当前位置:文档之家› 影响建筑构件耐火极限因素

影响建筑构件耐火极限因素

影响建筑构件耐火极限因素
影响建筑构件耐火极限因素

影响建筑构件耐火极限的因素

1.材料本身的属性;

2.构配件的结构特性;

3.材料与结构的构造方式;

4.标准所规定的试验条件;

5.火灾种类和使用环境要求

建筑材料燃烧性能等级的附加信息

1.产烟特性等级;

2.燃烧滴落物/微粒等级;

3.烟气毒性等级

建筑材料及制品的燃烧性能的分级

A:不燃材料;

B1难燃材料;

B2:可燃材料;

B3:易燃材料

高层与多层民用建筑的分类

建筑的分类

按其使用性质分为

(1)民用建筑

(2)工业建筑

(3)农业建筑

按其结构形式分为

(1)木结构

(2)砖木结构

(3)砖混结构

(4)钢筋混凝土结构

(5)钢结构

(6)钢混结构

(7)其他结构

按建筑高度分类

(1)单层、多层建筑

(2)高层建筑

甲、乙、丙类储存物品的火灾危险性特征

甲、乙、丙类生产类物品的火灾危险性特征

储存的火灾危险性的分类

储存物品的分类方法,主要是根据物品本身的火灾危险性,并吸收仓库储存管理经验,参考《危险货物运输规则》相关内容而划分的。按《建筑设计防火规范》(GB 50016--2006),储存物品的火灾危险性分为五类:甲类、乙类、丙类、丁类、戊类。

注:1)同一座仓库或仓库的任一防火分区内储存不同火灾危险性物品时,仓库或防火分区的火灾危险性应按火灾危险性最大的物品确定。

2)丁、戊类储存物品仓库的火灾危险性,当可燃包装重量大于物品本身重量的l/4或可燃包装体积大于物品本身体积的l/2时,应按丙类确定。

生产的火灾危险性的分类

国内主要依据现行国家标准《建筑设计防火规范》(GB 50016--2006),把生产的火灾危险性分为5类,甲类、乙类、丙类、丁类、戊类

注意:同一座厂房或厂房的任一防火分区内有不同火灾危险性生产时,厂房或防火分区内的生产火灾危险性类别应按火灾危险性较大的部分确定。当生产过程中使用或产生易燃、可燃物的量较少不足以构成爆炸或火灾危险时,可按实际情况确定;当符合下述条件之一时,可按火灾危险性较小的部分确定:

(1)火灾危险性较大的生产部分占本层或本防火分区面积的比例小于5%或丁、戊类厂房内的油漆工段小于l0%,且发生火灾事故时不足以蔓延到其他部位或火灾危险性较大的生产部分采取了有效雕防火措施。

(2)丁、戊类厂房内的油漆工段,当采用封闭喷漆工艺,封闭喷漆空间内保持负压、油漆工段设置可燃气体探测报警系统或自动抑爆系统,且油漆工段占其所在防火分区面积的比例不大于20%。

评定物质火灾危险性的主要指标

(一)评定气体火灾危险性的主要指标:爆炸极限和自燃点

(二)评定液体火灾危险性的主要指标:闪点

(三)评定固体火灾危险性的主要指标:熔点和燃点

灭火的基本方法

一、冷却灭火

二、隔离灭火

三、窒息灭火

四、化学抑制灭火

火灾发生的常见原因

一、电气

二、吸烟

三、生活用火不慎

四、生产作业不慎

五、设备故障

六、玩火

七、放火

八、雷击

疏散门的设置形式有什么要求?

疏散门的形式根据建筑类别、使用性质进行确定。检查要求为:

(1)民用建筑和厂房的疏散门,采用向疏散方向开启的平开门,不得采用推拉门、卷帘门、吊门、转门和折叠门。仓库的疏散门采用向疏散方向开启的平开门,但丙、丁、戊类仓库首层靠墙的外侧可采用推拉门或卷帘门;电影院、剧场的疏散门采用甲级自动推闩式外开门。

(2)人员密集场所内平时需要控制人员随意出入的疏散门和设置门禁系统的住宅、宿舍、公寓建筑的外门,要保证火灾时不需使用钥匙等任何工具即能从内部易于打开,并在显著位置设置标识和使用提示。

简述下沉式广场防火检查的主要内容。

检查内容

1.广场的开敞区域

不同防火分区通向下沉式广场等室外开敞空间的开口最近边缘之间的水平距离不得小于13m。室外开敞空间除用于人员疏散外不得用于其他商业或供人员通行外的其他用途,其中用于疏散的净面积不得小于169m2。

2.广场直通地面的疏散楼梯

为保证人员逃生需要,直通地面的疏散楼梯不得少于1部。当连接下沉广场的防火分区需利用下沉广场进行疏散时,该区域通向地面的疏散楼梯要均匀布置,使人员的疏散距离尽量短。疏散楼梯的总净宽度不得小于任一防火分区通向室外开敞空间的设计疏散总净宽度。

3.广场防风雨棚的设置

防风雨蓬不得完全封闭,四周开口部位要均匀布置,开口的面积不得小于室外开敞空间地面面积的25%,开口高度不得小于1.0m;开口设置百叶时,百叶的有效排烟面积可按百叶通风口面积的60%设置。

什么类型的建筑需要设置封闭楼梯间?

封闭楼梯间

①楼梯间靠外墙布置,并能直接天然采光和自然通风。首层如将走道和门厅等包括在楼梯间内形成扩大的封闭楼梯间时,需采用乙级防火门等措施与其他走道和房间隔开。

②除楼梯间的门之外,楼梯间的内墙上不开设其他门窗洞口;楼梯间墙体采用耐火极限不低于2.00h的不燃烧体。

③高层建筑、人员密集的公共建筑、人员密集的多层丙类厂房楼梯间的门为乙级防火门,并向疏散方向开启;其他建筑封闭楼梯间的门可采用双向弹簧门。

④楼梯间的顶棚、墙面和地面的装修材料必须采用不燃烧材料。

建筑防火的技术方法

(一)总平面布置

建筑的总平面布置要满足城市规划和消防安全的要求。一是要根据建筑物的使用性质、生产经营规模、建筑高度、建筑体积及火灾危险性等,从周围环境、地势条件、主导风向等方面综合考虑,合理选择建筑物位置。二是要根据实际需要,合理划分生产区、储存区(包括露天存储区)、生产辅助设施区、行政办公和生活福利区等。三是为防止火灾因传导热、对流热、辐射热影响而导致火势向相邻建筑或同一建筑的其他空间蔓延扩大,并为火灾扑救创造有利条件,在总平面布置中,应合理确定各类建(构)筑物、堆场、贮罐、电力设施及电力线路之间的防火安全距离。四是要根据各建筑物的使用性质、规模、火灾危险性,考虑扑救火灾时所必需的消防车通道、消防水源和消防扑救面。

(二)建筑结构防火

建筑结构的安全是整个建筑的生命线,也是建筑防火的基础。建筑物的耐火等级是研究建筑防火措施、规定不同用途建筑物需采取相应防火措施的基本依据。在建筑防火设计中,正确选择和确定建筑的耐火等级,是防止建筑火灾发生和阻止火势蔓延扩大的一项治本措施。常用的方法主要有:适当增加构件的截面积;对钢筋混凝土构件增加保护层厚度;在构件表面涂覆防火涂料做耐火保护层;对钢梁、钢屋架及木结构做耐火吊顶和防火保护层包敷等等。

(三)建筑材料防火

建筑材料中不少是可以燃烧的,特别是大多数天然高分子材料和合成高分子材料都具有可燃性,而且这些建筑材料在燃烧后往往产生大量的烟雾和有毒气体,给火灾扑救和人员疏

散造成严重威胁。为了预防火灾的发生,或阻止、延缓火灾的发展,最大限度地减轻火灾危害,必须对可燃建筑材料的使用及其燃烧性能进行有效的控制。建筑材料防火就是根据国家的消防技术标准、规范,针对建筑的使用性质和不同部位,合理地选用建筑的防火材料,从而保护火灾中的受困人员免受或少受高温有毒烟气侵害,争取更多可用疏散时间的重要措施。建筑材料防火应当遵循的原则主要是:控制建筑材料中可燃物数量,受条件限制或装修特殊要求,必须使用可燃材料的,应当对材料进行阻燃处理;与电气线路或发热物体接触的材料应采用不燃材料或进行阻燃处理;楼梯间、管道井等竖向通道和供人员的走道内应当采用不燃材料。

(四)防火分区分隔

如果建筑内空间面积过大,火灾时则燃烧面积大、蔓延扩展快,因此在建筑内实行防火分区和防火分隔,可有效地控制火势的蔓延,既利于人员疏散和扑火救灾,也能达到减少火灾损失的目的。防火分区包括水平防火分区和竖向防火分区。水平防火分区是指在同一水平面内,利用防火隔墙、防火卷帘、防火门及防火水幕等分隔物,将建筑平面分为若干个防火分区、防火单元;竖向防火分区指上、下层分别用耐火的楼板等构件进行分隔,对建筑外部采用防火挑檐、设置窗槛(间)墙等技术手段,对建筑内部设置的敞开楼梯、自动扶梯、中庭以及管道井等采取防火分隔措施等。

防火分区的划分应根据建筑的使用性质、火灾危险性以及建筑的耐火等级、建筑内容纳人员和可燃物的数量、消防扑救能力和消防设施配置、人员疏散难易程度及建设投资等情况综合考虑。

(五)安全疏散

人身安全是消防安全的重中之重,以人为本的消防工作理念必须始终贯穿于整个消防工作,从特定的角度上说,安全疏散是建筑防火最根本、最关键的技术,也是建筑消防安全的核心内容。

易燃固体

易燃固体是指燃点低,对热、撞击、摩擦敏感,易被外部火源点燃,燃烧迅速,并可能散发出有毒烟雾或有毒气体的固体。

易于自燃的物质包括发火物质和自热物质两类

(1)发火物质。指即使只有少量物品与空气接触,在不到5min内便会燃烧的物质,包括混合物和溶液(液体和固体)。如黄磷、三氯化钛等。

(2)自热物质。指发火物质以外的与空气接触不需要能源供应便能自己发热的物质。如赛璐珞碎屑,油纸,动、植物油,潮湿的棉花等。

遇水放出易燃气体的物质

系指遇水或受潮时,发生剧烈化学反应,放出大量易燃气体和热量的物品。这类物质还能与酸或氧化剂发生反应,而且比遇水发生的反应更加剧烈,其着火爆炸的危险性更大。易燃液体的分类

易燃液体分为三级。

(1)I类。闪点<-18℃,如汽油、正戊烷、环戊烷、环戊烯、乙醛、丙酮、乙醚、甲胺水溶液、二硫化碳等。

(2)II类。-18℃≤闪点<23℃,如石油醚、石油原油、石脑油、正庚烷及其异构体、辛烷及其异辛烷、苯、粗苯、甲醇、乙醇、噻吩、吡啶、香蕉水、显影液、镜头水、封口胶等。

建筑构件耐火试验炉的研制和应用

建筑构件耐火试验炉的研制和应用 王 帆 1,2,3 ,吴 波1,2,张正先 1,2 ,林洁梅 1,2 (1.华南理工大学建筑学院,广东广州,510640; 2.亚热带建筑教育部重点实验室,广东广州 510640; 3.广东省建筑科学研究院,广东广州 510550) 摘 要:介绍了建筑构件耐火试验炉的研制思路、控制温度、压力的技术措施以及为满足构件力学试验所采用的约束条件模拟方法等。 关键词:建筑构件;耐火试验炉;温度曲线;约束条件 中图分类号:X 924.4 文献标识码:A 文章编号:1002 4956(2007)03 0055 04 Researc h and application of fire test f urnace for bu i di ng ele ments WANG Fan 1,2,3 ,WU Bo 1,2,Z HANG Zheng x ian 1,2,LI N Jie m e i 1,2 (1.A rch itecture Co llege o f South Ch i na U nivers it y of T echno l ogy ,G uangzhou 510640,China ;2.Sub trop i ca l A r ch itecture K ey L abo rato ry o f Educati on M i n i stry ,G uangzhou 510640,Ch i na ;3.G uangdong A rchitecture Science A cade m e ,G uangzhou 510500,China) Ab stract :T he paper g i ves a deta il ed illu m ina te on the research o f F ire T est Furnace fo r Buil ding E le m ents ,t he techn i ca lm easures fo r te m pe rature contro lli ng and pressure con tro lli ng ,constra i nt conditi on ,e tc .K ey w ords :buil d i ng ele m ents ; fi re test furnace ; te m perate curv e ; constra i nt conditi on 收稿日期: 2006 05 11 修改日期:2007 02 28 作者简介:王帆(1971!),男,四川省成都市人,工学博士,在 站博士后,讲师,主要研究方向:钢结构理论,结构抗火 基金项目: 985工程 一期建设经费和 十五 211工程 建 设经费资助的项目. 在地震、海啸、洪涝、干旱等各种灾害中,火灾的发生频度高居各灾种之首。近年来发生的诸多 因火而导致的结构破坏事件使得结构耐火问题受到空前的重视,这些灾难包括 911 事件、2004年2月15日吉林市中百商厦特大火灾、2003年11月3日衡阳市衡州大厦特大火灾坍塌事故、2003年2月2日哈尔滨市天潭酒店特大火灾、2000年12月25日洛阳市东都商厦特大火灾等。 在我国经济快速持续发展,建筑业占国内GDP 份额不断增长的同时,关注因火灾引起的结构毁坏,研究结构耐火性能及火灾后结构损伤评估成了刻不容缓的大事。 建筑构件耐火试验是研究结构耐火性能的重要手段,这类试验一般采用耐火试验炉进行。耐火试验炉提供一个人造的室内火灾温度场,配合以对试验构件施加的荷载及边界约束,并且在试验构件中 布置测温热电偶,可用于研究构件内部温度场的发展过程以及构件在高温下的承载能力,从而为建筑构件抗火灾设计及火灾后结构的损伤评估与修复加固提供科学依据。 建筑构件耐火试验炉的研制内容主要由以下几点组成:炉型的确定,温度和压力的控制和加载系统和数据采集系统。 1 炉型的确定 耐火试验炉的设计有两种不同的思路:一种是设计大型的多功能炉,满足各种不同类型构件的试验需要;另一种是根据不同的试验构件分别设计炉型,比如水平炉用于梁、板构件试验,柱炉用于柱式构件试验,墙炉用于墙、门、窗构件等。总体而言,炉型选择是由经济条件、技术条件和场地条件等决定的。 炉膛尺寸应能适应一般的检测和试验要求。1987年英国颁布的BS476、Part 20和1999年我国制订的?建筑构件耐火试验方法#(GB /T 9978 1999)都对耐火试验构件的尺寸提出了要求,其中BS476、Part 20还对试件受火面到炉内壁的距离作了建议,由此可以确定炉膛的尺寸。 ISSN 1002-4956 CN11-2034/T 实 验 技 术 与 管 理 Experi m entalT echnol ogy and M anage m ent 第24卷 第3期 2007年3月 Vo.l 24 N o .3 M ar .2007

常用建筑构件的耐火极限范例

一、墙的耐火极限 1、普通粘土砖墙、钢砼墙的耐火极限大量试验证明,耐火极限与厚度成正比。 厚度(mm)120 180 240 370 耐火极限(h) 2.50 3.50 5.50 10.50 2、加气砼墙的耐火极限 耐火极限与厚度也基本是成正比。 如加气砼砌块墙(非承重墙) 厚度(mm)75 100 200 耐火极限(h) 2.50 6.00 8.00 3、轻质隔墙 木龙骨——钢丝网抹灰:0.85h 石膏板:0.30h 水泥刨花板:0.30h 板条抹灰:0.85h 钢龙骨——单层石膏板 双层石膏板:1.00h以上 4、金属墙板的耐火极限 采用铝、钢、铝合金等薄板作两面,中间或是空气层或填矿棉、岩棉等隔热材料,耐火极限可达1.50~2.00h。 二、柱的耐火极限 1、钢砼柱的耐火极限 在通常情况下随柱截面增大而增大。如C20砼柱: 截面积(mm×mm) 耐火极限(h) 200×200 1.40h 300×300 3.00h 370×370 5.00h 2、钢柱的耐火极限:0.25h

三、梁的耐火极限 1、钢砼梁的耐火极限主要取决于主筋保护层的 厚度。 如非预应力钢砼简支梁: 保护层厚度(mm)10 20 25 30 耐火极限(h) 1.20 1.75 2.00 2.30 2、无保护钢梁耐火极限为0.25h。 四、楼板的耐火极限 简支钢砼圆孔空心板 保护层厚度(mm)10 20 30 耐火极限(h)0.9 1.25 1.50 预应力钢砼圆孔空心板 保护层厚度(mm)10 20 30 耐火极限(h)0.4 0.7 0.85 五、吊顶的耐火极限 木吊顶搁栅——钢丝网抹灰:0.25h 板条抹灰:0.25h 纸面石膏板:0.25h 钢吊顶搁栅——石棉板:0.85h 双层石膏板:0.30h 钢丝网抹灰:0.25h 六、屋顶承重构件——屋架 无保护钢屋架的耐火极限为0 .25h;钢砼屋架的耐火极限主要取决于保护层厚度,一般保护层厚度为25~30mm,耐火极限为1.50~1.70h。

影响气体混合物爆炸极限的因素

影响气体混合物爆炸极限 的因素 This manuscript was revised by the office on December 10, 2020.

影响气体混合物爆炸极限的因素 :可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为,或。例如与空气混合的爆炸极限为12.5%~74%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响气体混合物爆炸极限的因素:温度、氧含量、惰性介质、压力、容器或管道直径、着火源(点火能量) 1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。 (2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。 (3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显着,因为惰性气体浓度加大,表示氧的浓度相对减小,而在上限中氧的浓度本来已经很小,故惰性气体稍为增加一点,即产生很大影响,而使爆炸上限剧烈下降。 (4)压力。混合物的原始压力对爆炸极限有很大影响,压力增大,爆炸极限范围也扩大,尤其是爆炸上限显着提高。值得重视的是当混合物的原始压力减小时,爆炸极限范围缩小,压力降至某一数值时,下限与上限合成一点,压力再降低,混合物即变成不可爆。爆炸极限范围缩小为零的压力称为爆炸的临界压力。临界压力的存在表明,在密闭的设备内进行减压操作,可以免除爆炸的危险。 (5)容器或管道直径。容器或管道直径越小,火焰在其中越难蔓延,混合物的爆炸极限范围则越小。当容器直径小到某一数值时,火焰不能蔓延,可消除爆炸危险,这个直径称为临界直径。如甲烷的临界直径为0.4~0.5mm,氢和乙炔为0.1~0.2mm等。 容器直径大小对爆炸极限的影响,可以用链式反应理论解释。燃烧是自由基产生的一系列链锁反应的结果,管径减小时,游离基与管壁的碰撞几率相应增大,当管径减小到一定程度时,即因碰撞造成游离基的销毁的反应速度大于游离基产生的反应速度,燃烧反应便不能继续进行。 (6)着火源。能源的性质对爆炸极限范围的影响是:能源强度越高,加热面积越大,作用时间越长,爆炸极限范围越宽。以甲烷为例,100V·A的电火花不引起曝炸, 2V·A的电火花可引起爆炸,爆炸极限为5.9%~13.6%,3V·A的电火花则爆炸极限扩大为5.85%~14.8%。 各种爆炸性混合物都有一个最低引爆能量,即点火能量,它是指能引起爆炸性混合物发生爆炸的最小火源所具有的能量,它也是混合物爆炸危险性的一项重要的性能参数。爆炸性混合物的点火能量越小,其燃爆危险性就越大。 火花的能量、热表面的面积、火源和混合物的接触时间等,对爆炸极限均有影响。此外,光对爆炸极限也有影响,如前所述,氢和氯混合,在避光黑暗处反应十分缓慢,但在强光照射下则发生剧烈反应(链锁反应)并导致爆炸。

IEC60076标准草案中干式变压器的几项特殊试验

IEC60076标准草案中干式变压器的几项特殊试验 摘要:本文着重阐述了IEC60076-11《干式变压器》标准草案中规定的气候等级、环境等级、耐火等级的试验标准和方法。并与欧洲标准HD464/S1进行对比,以云变SCR包封型干式变压器的试验情况为例进行说明和讨论。 关键词:IEC60076 干式变压器、特殊试验 一、前言: 随着城市建设的发展,人们对环保、安全问题日益关注,对干式变压器的要求也越来越高,特别是在欧洲一些发达国家。早在1988年欧洲电工标准组织(CENELEC)就颁布了欧洲标准HD464/S1,对干式变压器提出了气候、环境、耐火三项特殊试验的要求,1993年法国标准NFC52-76等效采用了HD464/S1标准,2000年版本的国际电工委员会IEC60076-11--《干式电力变压器》标准草案把欧洲标准HD464/S1的这三项特殊试验纳入了标准之中,并明确规定了变压器铭牌中必须标明气候等级、环境等级、耐火等级。 云南变压器电气股份有限公司1995年引进法国技术生产的SCR包封型杜邦Reliatran?技术变压器(原称为SCR包封型赛格迈?干式变压器)于1996年在意大利米兰"CESI欧洲独立试验室"通过了环境E2级、气候C2级、耐火F1级试验,并取得相应证书。 为了让更多的变压器厂家及干式变压器的用户进一步了解三项特殊试验的目的、意义、要求和试验方法,本文以云变制造的包封型杜邦Reliatran?技术变压器为例分别阐述如下。 二、气候、环境、耐火等级的定义: IEC60076-11《干式变压器》标准草案第13条对气候、环境、耐火等级作出了以下定义: 1.气候等级(Climatic Classes) IEC60076-11标准草案定义了两种气候等级,与欧洲标准HD464相同。 C1级:变压器适合运行的环境温度不低于-5℃,但最低可以在-25℃的环境中存放或运输。 C2级:变压器最低可以在-25℃的环境中运行、运输和存放。 2. 环境等级(Environmental Classes) 为了评定干式变压器的适应环境能力,IEC60076-11标准草案从湿度、冷凝性、污秽程度三个因素划分,定义了三种不同的环境等级,与欧洲标准HD464相同。 E0级:变压器上无冷凝,轻微污秽。通常把设备安装在干净干燥的室内。 E1级:变压器上偶尔有冷凝现象发生(例如当变压器断电时),一般性污秽。 E2级:经常产生冷凝或污秽较严重,或者二者同时存在。 3. 耐火等级(Fire behaviour classes) IEC60076-11标准草案定义了两种耐火等级,没有采纳欧洲标准HD464中的F2级。 F0级:未规定耐火性能,除变压器设计的特性外,不采取特殊措施。 F1级:有火灾危险的变压器,能限制燃烧的发生,尽可能减小有毒物质与黑烟的排放。 三、试验标准: IEC60076-11标准草案将气候、环境、耐火三个试验列为特殊试验,试验的标准条款及试验顺序见表一 表一试验顺序

耐火等级与耐火极限

耐火等级 是衡量建筑物耐火程度的分级标度,规定建筑物的耐火等级是建筑设计防火规范中规定的防火技术措施中的最基本措施之一。 《建筑设计防火规范》第条建筑物的耐火等级分为四级,其构件的燃烧性能和耐火极限不应低于表的规定(本规范另有规定者除外)。 这一条告诉我们:建筑物的耐火等级是按组成建筑物构件的燃烧性能和耐火极限来划分的。不是“根据所使用的建筑材料来确定的”。 构件的燃烧性能和耐火极限与构成构件的材料和构件的构造做法有关,应由消防检测部门试验检测确定。《建筑设计防火规范》附录中可查阅常见的构造做法的构件的燃烧性能和耐火极限。 .《建筑设计防火规范》适用于多层民用建筑和部分工业建筑,常简称“低规”。另有《》,适用于高层民用建筑,常简称“高规”。 “低规”将建筑物的耐火等级分为四级。 “高规”第..高层建筑的耐火等级应分为一二两级其建筑构件的燃烧性能和耐火极限不应低于表..的规定.各类建筑构件的燃烧性能和耐火极限可按附录确定。 可见可有四个级别的耐火等级,高层建筑只有两个级别的耐火等级。 建筑的耐久年限 关于建筑的耐久年限,《民用建筑设计通则》第条写的很清楚: 以主体结构确定的建筑耐久年限分下列四级: 一级耐久年限年以上适用于重要的建筑和高层建筑. 二级耐久年限~年适用于一般性建筑。 三级耐久年限~年适用于次要的建筑。 四级耐久年限年以下适用于临时性建筑。 重要的是要知道,如果你设计的是“重要的建筑和高层建筑”,其主体结构的耐久年限就要达到“年以上”。一般商品有保质(用)期,这耐久年限就是建筑的保质期。 关于“重要的公共建筑”,似乎没有一本规范来详细划分,可以在“通则”、“高规”、《民用建筑收费标准说明》、抗震设计规范、结构设计规范等中找到答案。建筑的重要性与建筑的高度、面积、人民的生命财产及政治影响程度有关。 按照我国国家标准《建筑设计防火规范》,建筑物的耐火等级分为四级。建筑物的耐火等级是由建筑构件(梁、柱、楼板、墙等)的燃烧性能和耐火极限决定的。一般说来: 一级耐火等级建筑是钢筋混凝土结构或砖墙与钢混凝土结构组成的混合结构; 二级耐火等级建筑是钢结构屋架、钢筋混凝土柱或砖墙组成的混合结构; 三级耐火等级建筑物是木屋顶和砖墙组成的砖木结构;

爆炸极限的影响因素

爆炸极限的影响因素 Revised final draft November 26, 2020

爆炸极限的影响因素 【大纲考试内容要求】: 1.了解爆炸极限的影响因素; 2.了解爆炸反应浓度的计算; 【教材内容】: 爆炸极限值不是一个物理常数,它是随实验条件的变化而变化,在判断某工艺条件下的爆炸危险性时,需根据危险物品所处的条件来考虑其爆炸极限,如在火药、起爆药、炸药烘干工房内可燃蒸气的爆炸极限与其他工房在正常温度下的极限是不一样的,在受压容器和在正常压力下的爆炸极限亦有所不同;其他因素如点火源的能量,容器的形状、大小,火焰的传播方向,惰性气体与杂质的含量等均对爆炸极限有影响。 1.温度的影响 混合爆炸气体的初始温度越高,爆炸极限范围越宽,则爆炸下限降低,上限增高,爆炸危险性增加。这是因为在温度增高的情况下,活化分子增加,分子和原子的动能也增加,使活化分子具有更大的冲击能量,爆炸反应容易进行,使原来含有过量空气(低于爆炸下限)或可燃物(高于爆炸上限)而不能使火焰蔓延的混合物浓度变成可以使火焰蔓延的浓度,从而扩大了爆炸极限范围。例如丙酮的爆炸极限受温度影响的情况见表2—1。 2.压力的影响 混合气体的初始压力对爆炸极限的影响较复杂,在~ MPa的压力下,对爆炸下限影响不大,对爆炸上限影响较大;当大于 MPa时,爆炸下限变小,爆炸上限变大,爆炸范围扩大。这是因为在高压下混合气体的分子浓度增大,反应速度加快,放热量增加,且在高气压下,热传导性差,热损失小,有利于可燃气体的燃烧或爆炸。甲烷混合气初始压力对爆炸极限的影响见表2 —2。 值得重视的是当混合物的初始压力减小时,爆炸极限范围缩小,当压力降到某一数值时,则会

防火封堵材料的性能要求和试验方法GA修订稿

防火封堵材料的性能要求和试验方法G A WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

防火封堵材料的性能要求和试验方法 GA 161—1997 中华人民共和国公安部1997—03—25批准 1997—10—01实施 ? ? 前言 ? 本标准非等效采用美国ASTM E814—83《贯穿型防火封堵材料耐火试验方法》及依据GB 50045—95《高层民用建筑设计防火规范》等标准进行编制。在技术内容上,其耐火性能检(试)验方法、判定准则与ASTME814—83等效,理化性能及材料分级则主要参照GB/T 208—94《水泥密度测定方法》等标准。编写规则符合GB/T1.1—1993《标准化工作导则第1单元:标准的起草与表述规则第1部分:标准编写的基本规定》的要求。 本标准的制定及实施,其目的在于使我国防火建材工业的发展及应用尽快适应国际贸易、技术及经济交流的需要,便于国家宏观控制产品质量,统一检验标准,使防火封堵材料产品质量监督法制化、规范化、技术化。 非等效采用ASTM E814—83制定本标准时,其耐火性能的检验方法及判定准则基本源于ASTM E814—83所规定的各项技术条件,如贯穿物的设置、测温点的布置、观察与记录及判定准则等等,各项性能指标、分级标准、试件规格等则主要依据我国现行技术规范及国情,综合生产厂企业标准及发展水平制定。本标准首次发布于1997年3月25日,从1997年10月1日起实施。 本标准由公安部消防局提出。 本标准由全国消防标准化技术委员会第七分技术委员会归口。 本标准由公安部四川消防科学研究所负责起草。 本标准主要起草人:易秉模、陈茂萱、王良伟、聂涛。 ? ? 1 范围 本标准规定了防火封堵材料的定义,以及产品的分类、性能要求、试验方法和判定准则。 本标准适用于建筑物的各种开口所使用的防火封堵材料,包括无机防火堵料、有机防火堵料以及阻火包等各类防火封堵材料。 ? 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 208—94 水泥密度测定方法 GB 710—91 优质碳素结构钢热轧薄钢板和钢带 GB/T 2611—92 试验机通用技术要求 GB 4218—84 化工用硬聚氯乙烯管材的腐蚀度试验方法 GB 9278—88 涂料试样状态调节和试验的温湿度 GB 9978—88 建筑构件耐火试验方法

厂房(仓库)的耐火等级与构件的耐火极限

3.2 厂房(仓库)的耐火等级与构件的耐火极限 3.2.1 厂房(仓库)的耐火等级可分为一、二、三、四级。其构件的燃烧性能和耐火极限除本规范另有规定者外,不应低于表3.2.1的规定。 注:二级耐火等级建筑的吊顶采用不燃烧体时,其耐火极限不限。 3.2.2 下列建筑中的防火墙,其耐火极限应按本规范表3.2.1的规定提高1.00h: 1 甲、乙类厂房;

2 甲、乙、丙类仓库。 3.2.3 一、二级耐火等级的单层厂房(仓库)的柱,其耐火极限可按本规范表3.2.1的规定降低0.50h。 3.2.4 下列二级耐火等级建筑的梁、柱可采用无防火保护的金属结构,其中能受到甲、乙、丙类液体或可燃气体火焰影响的部位,应采取外包敷不燃材料或其它防火隔热保护措施: 1 设置自动灭火系统的单层丙类厂房; 2 丁、戊类厂房(仓库)。 3.2.5 一、二级耐火等级建筑的非承重外墙应符合下列规定: 1 除甲、乙类仓库和高层仓库外,当非承重外墙采用不燃烧体时,其耐火极限不应低于0.25h;当采用难燃烧体时,不应低于0.50h: 2 4层及4层以下的丁、戊类地上厂房(仓库),当非承重外墙采用不燃烧体时,其耐火极限不限;当非承重外墙采用难燃烧体的轻质复合墙体时,其表面材料应为不燃材料、内填充材料的燃烧性能不应低于B2级。B1、B2级材料应符合现行国家标准《建筑材料燃烧性能分级方法》GB8624的有关要求。 3.2.6 二级耐火等级厂房(仓库)中的房间隔墙,当采用难燃烧体时,其耐火极限应提高0.25h。 3.2.7 二级耐火等级的多层厂房或多层仓库中的楼板,当采用预应力和预制钢筋混凝土楼板时,其耐火极限不应低于0.75h。 3.2.8 一、二级耐火等级厂房(仓库)的上人平屋顶,其屋面板的耐火极限分别不应低于1.50h和1.00h。 一级耐火等级的单层、多层厂房(仓库)中采用自动喷水灭火系统进行全保护时,其屋顶承重构件的耐火极限不应低于1.00h。 二级耐火等级厂房的屋顶承重构件可采用无保护层的金属构件,其中能受到甲、乙、丙类液体火焰影响的部位应采取防火隔热保护措施。 3.2.9 一、二级耐火等级厂房(仓库)的屋面板应采用不燃烧材料,但其屋面防水层和绝热层可采用可燃材料;当丁、戊类厂房(仓库)不超过4层时,其屋面可采用难燃烧体的轻质复合屋面板,但该板材的表面材料应为不燃烧材料,内填充材料的燃烧性能不应低于B2级。 3.2.10 除本规范另有规定者外,以木柱承重且以不燃烧材料作为墙体的厂房(仓库),其耐火等级应按四级确定。 3.2.11 预制钢筋混凝土构件的节点外露部位,应采取防火保护措施,且该节点的耐火极限不应低于相应构件的规定。

爆炸极限理论与计算 (1)

第五节爆炸极限理论与计算 一、爆炸极限理论 可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。实验发现,当混合物中可燃气体浓度接近化学反应式的化学计量比时,燃烧最快、最剧烈。若浓度减小或增加,火焰蔓延速率则降低。当浓度低于或高于某个极限值,火焰便不再蔓延。可燃气体或蒸气与空气的混合物能使火焰蔓延的最低浓度,称为该气体或蒸气的爆炸下限;反之,能使火焰蔓延的最高浓度则称为爆炸上限。可燃气体或蒸气与空气的混合物,若其浓度在爆炸下限以下或爆炸上限以上,便不会着火或爆炸。 爆炸极限一般用可燃气体或蒸气在混合气体中的体积百分数表示,有时也用单位体积可燃气体的质量(kg·m—3)表示。混合气体浓度在爆炸下限以下时含有过量空气,由于空气的冷却作用,活化中心的消失数大于产生数,阻止了火焰的蔓延。若浓度在爆炸上限以上,含有过量的可燃气体,助燃气体不足,火焰也不能蔓延。但此时若补充空气,仍有火灾和爆炸的危险。所以浓度在爆炸上限以上的混合气体不能认为是安全的。 燃烧和爆炸从化学反应的角度看并无本质区别。当混合气体燃烧时,燃烧波面上的化学反应可表示为 A+B→C+D+Q(4—1) 式中A、B为反应物;C、D为产物;Q为燃烧热。A、B、C、D不一定是稳定分子,也可以是原子或自由基。化学反应前后的能量变化可用图4—4表示。初始状态Ⅰ的反应物(A+B)吸收活化能正达到活化状态Ⅱ,即可进行反应生成终止状态Ⅲ的产物(C+D),并释放出能量W,W=Q+E。 图4-4 反应过程能量变化 假定反应系统在受能源激发后,燃烧波的基本反应浓度,即反应系统单位体积的反应数为n,则单位体积放出的能量为nW。如果燃烧波连续不断,放出的能量将成为新反应的活化能。设活化概率为α(α≤1),则第二批单位体积内得到活化的基本反应数为anW/E,放出的能量为。αnW2/E。后批分子与前批分子反应时放出的能量比β定义为燃烧波传播系数,为

建筑构件的燃烧性能和耐火极限

建筑构件的燃烧性能和耐火极限 建筑构件主要包括建筑内的墙、柱、梁、楼板、门、窗等,一般来讲,建筑构件的耐火性能包括两部分内容,:一是构件的燃烧性能,二是构件的耐火极限。耐火建筑构配件在火灾中起着阻止火势蔓延、延长支撑时间的作用。 一、建筑构件的燃烧性能 建筑构件的燃烧性能,主要是指组成建筑构件材料的燃烧性能。而材料的燃烧性能,有些得到共识而无需进行检测,如钢材、混凝土、石膏等,但有些材料特别是一些新型建材,则需要通过试验来确定其燃烧性能。除有一些特别规定外,大部分建筑材料的燃烧性能可按GB 8624等相关标准确定(详见本章第二节“建筑材料的燃烧性能及分级”)。通常,我国把建筑构件按其燃烧性能分为三类,即不燃性、难燃性和可燃性。 1.不燃性 用不燃烧性材料做成的构件统称为不燃性构件。不燃烧材料是指在空气中受到火烧或高温作用时不起火,不微燃,不炭化的材料。如钢材、混凝土、砖、石、砌块、石膏板等。 2.难燃性 凡用难燃烧性材料做成的构件或用燃烧性材料做成而用非燃烧性材料做保护层的构件统称为难燃性构件。难燃烧性材料是指在空气中受到火烧或高温作用时难起火、难微燃、难炭化,当火源移走后燃烧或微燃立即停止的材料。如沥青混凝土、经阻燃处理后的木材、塑料、水泥、刨花板、板条抹灰墙等。 3.可燃性

凡用燃烧性材料做成的构件统称为可燃性构件。燃烧性材料是指在空气中受到火烧或高温作用时立即起火或微燃,且火源移走后仍继续燃烧或微燃的材料。如木材、竹子、刨花板、保丽板、塑料等。 为确保建筑物在受到火灾危害时,一定时间内不垮塌,并阻止、延缓火灾的蔓延,建筑构件多采用不燃烧材料或难燃材料。这些材料在受火时,不会被引燃或很难被引燃,从而降低了结构在短时间内破坏的可能性。这类材料如混凝土、粉煤灰、炉渣、陶粒、钢材、珍珠岩、石膏以及一些经过阻燃处理的有机材料等不燃或难燃材料。建筑构件的选用上,总是尽可能不增加建筑物的火灾荷载。 二、建筑构件的耐火极限 (一)耐火极限的概念 耐火极限是指建筑构件按时间-温度标准曲线进行耐火试验,从受到火的作用时起,到失去支持能力或完整性或失去隔火作用时止的这段时间,用小时(h)表示。其中,支持能力是指在标准耐火试验条件下,承重或非承重建筑构件在一定时间内抵抗垮塌的能力;耐火完整性是指在标准耐火试验条件下,建筑分隔构件当某一面受火时,能在一定时间内防止火焰和热气穿透或在背火面出现火焰的能力;耐火隔热性是指在标准耐火试验条件下,建筑分隔构件当某一面受火时,能在一定时间内其背火面温度不超过规定值的能力。 (二)影响耐火极限的要素 在火灾中,建筑耐火构配件起着阻止火势蔓延扩大、延长支撑时间的作用,它们的耐火性能直接决定着建筑物在火灾中的失稳和倒塌的时间。影响建筑构配件耐火性能的因素较多,主要有:材料本身的

建筑材料耐火耐燃测试ISO834标准解读

建筑材料耐火耐燃测试ISO834标准解读 国际标准分类中,iso834涉及到消防、建筑物的防护。在中国标准分类中,iso834涉及到工程防火、消防综合、建材产品综合、建筑构配件与设备综合、绝热、吸声、轻质与防火材料、工程结构综合。 建筑材料耐火耐燃测试标准:ISO 834 ISO 834的这一部分规定了一种测试方法,用于在标准的暴露于火的条件下测定各种建筑构件的耐火性。在随后的测试条件下,所获得的数据将满足测试条件下测试元素的性能。 ISO 834-1975 耐火试验.建筑结构元件 ISO 834-1-1999 耐火试验建筑构件第1部分:一般要求 ISO/TR 834-2-2009 耐火试验.房屋建筑构件.第2部分:试样在熔炉中的暴露均匀性测定指南 ISO/TR 834-3-2012 耐火试验.建筑构件.第3部分:耐火性试验产出数据的应用指南和有关试验方法的说明 ISO 834-4-2000 耐火试验建筑构件第4部分:承重垂直构件的特殊要求 ISO 834-5-2000 耐火试验建筑构件第5部分:承重水平构件的特殊要求 ISO 834-6-2000 耐火试验建筑构件第6部分:梁的特殊要求 ISO 834-7-2000 耐火试验建筑构件第7部分:柱的特殊要求 ISO 834-8-2002 耐火试验.房屋建筑构件.第8部分:非承重垂直分离构件的特殊要求 ISO 834-9-2003 耐火试验.建筑构件.第9部分:非承重顶棚构件的特殊要求 ISO 834-10-2014 耐火试验. 建筑结构构件. 第10部分: 确定施用于结构钢构件的防火材料贡献率的特殊要求 ISO 834-11-2014 防火试验.房屋建筑构件.第11部分:结构钢构件防火评估的具体要求 ISO 834-12-2012 防火试验.建筑结构的部件.第12部分:小于全尺寸熔炉的分离单元评定具体要求 办理耐火耐燃测试流程: 1、项目申请——向检测机构监管递交申请。 2、资料准备——根据要求,企业准备好相关的认证文件。 3、产品测试——企业将待测样品寄到实验室进行测试。 4、编制报告——认证工程师根据合格的检测数据,编写报告。 5、递交审核——工程师将完整的报告进行审核。 6、签发证书——报告审核无误后,颁发证书。

爆炸极限的影响因素

爆炸极限的影响因素 【大纲考试内容要求】: 1.了解爆炸极限的影响因素; 2.了解爆炸反应浓度的计算; 【教材内容】: 爆炸极限值不是一个物理常数,它是随实验条件的变化而变化,在判断某工艺条件下的爆炸危险性时,需根据危险物品所处的条件来考虑其爆炸极限,如在火药、起爆药、炸药烘干工房内可燃蒸气的爆炸极限与其他工房在正常温度下的极限是不一样的,在受压容器和在正常压力下的爆炸极限亦有所不同;其他因素如点火源的能量,容器的形状、大小,火焰的传播方向,惰性气体与杂质的含量等均对爆炸极限有影响。 1.温度的影响 混合爆炸气体的初始温度越高,爆炸极限范围越宽,则爆炸下限降低,上限增高,爆炸危险性增加。这是因为在温度增高的情况下,活化分子增加,分子和原子的动能也增加,使活化分子具有更大的冲击能量,爆炸反应容易进行,使原来含有过量空气(低于爆炸下限)或可燃物(高于爆炸上限)而不能使火焰蔓延的混合物浓度变成可以使火焰蔓延的浓度,从而扩大了爆炸极限范围。例如丙酮的爆炸极限受温度影响的情况见表2—1。 2.压力的影响 混合气体的初始压力对爆炸极限的影响较复杂,在~ MPa的压力下,对爆炸下限影响不大,对爆炸上限影响较大;当大于 MPa时,爆炸下限变小,爆炸上限变大,爆炸范围扩大。这是因为在高压下混合气体的分子浓度增大,反应速度加快,放热量增加,且在高气压下,热传导性差,热损失小,有利于可燃气体的燃烧或爆炸。甲烷混合气初始压力对爆炸极限的影响见表2 —2。值得重视的是当混合物的初始压力减小时,爆炸极限范围缩小,当压力降到某一数值时,则会出现下限与上限重合,这就意味着初始压力再降低时,不会使混合气体爆炸。把爆炸极限范围缩小为零的压力称为爆炸的临界压力。甲烷在3个不同的初始温度下,爆炸极限随压力下降而缩小的

CCS法定检验指南 (2005)

中 国 船 级 社 CCS法定检验指南 2005 2005年9月

第1章 概述 第2章国际海上人命安全公约(SOLAS公约) 第3章载重线公约(LL公约) 第4章国际防止船舶造成污染公约(MARPOL公约) 第5章吨位丈量 第6章高速船规则(HSC规则) 第7章散装运输危险化学品船舶构造和设备规则(IBC规则)第8章散装运输液化气体船舶构造和设备规则(IGC规则)第9章载客潜水艇规则 第10章 耐火试验程序

第1章 概 述 1.1 目的与用途 1.1.1 中国船级社承担着有关国家主管机关授权进行船舶法定检验。为更好地指导验船师在执行授权的法定检验中正确理解执行IMO有关公约和规则,特编制《CCS法定检验指南》(以下简称“本指南”)。 1.1.2 本指南可供船舶设计、制造、使用单位的有关技术人员参考使用。 1.1.3本指南所述内容,除公约和规则中有明确规定外,不应理解为强制性要求。 1.2 公约和规则 1.2.1本指南所涉及的公约和规则有: (1)国际海上人命安全公约(SOLAS公约)(2004综合文本); (2)载重线公约(LL公约); (3)国际防止船舶造成污染公约(MARPOL公约); (4)吨位丈量公约(TM公约); (5)高速船规则(HSC规则); (6)散装运输危险化学品船舶构造和设备规则(IBC规则); (7)散装运输液化气体船舶构造和设备规则(IGC规则); (8)载客潜水艇规则(PASSUB规则); (9)国际耐火试验程序应用规则(FTP规则)。 1.3 说明 1.3.1本指南的主要内容均来自国际船级社协会(IACS)的统一解释。这是IACS 为了协调在整个协会的各成员社中正确理解和执行IMO有关公约和规则,协调IACS行动而制定的在船级社协会内部使用的文件。由于其在航运界的权威性,其中有些文件已被IMO所接受而成为IMO的正式文件。 1.3.2本指南所包含的IACS统一解释截止到2004年12月。 1.3.3本社将根据现场反馈的需要以及IACS统一解释文件的变化不定期(每年)调整和增补本指南。

ASTM E119 建筑材料耐火测试

标题:ASTM E119 建筑材料耐火测试 / ASTM E 119建筑材料及构件的耐燃测试 关键字:ASTM E119,建筑材料,耐火测试 易朔产品服务(厦门)有限公司将为您提供专业的ASTM E 119 建筑材料耐火测试,联系我们,免费咨询! ASTM E 119 建筑材料耐火测试 ASTM E 119 Standard Test Methods for Fire Tests of Building Construction and Materials ASTM E 119 建筑材料耐火测试简介:ASTM E 119 建筑材料耐火测试适用于建筑上的砖石构件和结构材料的复合构件,包括承重和非承重和隔墙、柱、梁、板梁组合构件、构成建筑体永久性整体部分的组件和结构件等。 ASTM E119 Standard Test Methods for Fire Tests of Building Construction and Materials Scope: Bearing Walls And Partitions;Nonbearing Walls And Partitions;Columns;Structural Steel Columns;Floors And Roofs;Loaded Restrained Beams;Solid Structural Steel Beams And Girders;Protective Membranes In Wall, Partition, Floor, Or Roof Assemblies. ASTM E119建筑材料耐火测试的相关标准: EN 81-8, 电梯安装和建筑的安全条款-第8部分:电梯门-耐燃测试 EN 81-8: Safety rules for the construction and installation of lifts - Part 8: Lift landing doors –Fire resistance testing. EN 1363-1: 耐燃测试-第1部分: 一般要求 EN 1363-1: Fire resistance tests - Part 1: General requirements. EN 1364-1: 非承重件耐燃测试- 第1部分:墙体 EN 1364-1: Fire resistance tests for non-loadbearing elements - Part 1: Walls. EN 1365-1: 承重件耐燃测试- 第1部分:墙体 EN 1365-1: Fire resistance tests for loadbearing elements - Part 1: Walls.

影响气体混合物爆炸极限的因素

影响气体混合物爆炸极限的因素 :可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为,或。例如与空气混合的爆炸极限为12.5%~74%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响气体混合物爆炸极限的因素:温度、氧含量、惰性介质、压力、容器或管道直径、着火源(点火能量) 1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。 (2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。 (3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显着,因为惰性气体浓度加大,表示氧的浓度相对减小,而在上限中氧的浓度本来已经很小,故惰性气体稍为增加一点,即产生很大影响,而使爆炸上限剧烈下降。 (4)压力。混合物的原始压力对爆炸极限有很大影响,压力增大,爆炸极限范围也扩大,尤其是爆炸上限显着提高。值得重视的是当混合物的原始压力减小时,爆炸极限范围缩小,压力降至某一数值时,下限与上限合成一点,压力再降低,混合物即变成不可爆。爆炸极限范围缩小为零的压力称为爆炸的临界压力。临界压力的存在表明,在密闭的设备内进行减压操作,可以免除爆炸的危险。 (5)容器或管道直径。容器或管道直径越小,火焰在其中越难蔓延,混合物的爆炸极限范围则越小。当容器直径小到某一数值时,火焰不能蔓延,可消除爆炸危险,这个直径称为临界直径。如甲烷的临界直径为0.4~0.5mm,氢和乙炔为0.1~0.2mm等。容器直径大小对爆炸极限的影响,可以用链式反应理论解释。燃烧是自由基产生的一系列链锁反应的结果,管径减小时,游离基与管壁的碰撞几率相应增大,当管径减小到一定程度时,即因碰撞造成游离基的销毁的反应速度大于游离基产生的反应速度,燃烧反应便不能继续进行。 (6)着火源。能源的性质对爆炸极限范围的影响是:能源强度越高,加热面积越大,作用时间越长,爆炸极限范围越宽。以甲烷为例,100V·A的电火花不引起曝炸,2V·A的电火花可引起爆炸,爆炸极限为5.9%~13.6%,3V·A的电火花则爆炸极限扩大为5.85%~14.8%。 各种爆炸性混合物都有一个最低引爆能量,即点火能量,它是指能引起爆炸性混合物发生爆炸的最小火源所具有的能量,它也是混合物爆炸危险性的一项重要的性能参数。爆炸性混合物的点火能量越小,其燃爆危险性就越大。 火花的能量、热表面的面积、火源和混合物的接触时间等,对爆炸极限均有影响。此外,光对爆炸极限也有影响,如前所述,氢和氯混合,在避光黑暗处反应十分缓慢,但在强光照射下则发生剧烈反应(链锁反应)并导致爆炸。

ISO国际阻燃、防火测试标准

ISO国际阻燃、防火测试标准 ISO 340:2004: 传送带-燃烧性能-要求和测试方法 ISO 340:2004: Conveyor belts - Laboratory scale flammability characteristics - Requirements and test method Abstract 摘要 ISO 340:2004 specifies a method for assessing, on a small scale, the reaction of a conveyor belt to an ignition flame source. It is applicable to conveyor belts having a textile carcass as well as steel cord conveyor belts. ISO 834-1: 阻燃测试-建筑材料-第1部分:一般要求 ISO 834-1: Fire-Resistance Tests - Elements of Building Construction - Part 1: General Requirements Corrigenda, Amendments and other parts -ISO/TR 834-2:2009 -ISO/TR 834-3:1994 -ISO 834-4:2000 -ISO 834-5:2000 -ISO 834-6:2000 -ISO 834-7:2000 -ISO 834-8:2002 -ISO 834-9:2003 ISO 871:2006 塑料使用热炉点燃温度的测定 ISO 871: plastics test standard includes information about the determination of ignition temperature using a hot-air furnace

建筑构件耐火试验 可供选择和附加的试验程序(标准状态:现行)

I C S13.220.50 C82 中华人民共和国国家标准 G B/T26784 2011 建筑构件耐火试验 可供选择和附加的试验程序 F i r e r e s i s t a n c e t e s t f o r e l e m e n t s o f b u l i d i n g c o n s t r u c t i o n A l t e r n a t i v e a n da d d i t i o n a l p r o c e d u r e s 2011-07-20发布2011-11-01实施中华人民共和国国家质量监督检验检疫总局

目次 …………………………………………………………………………………………………………前言Ⅲ1范围1………………………………………………………………………………………………………2规范性引用文件1…………………………………………………………………………………………3术语和定义1………………………………………………………………………………………………4可供选择的升温曲线2 ……………………………………………………………………………………5附加的试验程序7………………………………………………………………………………………… …………………………………附录A(资料性附录)本标准与E N1363-2:1999的章条编号对照12 …………………………附录B(资料性附录)本标准与E N1363-2:1999的技术性差异及其原因14附录C(资料性附录)不同火灾升温曲线的可能应用场景指南15 ……………………………………… …………………………………………………………附录D(资料性附录)喷水冲击试验应用指南16

相关主题
文本预览
相关文档 最新文档