数y=kx+b(k≠0)的图象平行于直线y=3x+2,且交y轴于点(0,﹣1),则其函数表达式是y=3x﹣1.【考点】两条直线相交或平行问题.【分析】根据平行直线的解析式求出k值,再把点的坐标代入解析式求出b值,即可得解.【解答】解:∵y=kx+b的图象平行于直线y=3x+2,∴k=3,又∵与y轴的交点坐标为(0,﹣1),∴b=﹣1,∴函数的表达式是y=3x﹣1.故答案为:y=3x﹣1.【点评】本题考查了两直线平行的问题,根据平行直线的解析式的k值相等求出k的值是解题的关键,也是本题的难点.19.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为(,0).【考点】轴对称-最短路线问题;坐标与图形性质.【分析】作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.利用待定系数法求出直线AB′的解析式,然后求出其与x轴交点的坐标,即M点的坐标.【解答】解:如图,作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.此时AM﹣BM=AM﹣B′M=AB′.不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B′.则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.∵B′是B(3,﹣1)关于x轴的对称点,∴B′(3,1).设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:,解得,∴直线AB′解析式为y=﹣2x+7.令y=0,解得x=,∴M点坐标为(,0).故答案为:(,0).【点评】本题考查了轴对称﹣﹣最短路线问题、坐标与图形性质.解题时可能感觉无从下手,主要原因是平时习惯了线段之和最小的问题,突然碰到线段之差最大的问题感觉一筹莫展.其实两类问题本质上是相通的,前者是通过对称转化为“两点之间线段最短”问题,而后者(本题)是通过对称转化为“三角形两边之差小于第三边”问题.可见学习知识要活学活用,灵活变通.三、解答题:(本大题满分54分,解答需写必要演算步骤)20.计算:(1)计算:+﹣(2)求4x2﹣9=0中x的值.(3)求(x﹣1)3=8中x的值.【考点】实数的运算;平方根;立方根.【专题】计算题;实数.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解;(3)方程利用立方根定义开立方即可求出x的值.【解答】解:(1)原式=3+3﹣2=4;(2)方程整理得:x2=,开方得:x=±;(3)开立方得:x﹣1=2,解得:x=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.已知某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2.求﹣b﹣a的算术平方根.【考点】平方根;算术平方根;立方根.【分析】根据两个平方根互为相反数进行解答即可.【解答】解:∵某正数的两个平方根分别是a+3和2a﹣15,可得:a+3+2a﹣15=0,解得:a=4,∵b的立方根是﹣2,可得:b=﹣8,把a=4,b=﹣8代入﹣b﹣a=8﹣4=4,所以﹣b﹣a的算术平方根是2.【点评】此题考查平方根问题,关键是根据两个平方根互为相反数得出a的值.22.如图,四边形ABCD的对角线AC与BD相交于点O,AB=AD,CB=CD.求证:(1)△ABC≌△ADC;(2)AC垂直平分BD.【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰三角形的性质.【专题】证明题.【分析】(1)根据SSS定理推出即可;(2)根据全等三角形的性质得出∠BAC=∠DAC,根据等腰三角形的性质得出即可.【解答】证明:(1)∵在△ABC与△ADC中,∴△ABC≌△ADC(SSS);(2)∵△ABC≌△ADC,∴∠BAC=∠DAC,又∵AB=AD,∴AC垂直平分BD.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能求出△ABC≌△ADC是解此题的关键,注意:全等三角形的对应边相等,对应角相等.23.近年来,某某省实施“村村通”工程和农村医疗卫生改革,宜兴市计划在某镇的X村、李村之间建一座定点医疗站P,X、李两村座落在两相交公路内(如图所示),医疗站必须满足下列条件:①使其到两公路的距离相等;②到X、李两村的距离也相等.请你利用尺规作图确定P点的位置.(不写作法,保留作图痕迹)【考点】作图—应用与设计作图.【分析】医疗站到两村的距离相等,所点P在X村与李村所组成线段的垂直平分线上,医疗站到两公路的距离相等,则医疗站在公路夹角的平分线上.【解答】解:如图所示:点P即为所求作的点.【点评】本题主要考查的是作图﹣﹣应用与设计作图,掌握角平分线的性质和线段垂直平分线的性质是解题的关键.24.如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的顶点称为格点.在①、②两个网格中分别标注了5个格点,按下列要求画图:在图①图②中以5个格点中的三个格点为顶点,各画一个成轴对称的三角形;并计算它的面积分别等于4 与.【考点】利用轴对称设计图案.【分析】利用轴对称图形的性质得出符合题意的三角形,再利用三角形面积求法得出答案.【解答】解:如图所示:图①的面积是:3×3﹣×1×3﹣×1×3﹣×2×2=4,图②的面积是:2×3﹣×1×2﹣×1×3﹣×1×2=.故答案为:4,.【点评】此题主要考查了利用轴对称设计图案以及三角形面积求法,正确掌握轴对称图形的性质是解题关键.25.如图,一次函数y=(m+1)x+的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP的函数表达式.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)先利于y=(m+1)x+可求出B(0,),所以OB=,则利用三角形面积公式计算出OA=1,则A(﹣1,0);然后把点A(﹣1,0)代入y=(m+1)x+可求出m的值;(2)利用OP=3OA=3可得到点P的坐标为(3,0),然后利用待定系数法求直线BP的函数解析式.【解答】解:(1)当x=0时,y=(m+1)x+=,则B(0,),所以OB=,∵S△OAB=,∴×OA×OB=,解得OA=1,∴A(﹣1,0);把点A(﹣1,0)代入y=(m+1)x+得﹣m﹣1+=0,∴m=;(2)∵OP=3OA,∴OP=3,∴点P的坐标为(3,0),设直线BP的函数表达式为y=kx+b,把P(3,0)、B(0,)代入得,解得,∴直线BP的函数表达式为y=﹣x+.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.也考查了待定系数法求一次函数解析式.26.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.【考点】翻折变换(折叠问题);勾股定理.【分析】(1)利用翻折变换的性质得出DE垂直平分AB,进而得出∠1=∠2=∠A即可得出答案;(2)利用勾股定理得出CE的长,即可得出CD的长.【解答】解:(1)∵折叠使点A与点B重合,折痕为DE.∴DE垂直平分AB.∴AE=BE,∴∠A=∠1,又∵DE⊥AB,∠C=90°,DE=CE,∴∠1=∠2,∴∠1=∠2=∠A.由∠A+∠1+∠2=90°,解得:∠A=30°;(2)设CE=x,则AE=BE=8﹣x.在Rt△BCE中,由勾股定理得:BC2+CE 2=BE2.即 62+x2=(8﹣x)2,解得:x=,即CE=.【点评】此题主要考查了翻折变换的性质以及勾股定理,根据已知熟练应用勾股定理得出是解题关键.27.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息回答下列问题:(1)甲的速度是5千米/小时,乙比甲晚出发1小时;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?【考点】一次函数的应用.【分析】(1)根据速度,路程,时间三者之间的关系求得结果;(2)设乙的解析式为s=kt+b(k≠0),然后利用待定系数法求解即可;(3)联立两函数解析式,解方程组即可.【解答】解:(1)甲的速度是:20÷4=5,乙比甲晚出发1小时;故答案为:5,1;(2)设甲的解析式为:s=mt,则20=4m,∴m=5,∴甲的解析式为:s=5t,设乙的解析式为s=kt+b(k≠0),则,解得,∴乙的解析式为s=20t﹣20;(3)解得,∴甲经过h被乙追上,此时两人距离B地还有km.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,两直线交点的求法,需熟练掌握并灵活运用是解题的关键.28.如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是(0,);(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.【考点】一次函数综合题.【专题】压轴题;数形结合.【分析】(1)联立方程,解方程即可求得;(2)设P点坐标是(0,y),根据勾股定理列出方程,解方程即可求得;(3)分两种情况:①当Q点在线段AB上:作QD⊥y轴于点D,则QD=x,根据S△OBQ=S△OAB﹣S△OAQ 列出关于x的方程解方程求得即可;②当Q点在AC的延长线上时,作QD⊥x轴于点D,则QD=﹣y,根据S△OCQ=S△OAQ﹣S△OAC列出关于y的方程解方程求得即可.【解答】解:(1)解方程组:得:∴A点坐标是(2,3);(2)设P点坐标是(0,y),∵△OAP是以OA为底边的等腰三角形,∴OP=PA,∴22+(3﹣y)2=y2,解得y=,∴P点坐标是(0,),故答案为(0,);(3)存在;由直线y=﹣2x+7可知B(0,7),C(,0),∵S△AOC=××3=<6,S△AOB=×7×2=7>6,∴Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),当Q点在线段AB上:作QD⊥y轴于点D,如图①,则QD=x,∴S△OBQ=S△OAB﹣S△OAQ=7﹣6=1,∴OB•QD=1,即×7x=1,∴x=,把x=代入y=﹣2x+7,得y=,∴Q的坐标是(,),当Q点在AC的延长线上时,作QD⊥x轴于点D,如图②则QD=﹣y,∴S△OCQ=S△OAQ﹣S△OAC=6﹣=,∴OC•QD=,即××(﹣y)=,∴y=﹣,把y=﹣代入y=﹣2x+7,解得x=,∴Q的坐标是(,﹣),综上所述:点Q是坐标是(,)或(,﹣).【点评】本题是一次函数的综合题,考查了交点的求法,勾股定理的应用,三角形面积的求法等,分类讨论思想的运用是解题的关键.。
2020-2021学年八年级数学下学期期中考试试题时间:90分钟 满分:120分 考试内容:第十六章至第十八章一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020江苏连云港赣榆期末,4,★☆☆)若3-m 为二次根式,则m 的取值范围是 ( )A.m<3B.m≤3C.m≥3D.m>32.(2020江苏盐城期末,5,★☆☆)若a>0,则下列二次根式中,属于最简二次根式的是 ( )A.1aB.1a2 C. aD.a 23.(2020上海浦东新区建平中学期末,2,★☆☆)下列计算正确的是 ( )A.-(-3)2=-3B.(- 3 )2=9C.(-3)2=±3 D.9116 =3144.(2019山西忻州期中,1,★☆☆)下列各式化简后,与3的被开方数相同的是 ( )A.12B.18C.19D.235.如图,每个小正方形的边长为1,四边形的顶点A,B,C,D 都在格点上,则下面4条线段的长度为10 的是( A. ABB.BCC. CDD. AD6.如图,在四边形ABCD 中,∠ABC=90°,AB=3,BC =4,CD =12,AD =13,则四边形ABCD 的面积为 ( )A.72B.36C.66D.427.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,则下列说法正确的是 ( )A. CE =BCB. DE =12ABC.∠AED=∠CD.∠A=∠C8.(2020湖南邵阳隆回期末,5,★☆☆)如图,已知直线a∥b∥c,直线d 与直线a,b,c 分别垂直且相交于A,B,C 三点,若AB =2,AC =6,则平行线b 、c 之间的距离是 ( )A.2B.4C.6D.89.(2020四川眉山东坡学校模拟,11,★★☆)如图,已知菱形ABCD 的对角线AC 、BD 的长分别为10cm 、24cm,AE ⊥BC 于点E,则AE 的长是 ( )A.5 3 cmB.2 5 cmC.24013cm D.1201310.(2020四川宜宾叙州期末,12,★★☆)如图正方形ABCO 和正方形DEFO 的顶点A,E,0在同一直线l 上,且EF =2 ,AB =3,给出下列结论:①∠COD=45°,②AE=5,③CF=BD =17 ,④△COF 的面积S △CDF =3,其中正确结论 的个数为 ( )A.1B.2C.3D.4二、填空题(本大题共8小题,每小题4分,共32分)11.(2020湖北武汉东湖高新区期末,11,★☆☆)49=________;1-33 的相反数为________; 3 -2 =________12.(2020福建厦门湖里五缘实验学校期末,13,☆☆)在□ABCD 中,∠C:∠D=5:4,则∠B 的度数为________ 13.已知△ABC 的三边长分别为a,b,c,且a,满足b =5-a +a -5 +12,c =13,则S △A BC =________14.如图,∠CAB=30°,点D 在射线AB 上,且AD =4,点P 在射线AC 上运动,当△ADP 是直角三角形时,PD 的长为 ________15.(2020广东清远英德期末,16,★★☆)如图,在平行四边形ABCD 中,∠C=42°,过点D 作BC 的垂线DF,交AB 于点E,交CB 的延长线于点F,则∠BEF 的度数为________16.如图,正方形ABCD 的边长是2,对角线AC 、BD 相交于点O,点E 、F 分别在边AD 、AB 上,且OE⊥OF,则四边形 AFOE 的面积为________17.(2020湖南娄底期末,18,★★☆)1+13=213,2+14=314,3+15=415,……观察各式,则第n(n≥1)个等式为________________________。
江苏省无锡市梁溪区大桥实验学校2020-2021学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________ A.B.C.D.+11x3a b二、填空题同,将球摇匀从中任取一球:(1)恰好取出白球;(2)恰好取出红球;(3)恰好取出黄球,根据你的判断,将这些事件按发生的可能性从小到大的顺序排列 ___________(只需填写序号).13.如果四边形的对角线互相垂直,那么顺次连接四边形各边中点所得的四边形是_____.14.如图,矩形ABCD 的对角线交于点O ,点E 在线段AO 上,且DE =DC ,若∠EDO =15°,则∠DEC =______°.15.如图,在正方形ABCD 中,顶点()20A -,,()20B ,,将以BC 为斜边的等腰直角BCEV 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋90︒,则第2021次旋转结束时,点E 的坐标为___________.16.在平面直角坐标系中,已知A 、B 、C 、D 四点的坐标依次为(0,0)、(6,2)、(8,8)、(2,6),若一次函数y =mx -6m +6(m ≠0)的图像将四边形ABCD 的面积分成1:1两部分,则m 的值为_____.17.如图,在菱形ABCD 中,点A 的坐标为(0,5),点C 的纵坐标为1,直线BD 的表达式为y x b =+,交y 轴于点E ,若2BE BD =.则菱形ABCD 的面积为___________..18.如图,在菱形ABCD 中,24AC BD ==,,对角线AC 与BD 交于点O ,延长AC 到点E ,使得CE AC =,连接DE ,取DE 的中点M 、OB 的中点N ,连接MN ,则MN 的长为___________.三、解答题(1)求证:BOC CED V V ≌. (2)求点D 的坐标.(3)若点P 在y 轴上,点Q 在直线AB 上,是否存在以C 、D 、P 、Q 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q 点的坐标;若不存在,请说明理由. 26.折纸不仅是一项有趣的活动,也是一项益智的数学活动.今天,就让我们带着数学的眼光来玩一玩折纸,看着折叠矩形的对角线之后能得到哪些数学结论. 实践操作,解决问题(1)如图1,将矩形纸片ABCD 沿对角线AC 翻折,使点D ¢落在矩形ABCD 所在平面内,边BC 和A D ¢相交于点E .在图1中, ①AE 和EC 的数量关系为___________.。
2020-2021学年江苏省苏州市昆山市、张家港市等四市八年级(下)期中数学试卷一、选择题(共10小题,每题3分,共30分).1.下列医疗或救援标识中是中心对称图形的是()A.B.C.D.2.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调查3.下列二次根式是最简二次根式的是()A.B.C.D.4.如图,已知四边形ABCD是平行四边形,对角线AC、BD交于点O,则下列结论中错误的是()A.当AB=BC时,它是菱形B.当∠ABC=90°时,它是正方形C.当AC=BD时,它是矩形D.当AC⊥BD时,它是菱形5.关于x的分式方程的增根为()A.x=﹣1B.x=0C.x=﹣2D.x=16.若,则a的取值范围是()A.a B.a>C.a<D.a7.在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为()A.2B.2C.4D.48.已知:a2+b2=3ab(a>b>0),则的值为()A.B.3C.D.59.如图,四边形ABCD是平行四边形,点E为AB边中点,点F为对角线BD上一点,且FB=2DF,连接DE、EF、EC,则S△DEF:S△CBE=()A.1:2B.1:3C.2:3D.3:410.已知:如图,△ABC中,∠ACB=90°,AC=BC=4,点D是射线AB上一动点,以CD为一边向左画正方形CDEF,连接DF,取DF中点Q,则BQ的最小值为()A.2B.2C.4D.二、填空题(本大题共8小题,每小题3分,共24分.请将答案填在答题卡相应的位置上)11.计算:=.12.一只不透明的袋子中有1个白球,200个黄球,这些球除颜色外都相同,将球搅匀,从中任意摸出一个球是白球,这一事件是事件.(填“必然”、“随机”、“不可能”)13.一次数学测试后,某班40名学生的成绩被分成5组,第1﹣4组的频数分别为12、10、6、8,则第5组的频数是.14.已知+|2﹣b|=0,则+=.15.已知:如图,在矩形ABCD中,点E在AD边上,且EC平分∠BED,若AB=1,BC =,则∠ECD=°.16.如图,在平面直角坐标系中,矩形OABC边OA、OC在坐标轴上,且OA=4,OC=2.若直线y=kx+4把矩形OABC周长分成相等的两部分,则k=.17.如图,四边形ABCD中,AD∥BC,∠C=90°,AB=AD,连接BD,作∠BAD角平分线AE交BD、BC于点F、E.若EC=3,CD=4,那么AE长为.18.折纸艺术发源于中国,它是一种将纸张折成不同形状图案的艺术活动,在数学中也有不少折纸活动.如图是将正方形纸片折叠成了领带形状的折纸过程.其步骤为:先将CD 边沿CF折叠,D点的对应点为D',再将BC沿CD'折叠,使得B点恰好落在CF边上的B′处折痕与AB边交于E.若正方形边长为,连接EF,则△AEF的面积=.三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.解下列分式方程:(1)=;(2)﹣1=.20.计算:(1)9a•(﹣)(a≥0,b≥0);(2)(+2)×﹣.21.先化简,再求值:•(﹣1)÷,其中a=﹣2.22.为增强学生环保意识,科学实施垃圾分类管理,某中学举行了“垃圾分类知识竞赛”,首轮每位学生答题39题,随机抽取了部分学生的竞赛成绩绘制了不完整的统计图表:组别正确个数x人数A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n 根据以上信息完成下列问题:(1)统计表中的m=,n=;(2)请补全条形统计图;(3)已知该中学共有1500名学生,如果答题正确个数不少于32个的学生进入第二轮的比赛,请你估计本次知识竞赛全校顺利进入第二轮的学生人数有多少个?23.已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF,连接AE,CF.求证:AE=CF.24.江苏南沿江城际铁路,是江苏境内正在建设的一条铁路线路.设计时速350公里,起于南京南站,经南京市、句容市、常州市、江阴市、张家港市、常熟市、太仓市,引入太仓站后利用沪通铁路进入上海枢纽,是沪宁通道的第二条城际铁路(如图).在修筑某长度为1000米的标地时,中铁四局工程队在修筑了400米后,引进了新设备,效率比原来提高了20%,结果共用5天完成了任务,问引进新设备之前,工程队每天改造多少米?25.如图是7×7的正方形网格,△ABC的三个顶点均在格点上,请按要求作图并标上相应字母.(1)在图1中,画出△ABC关于点O成中心对称的△A'B'C′.(2)若△EBC与△ABC面积相等,在图2中描出所有满足条件且不同于A点的格点,并记为E1、E2、….26.如图1,在菱形ABCD中,∠ABC=60°,对角线AC、BD交于点O,P从B点出发,沿B→D→C方向匀速运动,P点运动速度为1cm/s.图2是点P运动时,APC的面积y (cm2)随P点运动时间x(s)变化的函数图象.(1)AB=cm,a=;(2)P点在BD上运动时,x为何值时,四边形ADCP的面积为;(3)在P点运动过程中,是否存在某一时刻使得△APB为直角三角形,若存在,求x 的值:若不存在,请说明理由.27.如果一个分式能化成一个整式与一个分子为常数的分式和的形式,则称这个分式为“和谐分式”.如:,所以是“和谐分式”.请运用这个知识完成下面各题:(1)已知,则m=.(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式.(3)当x为整数时,若也为整数,求满足条件的所有x值的和.28.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E.(1)如图,当α=60°时,连接BD、BE,并延长BE交AD于点F,则BE =;(2)当α=90°时,请画出图形并求出BE的长;(3)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE.当∠DAG =∠ACB,且线段DG与线段AE无公共点时,请猜想四边形AEBC的形状并说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.下列医疗或救援标识中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念,对各选项分析判断即可得解.解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意.故选:A.2.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调查【分析】根据抽样调查的具体性和代表性解答即可.解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调查最具有具体性和代表性,故选:D.3.下列二次根式是最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解:A、=2,能化简,不是最简二次根式,不符合题意;B、=,能化简,不是最简二次根式,不符合题意;C、不能化简,是最简二次根式,符合题意;D、=,能化简,不是最简二次根式,不符合题意;故选:C.4.如图,已知四边形ABCD是平行四边形,对角线AC、BD交于点O,则下列结论中错误的是()A.当AB=BC时,它是菱形B.当∠ABC=90°时,它是正方形C.当AC=BD时,它是矩形D.当AC⊥BD时,它是菱形【分析】利用矩形的判定、正方形的判定及菱形的判定方法分别判断后即可确定正确的选项.解:A、根据邻边相等的平行四边形是菱形可以得到该结论正确;B、当∠ABC=90°时,可以得到平行四边形ABCD是矩形,不能得到正方形,故错误,C、根据对角线相等的平行四边形是矩形可以判断该选项正确;D、根据对角线互相垂直的平行四边形是菱形可以得到该选项正确;故选:B.5.关于x的分式方程的增根为()A.x=﹣1B.x=0C.x=﹣2D.x=1【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到答案.解:∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,故选:D.6.若,则a的取值范围是()A.a B.a>C.a<D.a【分析】直接利用二次根式的性质得出3﹣2a的符号进而得出答案.解:∵,∴3﹣2a≥0,解得:a≤.故选:D.7.在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为()A.2B.2C.4D.4【分析】根据直角三角形的性质求出AB,进而求出AE、EB,根据三角形中位线定理得到DE∥BC,得到∠AED=∠AED=60°,根据等边三角形的判定定理和性质定理解答即可.解:在Rt△ABC中,∠C=90°,∠A=30°,BC=4,∴AB=2BC=8,∠ABC=60°,∵E为AB边上的中点,∴AE=EB=4,∵D、E分别为AC、AB边上的中点,∴DE∥BC,∴∠AED=∠AED=60°,∴∠BEF=∠ABC=60°,在Rt△AED中,∠A=30°,∴AE=2DE,∵EF=2DE,∴AE=EF,∴△BEF为等边三角形,∴BF=BE=4,故选:C.8.已知:a2+b2=3ab(a>b>0),则的值为()A.B.3C.D.5【分析】首先进行配方,得出a+b以及a﹣b的值,进而求出答案.解:∵a>b>0,a2+b2=3ab,∴(a﹣b)2=ab,(a+b)2=5ab,∴a+b>0,a﹣b>0,∴的值为:.故选:A.9.如图,四边形ABCD是平行四边形,点E为AB边中点,点F为对角线BD上一点,且FB=2DF,连接DE、EF、EC,则S△DEF:S△CBE=()A.1:2B.1:3C.2:3D.3:4【分析】根据四边形ABCD是平行四边形,点E为AB边中点,可得S△ADE=S△BDE=S△CBE=S平行四边形ABCD,根据FB=2DF,可得S△BDE=3S△DEF,进而可得结果.解:∵四边形ABCD是平行四边形,点E为AB边中点,∴S△ADE=S△BDE=S△CBE=S平行四边形ABCD,∵FB=2DF,∴S△BDE=3S△DEF,∴S△DEF=S△BDE=S平行四边形ABCD,∴S△DEF:S△CBE=S平行四边形ABCD:S平行四边形ABCD=1:3.故选:B.10.已知:如图,△ABC中,∠ACB=90°,AC=BC=4,点D是射线AB上一动点,以CD为一边向左画正方形CDEF,连接DF,取DF中点Q,则BQ的最小值为()A.2B.2C.4D.【分析】方法一:旋转相似必成对,先证△CQD∽△CMA,两者是旋转相似,再由此可以证明△CQM∽△CDA,所以∠CMQ=∠CAD=45°,得到MQ为∠CMB的角平分线,Q在这条角平分线上运动,根据垂线段最短,当BQ垂直于此条角平分线时,BQ最小,即可解决.方法二:先证明△ACD≌△BCF,得到∠CBF=45°,可以证明△FBD是直角三角形,所以BQ=DF,又利用勾股定理,得到DF=CD,所以当CD最小时,BQ最小,利用垂线段最短,当CD⊥AB时,BQ取得最小值,即可解决.【解答】方法一:解:如图1,取AB的中点M,连接CQ,QM,∵△ABC是等腰直角三角形,∴CM⊥AB,∠CAB=45°,同理,CQ⊥DF,∠CDF=45°,∴∠CQD=∠CMA=90°,∠CDF=∠CAB=45°,∴△CQD∽△CMA,∴,∠QCD=∠MCA,∴∠QCD﹣∠MCD=∠MCA﹣∠MCD,∴∠QCM=∠DCA,∵,∴△CQM∽△CDA,∴∠CMQ=∠BMQ=45°,∴MQ为∠CMB的角平分线,∴Q在∠CMB的角平分线上运动,根据垂线段最短,当BQ垂直于∠CMB的角平分线时,如图2,此时BQ值最小,即∠QBM=∠QMB=45°,∴BQ=MQ,在Rt△ABC中,AC=BC=,∴AB==AC=8,同理,BM=BQ,∵,∴,故选:B.方法二:解:如图3,∵四边形CDEF为正方形,∴∠DCF=∠ACB=90°,CD=CF,∴∠ACD=∠BCF,在△ACD与△BCF中,,∴△ACD≌△BCF(SAS),∴∠CAD=∠CBF=45°,∴∠FBD=∠CBF+∠CBA=90°,∴△FBD为直角三角形,∵Q为FD的中点,∴BQ=,当DF越小时,BQ越小,∵=,同理,AB=AC=8,∴当CD越小时,DF越小,当CD⊥AB时,此时CD==4时,DF取得最小值4,BQ取得最小值,故选:B.二、填空题(本大题共8小题,每小题3分,共24分.请将答案填在答题卡相应的位置上)11.计算:=a.【分析】根据分式的除法法则计算即可.解:原式=×=a,故答案为:a.12.一只不透明的袋子中有1个白球,200个黄球,这些球除颜色外都相同,将球搅匀,从中任意摸出一个球是白球,这一事件是随机事件.(填“必然”、“随机”、“不可能”)【分析】根据事件发生的可能性大小判断相应事件的类型即可.解:一只不透明的袋子中有1个白球,200个黄球,这些球除颜色外都相同,将球搅匀,从中任意摸出一个球是白球,这一事件是随机事件,故答案为:随机.13.一次数学测试后,某班40名学生的成绩被分成5组,第1﹣4组的频数分别为12、10、6、8,则第5组的频数是4.【分析】用该班学生总数分别减去第1~4组的频数,即可求出第5组的频数.解:∵某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,∴第5组的频数是:40﹣(12+10+6+8)=4.故答案为:4.14.已知+|2﹣b|=0,则+=.【分析】先由非负数性质得出a、b的值,再代入算式,利用二次根式混合运算顺序和运算法则计算可得.解:∵+|2﹣b|=0,∴a﹣3=0且2﹣b=0,即a=3、b=2,则原式=+=+=,故答案为:15.已知:如图,在矩形ABCD中,点E在AD边上,且EC平分∠BED,若AB=1,BC =,则∠ECD=22.5°.【分析】过点C作CM⊥BE交BE于M,先证明△EMC≌△EDC,求得∠DCE=∠MCE,再证明△BMC为等腰直角三角形,求出∠MCD,最终求得∠ECD.解:过点C作CM⊥BE交BE于M,如图,∵EC平分∠BED,∴∠CEM=∠CED,在△EMC和△EDC中,∴△EMC≌△EDC(AAS),∴∠DCE=∠MCE,MC=DC=1,在Rt△BMC中,BM==1=MC,∴△BMC为等腰直角三角形,∴∠MCB=45°,∴∠MCD=45°∴∠ECD=∠MCE=22.5°.故答案为:22.5.16.如图,在平面直角坐标系中,矩形OABC边OA、OC在坐标轴上,且OA=4,OC=2.若直线y=kx+4把矩形OABC周长分成相等的两部分,则k=﹣.【分析】根据直线y=kx+4把矩形OABC周长分成相等的两部分,可知直线经过OB和AC的交点,求得交点坐标,代入y=kx+4即可求得k的值.解:∵OA=4,OC=2.∴A(4,0),C(0,2),∴OB和AC的交点为(2,1),∵直线y=kx+4把矩形OABC周长分成相等的两部分,∴直线经过OB和AC的交点,∴1=2k+4,解得k=﹣,故答案为﹣.17.如图,四边形ABCD中,AD∥BC,∠C=90°,AB=AD,连接BD,作∠BAD角平分线AE交BD、BC于点F、E.若EC=3,CD=4,那么AE长为2.【分析】连接DE,因为AB=AD,AE⊥BD,AD∥BC,可证四边形ABED为菱形,从而得到BE、BC的长,进而解答即可.解:连接DE.在直角三角形CDE中,EC=3cm,CD=4cm,根据勾股定理,得DE=5cm.∵AB=AD,AE⊥BD,∴AE垂直平分BD,∠BAE=∠DAE.∴DE=BE=5cm.∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=5cm,∴BC=BE+EC=8(cm),∴四边形ABED是菱形,由勾股定理得出BD=(cm),∴OE=(cm),∴AE=2OE=2(cm),故答案为:2.18.折纸艺术发源于中国,它是一种将纸张折成不同形状图案的艺术活动,在数学中也有不少折纸活动.如图是将正方形纸片折叠成了领带形状的折纸过程.其步骤为:先将CD 边沿CF折叠,D点的对应点为D',再将BC沿CD'折叠,使得B点恰好落在CF边上的B′处折痕与AB边交于E.若正方形边长为,连接EF,则△AEF的面积=2﹣.【分析】根据正方形边长为,可得CD′=CD=,根据题意可得正方形的直角内角∠BCD经过两次折叠后两边分别重合,所以∠D′CF=BCD=30°,然后根据含30度角的直角三角形可得AE和AF的长,进而可得△AEF的面积.解:∵正方形边长为,∴CD′=CD=,∵正方形的直角内角∠BCD经过两次折叠后两边分别重合,∴∠D′CF=BCD=30°,在Rt△D′CF中,CD′=,∠D′CF=30°,∴D′F=1,∴AF=AD﹣D′F=﹣1,AE=AB﹣B′E=﹣1,∵∠A=90°,∴△AEF的面积=AE•AF=(﹣1)(﹣1)=2﹣.故答案为:2﹣.三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.解下列分式方程:(1)=;(2)﹣1=.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1)去分母得:2x﹣6=4+x,移项得:2x﹣x=4+6,合并得:x=10,检验:把x=10代入得:4+x=14≠0,则x=10是分式方程的解;(2)去分母得:x(x+2)﹣x2+4=8,解得:x=2,检验:把x=2代入得:(x+2)(x﹣2)=0,则x=2是增根,分式方程无解.20.计算:(1)9a•(﹣)(a≥0,b≥0);(2)(+2)×﹣.【分析】(1)利用二次根式的乘法法则运算;(2)先进行二次根式的乘法运算,然后化简后合并即可.解:(1)原式=9a•(﹣)=﹣36ab;(2)原式=6+4﹣=6+3.21.先化简,再求值:•(﹣1)÷,其中a=﹣2.【分析】根据分式的运算法则进行化简,然后将a的值代入原式即可求出答案.解:原式=••=•=,当a=时,∴原式==.22.为增强学生环保意识,科学实施垃圾分类管理,某中学举行了“垃圾分类知识竞赛”,首轮每位学生答题39题,随机抽取了部分学生的竞赛成绩绘制了不完整的统计图表:组别正确个数x人数A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n 根据以上信息完成下列问题:(1)统计表中的m=30,n=20;(2)请补全条形统计图;(3)已知该中学共有1500名学生,如果答题正确个数不少于32个的学生进入第二轮的比赛,请你估计本次知识竞赛全校顺利进入第二轮的学生人数有多少个?【分析】(1)根据频数、频率、总数之间的关系可求出调查总数,进而求出D组、E组的频数,调查答案;(2)根据频数可补全条形统计图;(3)求出答题正确个数不少于32个的学生所占得百分比即可.解:(1)调查总数为:15÷15%=100(人),m=100×30%=30(人),n=100﹣10﹣15﹣25﹣30=20,故答案为:30,20;(2)补全统计图如下:(3)1500×=300(人),答:全校顺利进入第二轮的学生大约有300人.23.已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF,连接AE,CF.求证:AE=CF.【分析】根据四边形ABCD是平行四边形,可得AD∥BC,AD=BC,再由BE=DF可得AF与EC平行且相等,进而可以证明四边形AECF是平行四边形,然后利用平行四边形的性质证得结论即可;【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BE=DF,∴EC=AF,又∵EC∥AF,∴四边形AECF是平行四边形,∴AE=CF.24.江苏南沿江城际铁路,是江苏境内正在建设的一条铁路线路.设计时速350公里,起于南京南站,经南京市、句容市、常州市、江阴市、张家港市、常熟市、太仓市,引入太仓站后利用沪通铁路进入上海枢纽,是沪宁通道的第二条城际铁路(如图).在修筑某长度为1000米的标地时,中铁四局工程队在修筑了400米后,引进了新设备,效率比原来提高了20%,结果共用5天完成了任务,问引进新设备之前,工程队每天改造多少米?【分析】设引进新设备之前,工程队每天改造x米,则引进新设备之后,工程队每天改造(1+20%)x米,利用工作时间=工作总量÷工作效率,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设引进新设备之前,工程队每天改造x米,则引进新设备之后,工程队每天改造(1+20%)x米,依题意得:+=5,解得:x=180,经检验,x=180是原方程的解,且符合题意.答:引进新设备之前,工程队每天改造180米.25.如图是7×7的正方形网格,△ABC的三个顶点均在格点上,请按要求作图并标上相应字母.(1)在图1中,画出△ABC关于点O成中心对称的△A'B'C′.(2)若△EBC与△ABC面积相等,在图2中描出所有满足条件且不同于A点的格点,并记为E1、E2、….【分析】(1)分别作出A、B、C关于O点的对称点A′、B′、C′即可;(2)平移BC使B点与A点重合,则过A点且与BC平行的直线上的格点为E1、E2、E3满足条件,点E1关于BC的对称点E4满足条件.解:(1)如图1,△A'B'C′为所作;(2)如图,E1、E2、E3、E4为所作.26.如图1,在菱形ABCD中,∠ABC=60°,对角线AC、BD交于点O,P从B点出发,沿B→D→C方向匀速运动,P点运动速度为1cm/s.图2是点P运动时,APC的面积y (cm2)随P点运动时间x(s)变化的函数图象.(1)AB=2cm,a=;(2)P点在BD上运动时,x为何值时,四边形ADCP的面积为;(3)在P点运动过程中,是否存在某一时刻使得△APB为直角三角形,若存在,求x 的值:若不存在,请说明理由.【分析】(1)由图2知,当点P在点A时,y=△ABC的面积==a2,进而求解;(2)由四边形ADCP的面积=S△ACD+y=,即﹣x+=,即可求解;(3)①当点P和点O重合时,∠APB为直角,则x=BP=;②当∠BAP′为直角时,则PP′=,则x=BP+PP′=;③当∠BAP″为直角时,则x=BD+DP″=2+AD,即可求解.解:(1)∵在菱形ABCD中,∠ABC=60°,则△ABC、△ACD为全等的两个等边三角形,设△ABC的边长为a,则其面积为a2,由图2知,当点P在点A时,y=△ABC的面积==a2,解得a=2(负值已舍去),即菱形的边长为2,则AB=2(cm),由题意知,点P与点O重合时,对于图2的a所在的位置,则AO=1,故a=BO===,故答案为2,;(2)由(1)知点P在BO段运动时,对于图2第一段直线,而该直线过点(0,)、(,0),设其对应的函数表达式为y=kx+t,则,解得,故该段函数的表达式为y=﹣x+,当点P在BD上运动时,四边形ADCP的面积为,则点P只能在BO上,则四边形ADCP的面积=S△ACD+y=,即﹣x+=,解得x=;(3)存在,理由:由(1)知,菱形的边长为2,则BP=,AO=1,过点A作AP″⊥DC于点P″交BD于点P′,∵△ABC、△ACD均为等边三角形,则∠PAP′=∠DAP″=30°,①当点P和点O重合时,∠APB为直角,则x=BP=;②当∠BAP′为直角时,则同理可得:PP′=,则x=BP+PP′=;③当∠BAP″为直角时,则x=BD+DP″=2+AD=2+1,综上,x的值为或或21.27.如果一个分式能化成一个整式与一个分子为常数的分式和的形式,则称这个分式为“和谐分式”.如:,所以是“和谐分式”.请运用这个知识完成下面各题:(1)已知,则m=﹣5.(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式.(3)当x为整数时,若也为整数,求满足条件的所有x值的和.【分析】(1)对等式右边进行通分计算,化简后即可得解.(2)根据“和谐分式”的定义,仿照例子,化为一个整式与一个分子为常数的分式和的形式即可.(3)对化简为“和谐分式”后,逐个进行判断符合条件的x即可,最后求和得解.解:(1)∵===,∴3+m=﹣2,∴m=﹣5.故答案为:﹣5.(2)==.(3)令A=====.∵当x为整数时,A也为整数,即也必为整数,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,且x为整数.又分式要有意义,故x﹣1≠0,x≠1.∴满足条件的x值为﹣1、0、2、3,∴满足条件的所有x值的和为﹣1+0+2+3=4.28.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E.(1)如图,当α=60°时,连接BD、BE,并延长BE交AD于点F,则BE=3﹣4;(2)当α=90°时,请画出图形并求出BE的长;(3)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE.当∠DAG =∠ACB,且线段DG与线段AE无公共点时,请猜想四边形AEBC的形状并说明理由.【分析】(1)证明△ABD是等边三角形,得到点B、E在AD的中垂线上.进而求解;(2)依据题意画图如图1,证明△AHC≌△EGA(AAS),得到BG=2,EG=3,即可求解;(3)证明CH=HE,AH=BH,则四边形AEBC为平行四边形,而AC=BC,则四边形AEBC为菱形.解:(1)∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°.∴△ABD是等边三角形,∴AB=BD.∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE.又∵AC=BC,∴EA=ED.∴点B、E在AD的中垂线上.∴BE是AD的中垂线.∵点F在BE的延长线上,∴BF⊥AD,AF=DF;∴AF=DF=3,∵AE=AC=5,∴EF===4,在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4,故答案为:3﹣4;(2)依据题意画图如图1,过点E作EG⊥AB于点G,过点C作CH⊥AB于点H,∵CA=CB,CH⊥AB,∴AH=AB=6=3,在Rt△ACH中,∵AC=5,AH=3,∴CH===4,∵∠CAE=90°,∴∠CAH+∠EAG=90°,∵CH⊥AB,∴∠CAH+∠ACH=90°,∴∠EAG=∠ACH,∵△ABC围绕点A顺时针方向旋转得到△ADE,∴AC=AE,∵EG⊥AB,CH⊥AB,∴∠EGA=∠AHC=90°,在△AHC和△EGA中,,∴△AHC≌△EGA(AAS),∴GA=CH=4,EG=AH=3,∴BG=AB﹣AG=6﹣4=2,∵BG=2,EG=3,则BE===;(3)如图2所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB,∵CH=HE,AH=BH,∴四边形AEBC为平行四边形,∵AC=BC,∴四边形AEBC为菱形.。
【全国百强校】江苏省无锡市锡山区天一中学2020-2021学年数学八下期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,点D 、E 、F 分别为∠ABC 三边的中点,若△DEF 的周长为10,则△ABC 的周长为( )A .5B .10C .20D .402.计算(﹣a )2•a 3的结果正确的是( )A .﹣a 6B .a 6C .﹣a 5D .a 53.河堤横断面如图所示,斜坡AB 的坡度=1:3,BC=5米,则AC 的长是( )米.A .53B .5C .15D .1034.如图在4×5的网格中,每个小正方形的边长都是1个单位长度,定义:以网格中小正方形顶点为顶点的正方形叫作格点正方形,图中包含“△”的格点正方形有( )个.A .11B .15C .16D .175.如图,在平行四边形ABCD 中,对角线AC BD 、交于点O ,并且6015DAC ADB ∠=︒∠=︒,,点E 是AD 边上一动点,延长EO 交于BC 点F ,当点E 从点D 向点A 移动过程中(点E 与点D ,A 不重合),则四边形AFCE 的变化是( )A .平行四边形→菱形→平行四边形→矩形→平行四边形B .平行四边形→矩形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→正方形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形6.如图,A 、B 、C 、D 四点都在⊙O 上,若OC ⊥AB ,∠AOC =70︒,则圆周角∠D 的度数等于( )A .70︒B .50︒C .35︒D .20︒7.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A .94m >B .94m <C .94m =D .9-4m < 8.下列命题:①一组对边平行且另一组对边相等的四边形是平行四边形;②一组邻角相等的平行四边形是矩形;③顺次连结矩形四边中点得到的四边形是菱形;④如果一个菱形的对角线相等,那么它一定是正方形.其中真命题个数是( )A .4个B .3个C .2个D .1个9.如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,连结CP 并延长CP 交AD 于Q 点.给出以下结论:①四边形AECF 为平行四边形;②∠PBA=∠APQ ;③△FPC 为等腰三角形;④△APB ≌△EPC ;其中正确结论的个数为( )A.1 B.2 C.3 D.410.若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a-b+c的值是( )A.-1 B.1 C.0 D.不能确定二、填空题(每小题3分,共24分)11.某小组7名同学的英语口试成绩(满分30分)依次为26,23,25,27,30,25,29,则这组数据的中位数是_______.12.一个多边形的内角和与外角和的比是4:1,则它的边数是.13.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:2S甲=2,2S乙=1.5,则射击成绩较稳定的是_______(填“甲”或“乙”).14.将直线12y x=-向上平移一个单位长度得到的一次函数的解析式为_______________.15.若28n是整数,则满足条件的最小正整数n为________.16.若正比例函数y=(k-2)x 的图象经过点A(1, - 3),则k的值是_____.17.四边形的外角和等于.18.在△ABC中,AB=10,AC=5,若BC 边上的高等于3,则BC边的长为_____.三、解答题(共66分)19.(10分)已知,如图,在ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:DE=BF20.(6分)为奖励初三优秀学生和进步显著学生,合阳中学初三年级组在某商店购买A、B两种文具为奖品,已知一件A种文具的单价比B种文具的单价便宜5元,而用300元买A种文具的件数是用200元买B种文具的件数的2倍.(1)求A种文具的单价;(2)已知初三年级准备奖励的优秀学生和进步显著学生共有200人,其中优秀学生奖励A种文具,进步显著学生奖励B种文具,年级组购买文具的总费用不超过3400元,求初三年级奖励的优秀学生最少有多少人?21.(6分)因式分解:(1)a(x﹣y)﹣b(y﹣x)2(2)2x3﹣8x2+8x.22.(8分)学校开展“书香校园,诵读经典”活动,随机抽查了部分学生,对他们每天的课外阅读时长进行统计,并将结果分为四类:设每天阅读时长为t分钟,当0<t≤20时记为A类,当20<t≤40时记为B类,当40<t≤60时记为C 类,当t>60时记为D类,收集的数据绘制成如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查统计,扇形统计图中的D类所对应的扇形圆心角为°;(2)将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校每天阅读时长超过40分钟的学生约有多少人?23.(8分)如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)分别求出AB,BC,AC的长;(2)试判断△ABC是什么三角形,并说明理由.24.(8分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?25.(10分)将矩形ABCD 折叠使点A ,C 重合,折痕交BC 于点E ,交AD 于点F ,可以得到四边形AECF 是一个菱形,若AB=4,BC=8,求菱形AECF 的面积.26.(10分)已知一次函数图象经过()3,5和()4,9--两点(1)求此一次函数的解析式;(2)若点()m,2在函数图象上,求m 的值.参考答案一、选择题(每小题3分,共30分)1、C【解析】由已知,点D 、E 、F 分别为∠ABC 三边的中点,根据三角形中位线定理,得AB 、BC 、AC 分别是FE 、DF 、DE 的两倍.因此,由△DEF 的周长为10,得△ABC 的周长为1.故选C .2、D【解析】【分析】直接利用积的乘方运算法则以及结合同底数幂的乘法运算法则计算得出答案.【详解】解:(﹣a )2•a 3=a 2•a 3=a 1.故选D .【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.【分析】Rt△ABC中,已知坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】解:Rt△ABC中,BC=5米,tanA=1∴tanA=3 BCAC,∴AC=BC÷tanA=5÷3=米,故选:A.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,解题的关键是熟练掌握坡度的定义,此题难度不大.4、C【解析】【分析】分七种情况讨论,即可.【详解】解:图中包含“△”的格点正方形为:边长为1的正方形有:1个,边长为2的正方形有:4个,边长为3的正方形有:4个,2个,边长为4的正方形有:2个边长为的正方形有:1个的正方形有:2个所以图中包含“△”的格点正方形的个数为:1+4+4+2+2+1+2=1.故选:C.【点睛】本题考查的是图像,熟练掌握正方形的性质是解题的关键.【分析】根据图形结合平行四边形、矩形、菱形的判定逐项进行判断即可.【详解】解:点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,当15°<∠EOD<75°时,四边形AFCE为平行四边形,当∠EOD=75°时,∠AEF=90°,四边形AFCE为矩形,当75°<∠EOD<105°时,四边形AFCE为平行四边形,故选A.【点睛】本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力.6、C【解析】【分析】由垂径定理将已知角转化,再用圆周角定理求解.【详解】解:因为OC⊥AB,由垂径定理可知AC BC=,所以,∠COB=∠COA=70°,根据圆周角定理,得1352D BOC︒∠=∠=故选:C.【点睛】本题综合考查了垂径定理和圆周角的求法及性质.解答这类题要灵活运用所学知识解答问题,熟练掌握圆的性质是关键.7、B【解析】【分析】根据方程有两个不等的实数根,故△>0,得不等式解答即可.【详解】试题分析:由已知得△>0,即(﹣3)2﹣4m>0,解得m<94.故选B.【点睛】此题考查了一元二次方程根的判别式.8、B【解析】【分析】根据平行四边形的判定方法对①进行判断;根据矩形的判定方法对②进行判断即可;根据三角形中位线性质和菱形的判定方法对③进行判断;根据正方形的判定方法对④进行判断.【详解】解:①错误,反例为等腰梯形;②正确,理由一组邻角相等,且根据平行四边形的性质,可得它们都为直角,从而推得矩形;③正确,理由:得到的四边形的边长都等于矩形对角线的一半;④正确.故答案为B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.判定一个命题的真假关键在于对基本知识的掌握.9、B【解析】分析:①根据三角形内角和为180°易证∠PAB+∠PBA=90°,易证四边形AECF是平行四边形,即可解题;②根据平角定义得:∠APQ+∠BPC=90°,由正方形可知每个内角都是直角,再由同角的余角相等,即可解题;③根据平行线和翻折的性质得:∠FPC=∠PCE=∠BCE,∠FPC≠∠FCP,且∠PFC是钝角,△FPC不一定为等腰三角形;④当BP=AD或△BPC是等边三角形时,△APB≌△FDA,即可解题.详解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB,∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA,∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC,∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;∴∠FPC=∠PCE=∠BCE,∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL),∵∠ADF=∠APB=90°,∠FAD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个,故选B.点睛:本题考查了全等三角形的判定和性质,等腰三角形的性质和判定,矩形的性质,翻折变换,平行四边形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.10、C【解析】【分析】将x=-1代入方程,就可求出a-b+c的值.【详解】解:将x=-1代入方程得,a-b+c=0故答案为:C【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.二、填空题(每小题3分,共24分)11、1【解析】【分析】对于中位数,先将数据按从小到大的顺序排列,找出最中间的一个数(或最中间的两个数)即可.【详解】故答案为:1【点睛】考核知识点:中位数.理解中位数的定义是关键.12、1.【解析】【分析】多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:根据题意,得(n﹣2)•180=4⨯360,解得:n=1.则此多边形的边数是1.故答案为1.13、答案为:乙;【解析】【分析】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定;乙的方差比较小,所以乙的成绩比较稳定.故答案为乙【点睛】本题考核知识点:方差.解题关键点:理解方差的意义.14、112y x=-+【解析】【分析】【详解】解:由平移的规律知,得到的一次函数的解析式为112y x=-+.15、1【解析】【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×1,4是平方数,n 的最小正整数值为1,故答案为1.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.16、-1【解析】【分析】把A (1, - 3)点代入正比例函数y = (k -2)x 中即可求出k 值.【详解】∵正比例函数 y = (k -2)x 的图象经过点 A (1, - 3),∴3k 21-=-⨯(),解得:k=-1.故答案为:-1.【点睛】本题考查了正比例函数上点的特征,正确理解正比例函数上点的特征是解题的关键.17、360°.【解析】【分析】【详解】解:n (n≥3)边形的外角和都等于360°.18、6或1【解析】【分析】△ABC 中,∠ACB 分锐角和钝角两种:①如图1,∠ACB 是锐角时,根据勾股定理计算BD 和CD 的长可得BC 的值;②如图2,∠ACB 是钝角时,同理得:CD=4,BD=5,根据BC=BD-CD 代入可得结论.【详解】解:有两种情况:①如图1,∵AD 是△ABC 的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD=22AB AD=1,-CD=22-=4,AC AD∴BC=BD+CD=5+1=6;②如图2同理得:CD=4,BD=1,∴BC=BD-CD=4-1=1,综上所述,BC的长为6或1;故答案为6或1.【点睛】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.三、解答题(共66分)19、见解析【解析】【分析】要证明DE=BF成立,只需要根据条件证△AED≌△CFB即可.【详解】证明:∵四边形ABCD是平行四边形.∴AD∥BC,且AD=BC∴∠DAE=∠BCF∴在△DAE和△BCF中{AD BCDAE BCF AE CF=∠=∠=∴△DAE≌△BCF(SAS)∴DE=BF.考点:1.平行四边形的性质;2.全等三角形的判定与性质.20、(1)一件A种文具的价格为15元;(2)初三年级奖励的优秀学生最少有120人.【解析】【分析】(1)设A种文具的单价为x元,则B种文具的单价为每件(x+5)元,利用用300元买A种文具的件数是用200元买B种文具的件数的2倍得出等式,求出即可;(2)设初三年级奖励的优秀学生有a人,则进步显著学生有(200-a)人,根据“年级组购买文具的总费用不超过3400元”列出不等式即可求得结果.【详解】(1)A种文具的单价为x元,则B种文具的单价为每件(x+5)元,根据题意得出:30020025x x=⨯+,解得:x=15,经检验得出:x=15是原方程的根,答:A种文具的单价为15元;(2)设初三年级奖励的优秀学生有a人,则进步显著学生有(200-a)人.依题意,得15a+20(200-a)≤3400,解得:a≥120,答:初三年级奖励的优秀学生最少有120人.【点睛】本题考查了分式方程的应用及一元一次不等式的应用,分析题意,找到合适的等量关系与不等量关系是解决问题的关键.21、(1)(x﹣y)[a﹣b(x﹣y)];(1)1x(x﹣1)1.【解析】【分析】(1)提取公因式x-y,在医院公因式法进行计算即可(1)先提取公因式1x,再对余下的多项式利用完全平方公式继续分解【详解】(1)原式=a(x-y)-b(y-x) 2=(x ﹣y )[a ﹣b (x ﹣y )];(1)原式=1x(x 2 -4x+4)=1x (x ﹣1)1.【点睛】此题考查提取公因式法与公式法的综合运用,解题关键在于提取公因式22、(1)50;36°;(2)见解析;(3)估计该校每天阅读时长超过40分钟的学生约有500人【解析】【分析】(1)用A 类人数除以它所占的百分比得到调查的总人数;然后用D 类人数分别除以调查的总人数×360°即可得到结论;(2)先计算出D 类人数,然后补全条形统计图;(3)利用样本估计总体,用2000乘以样本中C+D 类的百分比即可.【详解】解:(1)15÷30%=50, 所以这次共抽查了50名学生进行调查统计;扇形统计图中D 类所对应的扇形圆心角大小为:501522850---×360°=36°, 故答案为50;36°;(2)D 类人数为50﹣15﹣22﹣8=5,如图所示,该条形统计图为所求。
2022-2023学年江苏省无锡市宜兴市树人中学教育集团八年级第一学期调研数学试卷(9月份)一、单选题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是( )A.B.C.D.2.如果两个三角形全等,那么下列结论不正确的是( )A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等3.经过以下变换后所得到的三角形不能和△ABC全等的是( )A.B.C.D.4.根据下列条件,能判定△ABC≌△A′B′C′的是( )A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长5.如图,若AB=AC,则添加下列一个条件后,仍无法判定△ABE≌△ACD的是( )A.∠B=∠C B.AE=AD C.BE=CD D.∠AEB=∠ADC 6.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是( )A.SAS B.ASA C.AAS D.SSS7.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD 的长是( )A.0.5B.1C.1.5D.28.如图,已知OC平分∠AOB,P是OC上一点,PH⊥OB于H,若PH=5,则点P与射线OA上某一点连线的长度可以是( )A.6B.4C.3D.29.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为( )A.15B.12.5C.14.5D.1710.如图,在△ABC中AD是∠A的外角平分线,P是AD上一动点且不与点A,D重合,记PB+PC=a,AB+AC=b,则a,b的大小关系是( )A.a>b B.a=b C.a<b D.不能确定二、填空题(每小题2分,共20分)11.等边三角形是轴对称图形,它的对称轴共有 条.12.在平面镜里看到背后墙上,电子钟示数如图所示,这时的时间应是 .13.工人师傅在做完门框后,为防止变形,经常如图所示钉上两条斜拉的木条(即图中的AB、CD两根木条),这样做根据的数学知识是 .14.已知一个三角形的三边长分别为2,7,x,另一个三角形的三边分别为y,2,8,若三角形全等,则x+y= .15.AD是△ABC的边BC上的中线,AB=5,AC=3,则AD的取值范围是 .16.在4×4正方形网格中,已有3个小方格涂黑,要从13个白色小方格中选出一个也涂黑,使所有黑色部分组成的图形为轴对称图形,这样的白色小方格有 个.17.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是 .18.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是 .19.如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC=150°,则∠θ的度数是 度.20.如图,在△ABC中,以点A为圆心,以适当长为半径画弧,分别交AB、AC于点D、E,再分别以点D、E为圆心,以大于DE的长为半径画弧,两弧交于点F,连接AF并延长,交BC于点G.若S△ABG:S△ACG=2:3,且AC=9,则AB的长为 .三、作图题:(4分+6分)21.(1)如图1,在所给正方形网格图中完成下题:①画出格点△ABC(顶点均在格点上)关于直线DE对称的△A′B′C′;②在DE上画出点Q,使QA+QC最小.(2)如图2,要把一块三角形的土地均匀分给甲、乙、丙三家农户去种植.如果∠C=90°,∠B=30°,要使这三家农户所得土地的大小、形状都相同,请你试着分一分,(尺规作图,保留作图痕迹).三、解答题:22.如图,已知:点B、E、C、F在一直线上,且AB∥DE,AB=DE,BC=EF.求证:AC =DF.23.如图,∠1=∠2,∠A=∠B,AE=BE,点D在边AC上,AE与BD相交于点O;求证:△AEC≌△BED.24.如图,已知AC、DB的交点为E,AE=DE,∠A=∠D;过点E作EF⊥BC,垂足为F.(1)求证:△ABE≌△DCE;(2)求证:F为BC边的中点.25.如图1,已知AD⊥AB于A,BE⊥AB于B,点C在线段AB上,DC⊥EC,且DC=CE.(1)求证:AD+BE=AB;(2)将△BEC绕点C逆时针旋转,使点B落在AC上,如图(2),试问:AD,BE,AB 有怎样的数量关系?说明理由.26.【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图①,△ABC中,AD是BC边上的中线,若AB=10,AD=8,求边AC的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB,依据是 .A.SSSB.SASC.AASD.HL(2)由“三角形的三边关系”可求得边AC的取值范围是 .解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.【灵活运用】如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=4,EC =3,求线段BF的长.参考答案一、单选题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是( )A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、B、C都是轴对称图形,D是中心对称图形,不是轴对称图形,故选:D.2.如果两个三角形全等,那么下列结论不正确的是( )A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等【分析】根据能够完全重合的两个三角形是全等三角形,因为完全重合,所以三角形对应边相等、对应角相等,然后对各选项分析后利用排除法求解.解:因为能够完全重合的两个三角形是全等三角形,所以:A、这两个三角形的对应边相等,正确;B、直角三角形,钝角三角形也能全等,所以全等三角形可以是锐角三角形、直角三角形或钝角三角形,故本选项错误;C、能够完全重合,所以这两个三角形的面积相等,正确;D、能够完全重合,所以这两个三角形的周长相等,正确.故选:B.3.经过以下变换后所得到的三角形不能和△ABC全等的是( )A.B.C.D.【分析】根据平移,旋转,翻折的性质即可解决问题.解:∵平移,旋转,翻折前后的三角形全等,∴选项A,B,C不符合题意,故选:D.4.根据下列条件,能判定△ABC≌△A′B′C′的是( )A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长【分析】根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.解:A、满足SSA,不能判定全等;B、不是一组对应边相等,不能判定全等;C、满足AAA,不能判定全等;D、符合SSS,能判定全等.故选:D.5.如图,若AB=AC,则添加下列一个条件后,仍无法判定△ABE≌△ACD的是( )A.∠B=∠C B.AE=AD C.BE=CD D.∠AEB=∠ADC 【分析】根据ASA即可判断A;根据SAS即可判断B;根据SSA两三角形不一定全等即可判断C;根据AAS即可判断D.解:A、根据ASA(∠A=∠A,∠C=∠B,AB=AC)能推出△ABE≌△ACD,正确,故本选项错误;B、根据SAS(∠A=∠A,AB=AC,AE=AD)能推出△ABE≌△ACD,正确,故本选项错误;C、两边和一角对应相等的两三角形不一定全等,错误,故本选项正确;D、根据AAS(∠A=∠A,AB=AC,∠AEB=∠ADC)能推出△ABE≌△ACD,正确,故本选项错误;故选:C.6.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是( )A.SAS B.ASA C.AAS D.SSS【分析】根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.7.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD 的长是( )A.0.5B.1C.1.5D.2【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△CFE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.8.如图,已知OC平分∠AOB,P是OC上一点,PH⊥OB于H,若PH=5,则点P与射线OA上某一点连线的长度可以是( )A.6B.4C.3D.2【分析】如图,作PT⊥OA于T.证明PT=PH=5,根据垂线段最短即可解决问题.解:如图,作PT⊥OA于T.∵OC平分∠AOB,PH⊥OB,PT⊥OA,∴PH=PT,∵PH=5,∴P与射线OA上某一点连线的长度的最小值为5,故选:A.9.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为( )A.15B.12.5C.14.5D.17【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE 是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=×5×5=12.5,即可得出结论.解:如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=×5×5=12.5,∴四边形ABCD的面积为12.5,故选:B.10.如图,在△ABC中AD是∠A的外角平分线,P是AD上一动点且不与点A,D重合,记PB+PC=a,AB+AC=b,则a,b的大小关系是( )A.a>b B.a=b C.a<b D.不能确定【分析】可在BA的延长线上取一点E,使AE=AC,得出△ACP≌△AEP,从而将四条不同的线段转化到一个三角形中进行求解,即可得出结论.解:如图,在BA的延长线上取一点E,使AE=AC,连接EP.由AD是∠BAC的外角平分线,可知∠CAP=∠EAP,在△ACP和△AEP中,∴△ACP≌△AEP(SAS)∴PC=PE,在△BPE中,PB+PE>BE,而BE=AB+AE=AB+AC,故PB+PE>AB+AC,所以PB+PC>AB+AC,∵PB+PC=a,AB+AC=b,∴a>b.故选:A.二、填空题(每小题2分,共20分)11.等边三角形是轴对称图形,它的对称轴共有 3 条.【分析】根据轴对称图形的对称轴的概念作答.解:等边三角形的对称轴是三条高所在的直线.故它的对称轴共有3条.故填3.12.在平面镜里看到背后墙上,电子钟示数如图所示,这时的时间应是 21:05 .【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.解:由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.故答案为:21:05.13.工人师傅在做完门框后,为防止变形,经常如图所示钉上两条斜拉的木条(即图中的AB、CD两根木条),这样做根据的数学知识是 三角形的稳定性 .【分析】钉上两条斜拉的木条后,形成了两个三角形,故这种做法根据的是三角形的稳定性.解:这样做根据的数学知识是:三角形的稳定性.14.已知一个三角形的三边长分别为2,7,x,另一个三角形的三边分别为y,2,8,若三角形全等,则x+y= 15 .【分析】根据全等三角形的性质和已知得出x=8,y=7,代入求出即可.解:∵已知一个三角形的三边长分别为2,7,x,另一个三角形的三边分别为y,2,8,∴要使两三角形全等,只能x=8,y=7,∴x+y=15.故答案为:1515.AD是△ABC的边BC上的中线,AB=5,AC=3,则AD的取值范围是 1<AD<4 .【分析】延长AD到点E,使ED=AD,连接BE,由AD是△ABC的边BC上的中线得BD =CD,即要证明△EDB≌△ADC,得EB=AC=3,而AB=5,则5﹣3<AE<5+3,于是有2<2AD<8,即可求得AD的取值范围是1<AD<4.解:如图,延长AD到点E,使ED=AD,连接BE,∵AD是△ABC的边BC上的中线,∴BD=CD,在△EDB和△ADC中,,∴△EDB≌△ADC(SAS),∴EB=AC=3,∵AB﹣BE<AE<AB+AC,且AB=5,AE=2AD,∴5﹣3<2AD<5+3,即2<2AD<8,∴1<AD<4,∴AD的即值范围是1<AD<4,故答案为:1<AD<4.16.在4×4正方形网格中,已有3个小方格涂黑,要从13个白色小方格中选出一个也涂黑,使所有黑色部分组成的图形为轴对称图形,这样的白色小方格有 4 个.【分析】根据轴对称图形的定义,画出图形即可.解:如图,这样的小正方形有4个,故答案为:4.17.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是 180° .【分析】直接利用平角的定义结合三角形内角和定理以及全等三角形的性质得出∠4+∠9+∠6=180°,∠5+∠7+∠8=180°,进而得出答案.解:如图所示:由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个全等三角形,∴∠4+∠9+∠6=180°,又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°.故答案为:180°18.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是 18 .【分析】作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质得到OE=OF=OD=4,根据三角形的面积公式计算即可.解:作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=4,由题意得,×AB×OE+×CB×OD+×AC×OF=36,解得,AB+BC+AC=18,则△ABC的周长是18,故答案为:18.19.如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC=150°,则∠θ的度数是 60 度.【分析】解题关键是把所求的角转移成与已知角有关的角.解:根据对顶角相等,翻折得到的∠E=∠ACB可得到∠θ=∠EAC,∵△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,∠BAC=150°,∴∠DAC=∠BAE=∠BAC=150°.∴∠DAE=∠DAC+∠BAE+∠BAC﹣360°=150°+150°+150°﹣360°=90°.∴∠θ=∠EAC=∠DAC﹣∠DAE=60°.20.如图,在△ABC中,以点A为圆心,以适当长为半径画弧,分别交AB、AC于点D、E,再分别以点D、E为圆心,以大于DE的长为半径画弧,两弧交于点F,连接AF并延长,交BC于点G.若S△ABG:S△ACG=2:3,且AC=9,则AB的长为 6 .【分析】如图,过点G作GM⊥AB于M,GN⊥AC于N.利用角平分线的性质定理依据三角形的面积求解即可.解:如图,过点G作GM⊥AB于M,GN⊥AC于N.由作图可知,AG平分∠BAC,∵GM⊥AB,GN⊥AC,∴GM=GN,∴==,∴=,∴AB=6.故答案为6.三、作图题:(4分+6分)21.(1)如图1,在所给正方形网格图中完成下题:①画出格点△ABC(顶点均在格点上)关于直线DE对称的△A′B′C′;②在DE上画出点Q,使QA+QC最小.(2)如图2,要把一块三角形的土地均匀分给甲、乙、丙三家农户去种植.如果∠C=90°,∠B=30°,要使这三家农户所得土地的大小、形状都相同,请你试着分一分,(尺规作图,保留作图痕迹).【分析】(1)①根据轴对称的性质作图即可.②连接A'C,交直线DE于点Q,连接AQ,此时QA+QC最小.(2)作∠A的平分线,交BC于点D,再过点D作AB的垂线即可.解:(1)①如图1,△A'B'C'即为所求.②如图1,点Q即为所求.(2)如图2,分成的△ACD,△ADE,△DEB即为所求.三、解答题:22.如图,已知:点B、E、C、F在一直线上,且AB∥DE,AB=DE,BC=EF.求证:AC =DF.【分析】根据平行线的性质求出∠ABC=∠DEF,根据SAS推出△ABC≌△DEF,根据全等三角形的性质推出即可.【解答】证明:∵AB∥DE,∴∠ABC=∠DEF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.23.如图,∠1=∠2,∠A=∠B,AE=BE,点D在边AC上,AE与BD相交于点O;求证:△AEC≌△BED.【分析】由“ASA”可证△AEC≌△BED.【解答】证明:∵∠1=∠2∴∠1+∠AED=∠2+∠AED,即∠AEC=∠BED,在△AEC和△BED中,,∴△AEC≌△BED(ASA).24.如图,已知AC、DB的交点为E,AE=DE,∠A=∠D;过点E作EF⊥BC,垂足为F.(1)求证:△ABE≌△DCE;(2)求证:F为BC边的中点.【分析】(1)根据ASA证明△ABE≌△DCE即可;(2)根据等腰三角形的性质解答即可.【解答】证明:(1)在△ABE和△DCE中,,∴△ABE≌△DCE(ASA);(2)∵△ABE≌△DCE,∴EB=EC,又∵EF⊥BC,∴F为BC边的中点(三线合一).25.如图1,已知AD⊥AB于A,BE⊥AB于B,点C在线段AB上,DC⊥EC,且DC=CE.(1)求证:AD+BE=AB;(2)将△BEC绕点C逆时针旋转,使点B落在AC上,如图(2),试问:AD,BE,AB 有怎样的数量关系?说明理由.【分析】(1)根据已知证明△ADC≌△BCE(AAS),可得AD=CB,AC=BE,从而可得AD+BE=AB.(2)同(1)可证明△ADC≌△BCE(AAS),由全等三角形的性质得出AD=CB,AC=BE,则可得出结论.【解答】(1)证明:∵AD⊥AB,BE⊥AB,∠DCE=90°,∴∠A=∠B=∠DCE=90°,∴∠ADC+∠DCA=90°,∠DCA+∠ECB=180°﹣90°=90°,∴∠ADC=∠ECB,在△ADC和△BCE中,,∴△ADC≌△BCE(AAS),∴AD=CB,AC=BE,∴AB=AC+CB=BE+AD,即AD+BE=AB.(2)解:AB=BE﹣AD.理由如下:∵∠ADC+∠DCA=90°,∠DCA+∠ECB=90°,∴∠ADC=∠ECB,在△ADC和△BCE中,,∴△ADC≌△BCE(AAS),∴AD=CB,AC=BE,∴AB=AC﹣BC=BE﹣AD.26.【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图①,△ABC中,AD是BC边上的中线,若AB=10,AD=8,求边AC的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB,依据是 B .A.SSSB.SASC.AASD.HL(2)由“三角形的三边关系”可求得边AC的取值范围是 6<AC<26 .解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.【灵活运用】如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=4,EC =3,求线段BF的长.【分析】(1)根据全等三角形的判定定理解答;(2)根据三角形的三边关系计算;【灵活运用】延长AD到M,使AD=DM,连接BM,证明△ADC≌△MDB,根据全等三角形的性质解答.解:(1)在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故选:B;(2)AE﹣AB<BE<AB+AE,∴6<AC<26,故答案为:6<AC<26;【灵活运用】延长AD到M,使AD=DM,连接BM,如图②,∵AD是△ABC中线,∴BD=DC,在△ADC和△MDB中,,∴△ADC≌△MDB(SAS),∴BM=AC=7,∠CAD=∠M,∵AE=EF,∴∠CAD=∠AFE,∵∠AFE=∠BFD,∴∠BFD=∠CAD=∠M,∴BF=BM=AC,即AC=BF=7.。
江苏省无锡市宜兴市树人中学2024—-2025学年上学期八年级第一次调研数学试卷一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.已知图中的两个三角形全等,则1∠的度数是()A .76︒B .60︒C .54︒D .50︒3.如图,ABC EDC △≌△,3cm AC =,5cm DC =,则BE =()A .1cmB .2cmC .3cmD .4cm 4.下列图形中对称轴条数最多的是()A .等边三角形B .正方形C .等腰三角形D .等腰梯形5.如图,已知AB AD =,那么添加下列一个条件后,仍然不能判定ABC ADC △≌△的是()A .CB CD=B .90B D ∠=∠=︒C .BAC DAC ∠=∠D .BCA DCA∠=∠6.用三角尺可以按照下面的方法画∠AOB 的角平分线:在OA 、OB 上分别取点M 、N ,使OM=ON ;再分别过点M 、N 画OA 、OB 的垂线,这两条垂线相交于点P ,画射线OP (如图),则射线OP 平分∠AOB ,以上画角平分线时,用到的三角形全等的判定方法是()A .SSSB .SASC .HLD .ASA7.如图,工人师傅做了一个长方形窗框ABCD ,E 、F 、G 、H 分别是四条边上的中点,为了使它更加稳固,需要在窗框上钉一根木条,这根木条不应钉在()A .A 、G 两点之间B .G 、H 两点之间C .B 、F 两点之间D .E 、G 两点之间8.如图,ABC DBE ≌,点E 在线段AC 上,70C ∠=︒,则ABD ∠的度数为()A .30︒B .40︒C .45︒D .50︒9.如图,在33⨯的正方形方格中,每个小正方形方格的边长都为1,则1∠和2∠的关系是()A .12∠=∠B .221∠=∠C .2901∠=︒+∠D .12180∠+∠=︒10.如图,OA OC =,OB OD =且OA OB ⊥,OC OD ⊥,有下列结论:①AOD COB △△≌;②CD AB =;③CDA ABC ∠=∠.其中正确的结论是()A .①②B .①②③C .①③D .②③二、填空题11.如图,△ABC ≌△ADE ,∠B =25°,则∠D =°.12.如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O (即跷跷板的中点)至地面的距离是50cm ,当小红从水平位置CD 下降30cm 时,这时小明离地面的高度是cm .13.如图,某人将一块三角形玻璃打碎成三块,带第块(填序号)能到玻璃店配一块完全一样的玻璃.14.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC AB 、于点M N 、,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D ,若3CD =,10AB =,则ABD △的面积是.15.如图,四边形ABCD ,连接BD ,AB ⊥AD ,CE ⊥BD ,AB =CE ,BD =CD .若AD =5,CD =7,则BE =.16.如图,在Rt △ABC 中,∠ACB=90°,点D 在边AB 上,将△CBD 沿CD 折叠,使点B 恰好落在边AC 上的点E 处.若∠A=24°,则∠CDE=°.17.如图,在△ABC 中,AB =12,AC =8,AD 是BC 边上的中线,则AD 的取值范围是.18.如图,在PAB 中,PA PB =,M 、N 、K 分别是PA ,PB ,AB 上的点,且AM BK =,BN AK =.若40MKN ∠=︒,则P ∠的度数为.19.如图,AOB ADC △≌△(O ∠和D ∠是对应角),90O ∠=︒,若OAD α∠=,ABO β∠=,当BC OA ∥时,α与β之间的数量关系为.20.如图,在同一平面内,直线l 同侧有三个正方形A ,B ,C ,若A ,C 的面积分别为16和9,则阴影部分的总面积为.三、解答题21.如图,在3×3的正方形网格中,有一个以格点为顶点的三角形.(1)请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三幅图不能重复).(2)格纸中所有与该三角形成轴对称且以格点为顶点的三角形共有个.22.如图,点D 是AB 上的一点,DF 交AC 于点E ,AE =EC ,CF ∥AB .求证:AD =CF23.如图,90DCE ∠=︒,CD CE =,AD AC ⊥,BE AC ⊥,垂足分别为A 、B ,试说明AD AB BE +=.24.如图,点B 、D 、C 在一条直线上,AB =AD ,AC =AE ,∠BAD =∠EAC ;(1)求证:BC =DE ;(2)若∠B =70°,求∠EDC .25.老师布置了一道题目,过直线l 外一点P 作直线l 的垂线.(尺规作图)小明同学的作法如下:①在直线l 上任取两点A 、B ;②以A 为圆心,AP 长为半径画弧,以B 为圆心,BP 长为半径画弧,两弧交于点Q ,如图所示;③作直线PQ ,则直线PQ 就是所要作的l 的垂线.(1)请你用另一种作法完成这道题:(保留作图痕迹,不写作法)(2)请你选择其中的一种作法加以证明.26.如图,在ABC V 中,AD 为高线,18AC =.点E 为AC 上一点,12CE AE =,连接BE ,交AD 于点O ,若BDO ADC ≌ .(1)猜想线段BO 与AC 的位置关系,并证明;(2)若动点Q 从点A 出发沿射线AE 以每秒6个单位长度的速度运动,运动的时间为t 秒.①当点Q 在线段AE 上时,是否存在t 的值,使得BOQ △的面积为27?若存在,请求出t 的值;若不存在,请说明理由;②动点P 从点O 出发沿线段OB 以每秒2个单位长度的速度向终点B 运动,P ,Q 两点同时出发,当点P 到达点B 时,P ,Q 两点同时停止运动.设运动时间为t 秒,点F 是直线BC 上一点,且CF AO =,当AOP 与FCQ 全等时,请直接写出t 的值.。
2020-2021学年初中数学八年级下学期期末常考题(选择题30题)一.选择题(共30小题)1.8的立方根是()A.3B.±3C.2D.±22.在﹣3.5,,0,,﹣,﹣3,0.5151151115…(相邻两个5之间依次多一个1)中,无理数有()A.1个B.2个C.3个D.4个3.已知(x+a)(x+b)=x2﹣13x+36,则a+b=()A.﹣5B.5C.﹣13D.﹣13或54.一块正方形的瓷砖边长为cm,它的边长大约在()A.4cm﹣5cm之间B.5cm﹣6cm之间C.6cm﹣7cm之间D.7cm﹣8cm之间5.下面是某同学在一次测验中的计算摘录,其中正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个6.若2x=3,8y=6,则2x﹣3y的值为()A.B.﹣2C.D.7.16的平方根是()A.4B.±4C.﹣4D.±88.若m=﹣4,则估计m的值所在的范围是()A.1<m<2B.2<m<3C.3<m<4D.4<m<59.下列说法不正确的是()A.的平方根是B.﹣9是81的一个平方根C.0.2的算术平方根是0.04D.﹣27的立方根是﹣310.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.ab>0B.a+b<0C.|a|<|b|D.a﹣b>011.﹣3的绝对值是()A.3B.﹣3C.D.12.下列运算正确的是()A.x6÷x2=x3B.(3x)2=3x2C.(x2)3=x5D.x2•x3=x513.估计65的立方根大小在()A.8与9之间B.3与4之间C.4与5之间D.5与6之间14.在3.14,,﹣,,π这几个数中,无理数有()A.1个B.2个C.3个D.4个15.有一个数轴转换器,原理如图所示,则当输入的x为64时,输出的y是()A.8B.C.D.1816.不等式1﹣x<3的解集为()A.x>﹣2B.x<﹣2C.x<2D.x>217.已知a<b,下列不等式中错误的是()A.a+z<b+z B.﹣4a>﹣4b C.2a<2b D.a﹣c>b﹣c 18.在一次“疫情防护”知识竞赛中,竞赛题共25道,选对得4分,不选或选错扣2分,得分不低于60分得奖,那么得奖至少应选对的题数是()A.18B.19C.20D.2119.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8B.7≤b≤8C.8≤b<9D.8≤b≤920.如果x>y,则下列变形中正确的是()A.﹣x y B.y C.3x>5y D.x﹣3>y﹣3 21.小明将含30°的三角板和一把直尺如图放置,测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.40°22.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.23.如图,∠1和∠2是直线____和直线____被直线____所截得到的____.应选()A.a,b,c,同旁内角B.a,c,b,同位角C.a,b,c,同位角D.c,b,a,同位角24.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等25.下列语句是命题的是()(1)两点之间,线段最短(2)如果两个角的和是90度,那么这两个角互余(3)如果x2>0,那么x>0吗?(4)过直线外一点作已知直线的垂线A.(1)(2)B.(3)(4)C.(1)(3)D.(2)(4)26.直线AB、CD、EF相交于O,则∠1+∠2+∠3=()A.90°B.120°C.180°D.140°27.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°28.在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式29.为了了解2019年我校560名七年级学生期末考试的数学成绩,从中随机抽取了200名学生的数学成绩进行分析,下列说法正确的是()A.2019年我校七年级学生是总体B.样本容量是560C.60名七年级学生是总体的一个样本D.每一名七年级学生的数学成绩是个体30.点M(3,﹣1)经过平移到达点N,N的坐标为(2,1),那么平移方式是()A.先向左平移1个单位,再向下平移2个单位B.先向右平移1个单位,再向下平移2个单位C.先向左平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向上平移2个单位2020-2021学年初中数学八年级下学期期末常考题(选择题30题)参考答案与试题解析一.选择题(共30小题)1.8的立方根是()A.3B.±3C.2D.±2【分析】直接根据立方根的定义求解.【解答】解:8的立方根为2.故选:C.【点评】本题考查了立方根:若一个数的立方等于a,那么这个数叫a的立方根,记作.2.在﹣3.5,,0,,﹣,﹣3,0.5151151115…(相邻两个5之间依次多一个1)中,无理数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣3.5是有限小数,属于有理数;是分数,属于有理数;0是整数,属于有理数;,是有限小数,属于有理数;无理数有,,0.5151151115…(相邻两个5之间依次多一个1)共3个.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.已知(x+a)(x+b)=x2﹣13x+36,则a+b=()A.﹣5B.5C.﹣13D.﹣13或5【分析】直接利用多项式乘法去括号,进而合并同类项求出答案.【解答】解:∵(x+a)(x+b)=x2﹣13x+36,∴x2+(a+b)x+ab=x2﹣13x+36,∴a+b=﹣13.故选:C.【点评】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键.4.一块正方形的瓷砖边长为cm,它的边长大约在()A.4cm﹣5cm之间B.5cm﹣6cm之间C.6cm﹣7cm之间D.7cm﹣8cm之间【分析】利用算术平方根的性质进行估算即可.【解答】解:∵49<55<64,∴7<8,故选:D.【点评】本题主要考查了估算无理数的大小,利用算术平方根的性质估算是解答此题的关键.5.下面是某同学在一次测验中的计算摘录,其中正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个【分析】计算出各个小题中式子的正确结果,然后对照即可得到哪个选项是正确的.【解答】解:∵3x3•(﹣2x2)=﹣6x5,故①正确;∵4a3b÷(﹣2a2b)=﹣2a,故②正确;∵(a3)2=a6,故③错误;∵(﹣a)3÷(﹣a)=a2,故④错误;故选:B.【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.6.若2x=3,8y=6,则2x﹣3y的值为()A.B.﹣2C.D.【分析】利用同底数幂的除法法则进行计算即可.【解答】解:∵8y=6,∴23y=6,∵2x=3,∴2x﹣3y=2x÷23y=3÷6=,故选:A.【点评】此题主要考查了同底数幂的除法,关键是掌握a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n).7.16的平方根是()A.4B.±4C.﹣4D.±8【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选:B.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.8.若m=﹣4,则估计m的值所在的范围是()A.1<m<2B.2<m<3C.3<m<4D.4<m<5【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【解答】解:∵36<40<49,∴6<<7,∴2<﹣4<3.故选:B.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.下列说法不正确的是()A.的平方根是B.﹣9是81的一个平方根C.0.2的算术平方根是0.04D.﹣27的立方根是﹣3【分析】根据平方根的意义,可判断A、B,根据算术平方根的意义.可判断C,根据立方根的意义,可判断D.【解答】解:A、,故A选项正确;B、=﹣9,故B选项正确;C、=0.2,故C选项错误;D、=﹣3,故D选项正确;故选:C.【点评】本题考查了立方根,平方运算是求平方根的关键,立方运算是解立方根的关键.10.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.ab>0B.a+b<0C.|a|<|b|D.a﹣b>0【分析】根据数轴上点的位置关系,可得a,b的大小,根据有理数的运算,可得答案.【解答】解:b<0<a,|b|<|a|.A、ab<0,故A不符合题意;B、a+b>0,故B不符合题意;C、|b|<|a|,故C不符合题意;D、a﹣b>0,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用有理数的运算是解题关键.11.﹣3的绝对值是()A.3B.﹣3C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.下列运算正确的是()A.x6÷x2=x3B.(3x)2=3x2C.(x2)3=x5D.x2•x3=x5【分析】根据同底数幂的除法法则:底数不变,指数相减,及同底数幂的乘法以及幂的乘方与积的乘方法则进行运算,然后即可作出判断.【解答】解:A、x6÷x2=x4,故本选项错误;B、(3x)2=9x2,故本选项错误;C、(x2)3=x6,故本选项错误;D、x2•x3=x5,故本选项正确.故选:D.【点评】本题考查同底数幂的除法、同底数幂的乘法及幂的乘方与积的乘方的知识,其中幂的乘方是易混淆知识点,一定要记准法则才能做题.13.估计65的立方根大小在()A.8与9之间B.3与4之间C.4与5之间D.5与6之间【分析】由<<求解可得.【解答】解:∵<<,∴4<<5,∴估计65的立方根大小在4与5之间,故选:C.【点评】本题主要考查估算无理数的大小,解题的关键是掌握估算无理数大小的思维方法:用有理数逼近无理数,求无理数的近似值.14.在3.14,,﹣,,π这几个数中,无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数是无限不循环小数,可得答案.【解答】解:=3,﹣,π是无理数,共有2个,故选:B.【点评】此题主要考查了无理数.解题的关键是掌握无理数的定义,明确初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.有一个数轴转换器,原理如图所示,则当输入的x为64时,输出的y是()A.8B.C.D.18【分析】根据算术平方根,即可解答.【解答】解:64的算术平方根是8,8的算术平方根是.故选:B.【点评】本题考查了算术平方根,解决本题的根据是熟记算术平方根的定义.16.不等式1﹣x<3的解集为()A.x>﹣2B.x<﹣2C.x<2D.x>2【分析】不等式移项合并,把x系数化为1,即可求出解集.【解答】解:不等式整理得:﹣x<2,解得:x>﹣2,故选:A.【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.17.已知a<b,下列不等式中错误的是()A.a+z<b+z B.﹣4a>﹣4b C.2a<2b D.a﹣c>b﹣c 【分析】根据不等式的性质逐个判断即可.【解答】解:A、∵a<b,∴a+z<b+z,故本选项不符合题意;B、∵a<b,∴﹣4a>﹣4b,故本选项不符合题意;C、∵a<b,∴2a<2b,故本选项不符合题意;D、∵a<b,∴a﹣c<b﹣c,故本选项符合题意;故选:D.【点评】本题考查了不等式的性质,能熟记不等式的性质是解此题的关键,注意:不等式的性质有:①不等式的两边都加或减同一个数或式子,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变.18.在一次“疫情防护”知识竞赛中,竞赛题共25道,选对得4分,不选或选错扣2分,得分不低于60分得奖,那么得奖至少应选对的题数是()A.18B.19C.20D.21【分析】设应选对的题数是x道,根据“得分不低于60分”列出不等式,再解即可.【解答】解:设应选对的题数是x道,由题意得:4x﹣2(25﹣x)≥60,解得:x≥18,∴至少应选对的题数是19,故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.19.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8B.7≤b≤8C.8≤b<9D.8≤b≤9【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,故选:C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题要根据整数解的取值情况分情况讨论结果,取出合理的答案.20.如果x>y,则下列变形中正确的是()A.﹣x y B.y C.3x>5y D.x﹣3>y﹣3【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【解答】解:A、两边都乘以﹣,故A错误;B、两边都乘以,故B错误;C、左边乘3,右边乘5,故C错误;D、两边都减3,故D正确;故选:D.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.21.小明将含30°的三角板和一把直尺如图放置,测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.40°【分析】根据平行线的性质和三角形的内外角关系即可求解.【解答】解:如图:∵∠1=25°,∠3=∠1+30°,∴∠3=55°,∵直尺的对边平行,∴∠4=∠3=55°,∴∠2=180°﹣90°﹣∠4=180°﹣90°﹣55°=35°,故选:C.【点评】本题考查了平行线的性质和三角形的内外角关系.解题的关键是能够正确找出角度的关系得出答案.22.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.【分析】根据点到直线的距离的定义,可得答案.【解答】解:由题意得PQ⊥a,P到a的距离是PQ垂线段的长,故选:C.【点评】本题考查了点到直线的距离,点到直线的距离是解题关键.23.如图,∠1和∠2是直线____和直线____被直线____所截得到的____.应选()A.a,b,c,同旁内角B.a,c,b,同位角C.a,b,c,同位角D.c,b,a,同位角【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.【解答】解:∠1和∠2是直线b和直线c被直线a所截得到的同位角,故选:D.【点评】此题主要考查了同位角,关键是掌握同位角的边构成“F“形.24.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等【分析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选:A.【点评】本题主要考查了平行线的判定方法.这是以后做题的基础.要求学生熟练掌握.25.下列语句是命题的是()(1)两点之间,线段最短(2)如果两个角的和是90度,那么这两个角互余(3)如果x2>0,那么x>0吗?(4)过直线外一点作已知直线的垂线A.(1)(2)B.(3)(4)C.(1)(3)D.(2)(4)【分析】根据命题的定义分别对四个语句进行判断即可.【解答】解:(1)两点之间,线段最短,对问题做出了判断,是命题,符合题意;(2)如果两个角的和是90度,那么这两个角互余,对问题做出了判断,是命题,符合题意;(3)如果x2>0,那么x>0吗?是疑问句,不是命题,不符合题意;(4)过直线外一点作已知直线的垂线是陈述句,不是命题,命题有(1)(2),故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.26.直线AB、CD、EF相交于O,则∠1+∠2+∠3=()A.90°B.120°C.180°D.140°【分析】根据对顶角相等可得∠4=∠3,再根据平角的定义解答.【解答】解:如图,∠4=∠3,∵∠2+∠1+∠4=180°,∴∠1+∠2+∠3=180°.故选:C.【点评】本题考查了对顶角相等的性质,平角的定义,准确识图是解题的关键.27.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°【分析】直接利用平行线的性质结合三角形内角和定理得出答案.【解答】解:∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.【点评】此题主要考查了平行线的性质,正确掌握平行线的性质是解题关键.28.在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A 不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.29.为了了解2019年我校560名七年级学生期末考试的数学成绩,从中随机抽取了200名学生的数学成绩进行分析,下列说法正确的是()A.2019年我校七年级学生是总体B.样本容量是560C.60名七年级学生是总体的一个样本D.每一名七年级学生的数学成绩是个体【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、2019年我校560名七年级学生期末考试的数学成绩是总体,故A不符合题意;B.样本容量是200,故B不符合题意;C、200名七年级学生的数学成绩是一个样本,故C不符合题意;D、每一名七年级学生的数学成绩是个体,故D符合题意;故选:D.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体30.点M(3,﹣1)经过平移到达点N,N的坐标为(2,1),那么平移方式是()A.先向左平移1个单位,再向下平移2个单位B.先向右平移1个单位,再向下平移2个单位C.先向左平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向上平移2个单位【分析】根据向左平移横坐标减,向上平移纵坐标加解答.【解答】解:∵点M(3,﹣1)经过平移到达点N,N的坐标为(2,1),∴平移方式是先向左平移1个单位,再向上平移2个单位.故选:C.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.。
2020-2021学年江苏省盐城市射阳八年级(下)期末数学试卷一、单选题(每题3分,共24分).1.﹣3相反数是()A.B.﹣3C.﹣D.32.下列运算正确的是()A.3a+2b=5ab B.5a2﹣2b2=3C.7a+a=7a2D.(x﹣1)2=x2+1﹣2x3.2021年5月18日上午,江苏省人民政府召开新闻发布会,公布了全省最新人口数据,其中连云港市的常住人口约为4600000人.把“4600000”用科学记数法表示为()A.0.46×107B.4.6×107C.4.6×106D.46×1054.若式子有意义,则实数x的取值范围是()A.x≥﹣2且x≠1B.x≠1C.x>1D.x≥﹣25.正五边形的内角和是()A.360°B.540°C.720°D.900°6.如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,满足条件的格点C的个数是()A.2B.3C.4D.57.已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣的图象上.若x1<0<x2,则()A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<08.如图,正方形ABCD内接于⊙O,点P在上,则∠BPC的度数为()A.30°B.45°C.60°D.90°二、填空题(共8小题,每小题3分,满分24分)9.方程x2﹣7=0的解是.10.如图,点A、B、C、D在⊙O上,,则AC BD(填“>”“<”或“=”).11.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=80°,∠BOD=.12.某种服装原价每件120元,经两次降价,现售价每件80元.若设该服装平均每次降价的百分率为x,则可列出关于x的方程为.13.已知三角形的边长分别是6,8,10,则它的外接圆的半径是.14.如图,在⊙O中,弦AB=AC=5cm,BC=8cm,则⊙O的半径等于cm.15.已知方程x2﹣x﹣7=0的两个实数根分别为m,n,则m2+n的值为.16.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是.三、解答题17.(1)计算:;(2)解分式方程:.18.解方程:(1)x2﹣9=0.(2)x2﹣3x=0.19.先化简,再求值:(x﹣1)÷(﹣1),其中x为方程x2+3x+2=0的根.20.已知关于x的方程x2+ax+a﹣1=0.(1)若方程有一个根为1,求a的值及该方程的另一个根;(2)求证:不论a取何实数,该方程都有实数根.21.为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了条形统计图和扇形统计图.请根据相关信息,解答下列问题:(1)扇形①的圆心角的大小是度;(2)这40个样本数据的众数是;中位数是.(3)若该校九年级共有320名学生,估计该校理化实验操作得满分的学生人数22.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).23.某商店将进价为8元的商品按每件10元售出,每天可售出200件,如果这种商品每件的销售价每提高0.5元,其销售量就减少10件.问(1)应将每件售价定为多少元时,才能使每天利润为640元?(2)店主想要获得每天800元的利润,小红同学认为不可能.如果你同意小红同学的说法吗?(说明理由)24.如图,直角坐标系中一条圆弧经过网格点A(0,4),B(4,4),C(6,2).(1)该圆弧所在圆的圆心坐标为.(2)求弧ABC的长.25.如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求半径和弦AB的长.26.有一根直尺短边长2cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长为12cm.如图甲,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D 与点A重合.将直尺沿射线AB方向平移,如图乙,设平移的长度为xcm,且满足0≤x≤10,直尺和三角形纸板重叠部分的面积为Scm2.(1)当x=0cm时,S=;当x=4cm时,S=;当x=10cm时,S =.(2)当4<x<6时(如图丙),请用含x的代数式表示S.(3)是否存在一个位置,使重叠部分面积为11cm2?若存在,求出此时x的值.27.【操作体验】如图①,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法如下:第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O;第二步:连接OA,OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点.(1)在图②中,连接P1A,P1B,试说明∠AP1B=30°;【方法迁移】(2)已知矩形ABCD,如图③,BC=2,AB=m.①若P为AD边上的点,且满足∠BPC=60°的点P恰有1个,求m的值.②当m=4时,若P为矩形ABCD外一点,且满足∠BPC=60°,求AP长的取值范围.参考答案一、单选题(每题3分,共24分)1.﹣3相反数是()A.B.﹣3C.﹣D.3解:﹣3相反数是3.故选:D.2.下列运算正确的是()A.3a+2b=5ab B.5a2﹣2b2=3C.7a+a=7a2D.(x﹣1)2=x2+1﹣2x解:A.3a和2b不是同类项,不能合并,A错误,故选项A不符合题意;B.5a2和2b2不是同类项,不能合并,B错误,故选项B不符合题意;C.7a+a=8a,C错误,故选项C不符合题意;D.(x﹣1)2=x2﹣2x+1,D正确,选项D符合题意.故选:D.3.2021年5月18日上午,江苏省人民政府召开新闻发布会,公布了全省最新人口数据,其中连云港市的常住人口约为4600000人.把“4600000”用科学记数法表示为()A.0.46×107B.4.6×107C.4.6×106D.46×105解:4600000=4.6×106.故选:C.4.若式子有意义,则实数x的取值范围是()A.x≥﹣2且x≠1B.x≠1C.x>1D.x≥﹣2解:式子有意义,则x+2≥0且x﹣1≠0,解得:x≥﹣2且x≠1.故选:A.5.正五边形的内角和是()A.360°B.540°C.720°D.900°解:正五边形的内角和是:(5﹣2)×180°=3×180°=540°,故选:B.6.如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,满足条件的格点C的个数是()A.2B.3C.4D.5解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.故共有3个点,故选:B.7.已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣的图象上.若x1<0<x2,则()A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0解:∵k=﹣12<0,∴双曲线在第二,四象限,∵x1<0<x2,∴点A在第二象限,点B在第四象限,∴y2<0<y1;故选:B.8.如图,正方形ABCD内接于⊙O,点P在上,则∠BPC的度数为()A.30°B.45°C.60°D.90°解:连接OB、OC,如图,∵正方形ABCD内接于⊙O,∴所对的圆心角为90°,∴∠BOC=90°,∴∠BPC=∠BOC=45°.故选:B.二、填空题(共8小题,每小题3分,满分24分)9.方程x2﹣7=0的解是x1=,x2=.解:x2﹣7=0,移项得:x2=7,开方得:x=±,∴x1=,x2=﹣.故答案为:x1=,x2=﹣10.如图,点A、B、C、D在⊙O上,,则AC=BD(填“>”“<”或“=”).解:∵=,∴+=+,即=,∴AC=BD,故答案为:=.11.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=80°,∠BOD=160°.解:∵四边形ABCD内接于⊙O,∴∠A=∠DCE=80°,由圆周角定理得,∠BOD=2∠A=160°,故答案为:160°.12.某种服装原价每件120元,经两次降价,现售价每件80元.若设该服装平均每次降价的百分率为x,则可列出关于x的方程为120(1﹣x)2=80.解:根据题意,可列出关于x的方程为120(1﹣x)2=80,故答案为:120(1﹣x)2=80.13.已知三角形的边长分别是6,8,10,则它的外接圆的半径是5.解:∵三角形的三条边长分别为6,8,10,62+82=102,∴此三角形是以10为斜边的直角三角形,∴这个三角形外接圆的半径为10÷2=5.故答案为:5.14.如图,在⊙O中,弦AB=AC=5cm,BC=8cm,则⊙O的半径等于cm.解:作AE⊥BC,垂足为E,∵△ABC是等腰三角形,根据等腰三角形的性质,底边上的高与底边上的中线重合,则AE是BC的中垂线,由垂径定理的推论:弦的垂直平分线经过圆心,并且平分这条弦所对的弧知,AE的延长线过圆心,有BE=CE=BC=4cm,由勾股定理得AE=3cm,连接OB,则OA=OB,OE=OA﹣AE=OB﹣AE,由勾股定理得OB2=BE2+OE2,设OB=x,则OE=x﹣3,∴x2=42+(x﹣3)2,解得x=cm,∴OB=cm.15.已知方程x2﹣x﹣7=0的两个实数根分别为m,n,则m2+n的值为8.解:由题意可知:m2﹣m﹣7=0,∴m2=m+7,∵m+n=1,∴原式=m+7+n=8,故答案为:8.16.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是5.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图所示,∵∠ACB=∠D=45°,AB=10,∠ABD=90°,∴AD=AB=10,∴MN=AD=5,故答案为:5.三、解答题17.(1)计算:;(2)解分式方程:.解:(1)原式=2+6﹣4=4;(2)整理,得:,去分母,得:(x+1)2﹣4=(x+1)(x﹣1),去括号,得:x2+2x+1﹣4=x2﹣1,移项,合并同类项,得:2x=2,系数化1,得:x=1,检验:当x=1时,(x+1)(x﹣1)=0,∴x=1为原分式方程增根,∴原方程无解.18.解方程:(1)x2﹣9=0.(2)x2﹣3x=0.解:(1)分解因式得:(x+3)(x﹣3)=0,可得x+3=0或x﹣3=0,解得:x1=3,x2=﹣3;(2)分解因式得:x(x﹣3)=0,可得x=0或x﹣3=0,解得:x1=0,x2=3.19.先化简,再求值:(x﹣1)÷(﹣1),其中x为方程x2+3x+2=0的根.解:原式=﹣x﹣1,解方程x2+3x+2=0得x=﹣1或x=﹣2,则当x=﹣1时,原式=0;当x=﹣2时,原式=1.20.已知关于x的方程x2+ax+a﹣1=0.(1)若方程有一个根为1,求a的值及该方程的另一个根;(2)求证:不论a取何实数,该方程都有实数根.解:(1)∵x=1是方程x2+ax+a﹣1=0的解,∴把x=1代入方程x2+ax+a﹣1=0得:1+a+a﹣1=0,解得a=0,∵x1+x2=﹣a,∴1+x2=0,∴x2=﹣1,∴a=0,方程的另一个根为﹣1.(2)∵a2﹣4(a﹣1)=a2﹣4a+4=(a﹣2)2≥0,∴无论a为何值,此方程都有实数根.21.为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了条形统计图和扇形统计图.请根据相关信息,解答下列问题:(1)扇形①的圆心角的大小是36度;(2)这40个样本数据的众数是9;中位数是8.(3)若该校九年级共有320名学生,估计该校理化实验操作得满分的学生人数解:(1)360o×(1﹣15%﹣27.5%﹣30%﹣17.5%)=360o×10%=36o,故答案为:36o;(2)∵9出现了12次,次数最多,∴众数是9,∵把40个数据按从小到大的顺序排列,位于中间的两个数据都是8,∴中位数是8,故答案为:9,8;(3)320×17.5%=56(人),∴满分的人数约为56人.22.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为,故答案为:;(2)画树状图如下:由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,∴至少有1张印有“兰”字的概率为.23.某商店将进价为8元的商品按每件10元售出,每天可售出200件,如果这种商品每件的销售价每提高0.5元,其销售量就减少10件.问(1)应将每件售价定为多少元时,才能使每天利润为640元?(2)店主想要获得每天800元的利润,小红同学认为不可能.如果你同意小红同学的说法吗?(说明理由)解:(1)设售价定为x元,则每件的销售利润为(x﹣8)元,每天的销售量为200﹣10×=(400﹣20x)件,依题意得:(x﹣8)(400﹣20x)=640,整理得:x2﹣28x+192=0,解得:x1=12,x2=16.答:应将每件售价定为12元或16元时,才能使每天利润为640元.(2)同意,理由如下:依题意得:(x﹣8)(400﹣20x)=800,整理得:x2﹣28x+200=0.∵Δ=(﹣28)2﹣4×1×200=﹣16<0,∴该方程没有实数根,∴小红的说法正确.24.如图,直角坐标系中一条圆弧经过网格点A(0,4),B(4,4),C(6,2).(1)该圆弧所在圆的圆心坐标为(2,0).(2)求弧ABC的长.解:(1)由垂径定理可知,圆心是AB、BC中垂线的交点,由网格可得该点P(2,0),故答案为:(2,0);(2)根据网格可得,OP=CQ=2,OA=PQ=4,∠AOP=∠PQC=90°,由勾股定理得,AP===2=PC,在△AOP和△PQC中,,∴△AOP≌△PQC(SAS),∴∠APO=∠PCQ,又∵∠PCQ+∠CPQ=90°,∴∠APO+∠CPQ=90°,又∵∠APO+∠APC+∠CPQ=180°,∴∠APC=90°,∴弧ABC的长为=π,答:弧ABC的长为π.25.如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求半径和弦AB的长.解:(1)直线AC是⊙O的切线,理由如下:如图,连接OA,∵BD为⊙O的直径,∴∠BAD=90°=∠OAB+∠OAD,∵OA=OB,∴∠OAB=∠ABC,又∵∠CAD=∠ABC,∴∠OAB=∠CAD=∠ABC,∴∠OAD+∠CAD=90°=∠OAC,∴AC⊥OA,又∵OA是半径,∴直线AC是⊙O的切线;(2)过点A作AE⊥BD于E,∵OC2=AC2+AO2,∴(OA+2)2=16+OA2,∴OA=3,∴OC=5,BC=8,∵S△OAC=×OA×AC=×OC×AE,∴AE==,∴OE===,∴BE=BO+OE=,∴AB===.26.有一根直尺短边长2cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长为12cm.如图甲,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D 与点A重合.将直尺沿射线AB方向平移,如图乙,设平移的长度为xcm,且满足0≤x ≤10,直尺和三角形纸板重叠部分的面积为Scm2.(1)当x=0cm时,S=2cm2;当x=4cm时,S=10cm2;当x=10cm时,S=2cm2.(2)当4<x<6时(如图丙),请用含x的代数式表示S.(3)是否存在一个位置,使重叠部分面积为11cm2?若存在,求出此时x的值.解:(1)∵△ABC是等腰直角三角形,∴∠CAB=45°,∵∠DEF=90°,∴△AEF是等腰直角三角形,∴AE=EF,同理可得△ADG是等腰直角三角形,∴AD=DG,当x=0cm时,AE=EF=2cm,∴S=×2×2=2(cm2);当x=4cm时,AD=DG=4cm,AE=EF=4+2=6(cm),∴S=×4×4=10(cm2);当x=10cm时,AD=DG=10cm,AE=10+2=12(cm),此时点E与点B重合,∴S=×2×2=2(cm2);故答案为:2cm2,10cm2,2cm2;(2)∵AD=DG=xcm,DE=2cm,∴AE=(x+2)cm,∴BE=(12﹣x﹣2)cm=(10﹣x)cm,∵△ABC是等腰直角三角形,∴∠B=45°,∵∠BEF=90°,∴∠BFE=∠B=45°,∴△BEF是等腰直角三角形,∴EF=BE=(10﹣x)cm,过点C作CH⊥AB,∴CH=AB=6cm,∴S=S△ABC﹣S△ADG﹣S△BEF==﹣x2+10x﹣14;(3)存在,由(1)知:当x=4cm时S=10cm2,∴当S=11cm2时,x>4cm,∴﹣x2+10x﹣14=11,解得x1=x2=5,∴当x=5cm时,重叠部分面积为11cm2.27.【操作体验】如图①,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法如下:第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O;第二步:连接OA,OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点.(1)在图②中,连接P1A,P1B,试说明∠AP1B=30°;【方法迁移】(2)已知矩形ABCD,如图③,BC=2,AB=m.①若P为AD边上的点,且满足∠BPC=60°的点P恰有1个,求m的值.②当m=4时,若P为矩形ABCD外一点,且满足∠BPC=60°,求AP长的取值范围.解:(1)由作法,可得OA=OB=AB,∴△OAB为等边三角形,∴∠AP1B=∠AOB=30°;(2)①如图1,在矩形内作∠BOC=120°,OB=OC,作直线OM⊥BC于M,交AD于P,则PM⊥AD,∠BPC=∠BOC=60°当⊙O与AD相切于点P时,满足∠BPC=60°的点P恰有1个,∵BC=2,AB=m.∴OB=OC=2,∵OM=BO=1,OP=OB=2,∴m=OP+OM=2+1=3;②如图2,设⊙O与AB,CD的另一个交点分别为R,S,当点P在弧BR和弧SC上(不含端点)运动时,满足∠BPC=∠BOC=60°,当P在弧BR上运动时,P与R重合时,BR=BC=2,AP=2,P与B重合时,AP=4,当P在弧SC上运动时,P与S重合时,AP=,P与C重合时,AP=,若点O在BC的下方,同理可求得4<AP≤∴当m=4时,P为矩形ABCD外一点,且满足∠BPC=60°,AP长的取值范围为2<AP<4或4<AP<或4<AP≤,综上,AP长的取值范围为:2<AP≤且AP≠4.。
2020-2021学年江苏省无锡市宜兴市八年级(下)期末数学试卷一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合題目要求的,请把正确选项前的字母代号填涂在答题卷相应位置.)1.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A.B.C.D.2.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠3.下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个4.如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A.互相平分B.相等C.互相垂直D.互相垂直平分5.若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x2 6.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形7.下列各式是最简二次根式的是()A.B.C.D.8.函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.9.如图,▱OABC的顶点A在x轴的正半轴上,点D(4,3)在对角线OB上,反比例函数y=(k>0,x>0)的图象经过C、D两点.已知▱OABC的面积是,则点B的坐标为()A.(5,)B.(6,)C.(,4)D.(,)10.如图,将边长为3的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q,连接PQ,则△GPQ的周长最小值是()A.B.C.D.二、填空题(本大题共8小题每题2分,共计16分.请把答案直接填写在答题卷相应位置上)11.事件A发生的概率为,大量重复做这种试验事件A平均每100次发生的次数是.12.某中学数学教研组有32名教师,将他们按年龄分组,在38﹣45岁组内的教师有8名教师,那么这个小组的频率是.13.分式、、的最简公分母是.14.请写出的一个同类二次根式:.15.若关于x的方程有增根,则m的值是.16.如图,△ABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到△A′B′C′,且点A在A′B′上,则旋转角为.17.如图,将矩形ABCD的边AB沿直线AE折叠,使点B恰好落在对角线AC的中点上,折痕AE交BC于点E,若AE=3,则矩形ABCD的面积为.18.如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=(x>0)的图象恰好经过点F,M.若直尺的宽CD=2,三角板的斜边FG=6,则k=.三、解答题(本大题共8小题,共计74分.解答需写出必要的文字说明或演算步骤.) 19计算:(1)﹣|2﹣3|+;(2).20化简或解方程:(1)化简:;(2)先化简再求值:,其中a=.(3)解分式方程:.21为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B “沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为;统计图中的a=,b=;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.22如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE=,求EF的长;(2)判断四边形AECF的形状,并说明理由.23(1)如图1,在5×5的网格中,△ABC的三个顶点都在格点上请在图1中画出一个以AB为边的▱ABDE,顶点D,E在格点上且满足S▱ABDE=2S△ABC;(2)如图2,▱ABCD中,AE⊥BD于点E,若CF⊥BD于点F,请用无刻度尺在图2中作出符合题意的点F;(不要求写作法,但要保留作图痕迹)(3)如图3,若线段A′B′由线段AB绕点O逆时针旋转得到,请用无刻度尺和圆规在图3中作出旋转中心O(不要求写作法,但要保留作图痕迹).24中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?25如图,正方形ABCD中,F在AD上,且AF:DF=3:1,点E是边AB上的一点,且BE=4,将△AEF沿着EF折叠,点A落在点A'处,若△BEA′是直角三角形,求正方形的边长.26如图,在平面直角坐标系中,已知点A的坐标为(0,3),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y=(k≠0)于D、E两点,已知点E的坐标为(﹣2,a),连结CE,交x轴于点F.(1)求双曲线y=(k≠0)和直线DE的解析式.(2)求E到直线DC的距离.(3)在x轴上是否存在一点P,使|PD﹣PE|值最大,若有,直接写出点P的坐标;若无,请说明理由.参考答案一.选择题(共10小题)1.D.2.C.3.C.4.C.5.C.6.D.7.A.8.D.9.C.10.B.二.填空题(共8小题)11.20.12.0.25.13.12x3y.14.,5….(答案不唯一)15.﹣1.16.50°.17..18.24.三.解答题19解:原式=2﹣|﹣1|+=2﹣1+=3﹣1.(2)原式=+5﹣(5﹣4)=+5﹣1=+4.20解:(1)原式=﹣====;(2)=[+]•=•=•=,当a=时,原式==;(3),方程两边都乘以x﹣2,得1=x﹣1﹣3(x﹣2),解得:x=2,检验:当x=2时,x﹣2=0,所以x=2是增根,即原方程无解.21解:(1)18÷15%=120(人),因此样本容量为120;a=120×10%=12(人),b=120×30%=36(人),故答案为:120,12,36;(2)E组频数:120﹣18﹣12﹣30﹣36=24(人),补全条形统计图如图所示:(3)2500×=625(人),答:估计该校2500名学生中喜爱“葫芦雕刻”的有625人.22解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.23解:(1)如图1,四边形ABDE为所作;(2)如图2,点F为所作;(3)如图3,点O为所作.24解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.25解:∵AF:DF=3:1,设AF=3x,DF=x,则AB=AD=4x,∵△AEF沿着EF折叠,点A落在点A'处,∴△AEF≌△A'EF,∴AE=A'E,AF=A'F,如图1,当∠BEA'=90°时,∵AE⊥A'E,AE⊥AF,∴四边形ADA'F是正方形,∴AF=AE,∵BE=4,∴4x﹣4=3x,∴x=4,∴正方形的边长为16;如图2,当∠BA'E=90°时,∵∠EA'F=90°,∴B、A'、F三点共线,在Rt△ABF中,BF=5x,∴A'B=2x,在Rt△BEA'中,42=(4x﹣4)2+(2x)2,∴x=,∴正方形边长为,综上所述:正方形的边长为16或.26解:(1)作DM⊥y轴,如图,∵点A的坐标(0,3),点B坐标(1,0),∴OA=3,OB=1,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠OAB+∠DAM=90°,∵∠OAB+∠ABO=90°,∴∠DAM=∠ABO,∵∠AOB=∠DMA=90°,∴△AOB≌△DMA(AAS),∴AM=OB=1,DM=OA=3,∴D点(3,4),将点D代入双曲线得,k=3×4=12,∴双曲线y=,设直线DE的解析式为y=mx+n,把B(1,0),D(3,4)代入得,解得,∴直线DE的解析式为y=2x﹣2,(2)连接AC,交BD于N,∵四边形ABCD是正方形,∴BD垂直平分AC,即AC=BD,∵E(﹣2,a),代入反比例函数y=得,a=﹣6,∴E(﹣2,﹣6),∵B(1,0),D(3,4),∴=,,∴,∴=,∴E到直线DC的距离为,(3)存在满足条件的P点,P点(13,0),如图,将E点关于x轴对称,对称点为E′(﹣2,6),连接PE′,PE,PD.根据三角形三边关系可得|PD﹣PE|=|PD﹣PE′|≤DE',当P在P1点时,|PD﹣PE|的值最大,最大为DE'.设直线DE'的解析式为y=ax+b,将E'(﹣2,6),D(3,4)代入得,解得,∴直线DE'的解析式为y=,当y=0时,x=13,P点坐标(13,0).。