五年级数学行程问题典型练习题
- 格式:doc
- 大小:36.50 KB
- 文档页数:5
小学五年级路程应用题100道附答案(完整版)题目1一辆汽车每小时行驶60 千米,行驶4 小时,一共行驶了多少千米?答案:路程= 速度×时间= 60×4 = 240(千米)题目2小明骑自行车的速度是15 千米/时,他骑了3 小时,行驶了多少千米?答案:15×3 = 45(千米)题目3一辆火车的速度是120 千米/时,行驶5 小时,行驶的路程是多少?答案:120×5 = 600(千米)题目4甲、乙两地相距300 千米,一辆汽车以75 千米/时的速度从甲地开往乙地,需要几小时到达?答案:时间= 路程÷速度= 300÷75 = 4(小时)题目5某人步行的速度是5 千米/时,走15 千米需要多长时间?答案:15÷5 = 3(小时)题目6飞机的速度是800 千米/时,飞行1600 千米需要多长时间?答案:1600÷800 = 2(小时)题目7一艘轮船从A 港到B 港,速度是40 千米/时,8 小时到达,A、B 两港相距多少千米?答案:40×8 = 320(千米)题目8小强跑步的速度是8 米/秒,跑了50 秒,跑了多少米?答案:8×50 = 400(米)题目9一辆汽车3 小时行驶了180 千米,照这样的速度,5 小时能行驶多少千米?答案:速度= 180÷3 = 60(千米/时),5 小时行驶60×5 = 300(千米)题目10小明家距离学校1200 米,他每天步行上学需要15 分钟,他的步行速度是多少?答案:1200÷15 = 80(米/分钟)题目11一辆摩托车以45 千米/时的速度行驶2 小时后,又以50 千米/时的速度行驶3 小时,一共行驶了多少千米?答案:45×2 + 50×3 = 90 + 150 = 240(千米)题目12甲、乙两地相距480 千米,一辆客车从甲地开往乙地,前3 小时行驶了180 千米,照这样的速度,还需要几小时到达乙地?答案:速度= 180÷3 = 60(千米/时),剩余路程= 480 - 180 = 300(千米),还需时间= 300÷60 = 5(小时)题目13一辆汽车从A 地开往 B 地,平均每小时行驶70 千米,4 小时后距离中点还有20 千米,A、B 两地相距多少千米?答案:4 小时行驶的路程= 70×4 = 280(千米),总路程的一半= 280 + 20 = 300(千米),A、B 两地相距300×2 = 600(千米)题目14小亮骑自行车去郊游,前2 小时行了24 千米,后3 小时行了36 千米,小亮平均每小时行多少千米?答案:总路程= 24 + 36 = 60(千米),总时间= 2 + 3 = 5(小时),平均速度= 60÷5 = 12(千米/时)题目15一辆汽车往返于甲、乙两地,去时的速度是60 千米/时,返回时的速度是40 千米/时,往返的平均速度是多少?答案:设甲、乙两地的距离为“1”,去时的时间= 1÷60 = 1/60,返回的时间= 1÷40 = 1/40,往返总路程= 2,平均速度= 2÷(1/60 + 1/40)= 48(千米/时)题目16小明和小红同时从学校出发去图书馆,小明每分钟走80 米,12 分钟到达,小红每分钟走60 米,多长时间到达?答案:学校到图书馆的距离= 80×12 = 960(米),小红到达所需时间= 960÷60 = 16(分钟)题目17一辆汽车从甲地开往乙地,去时每小时行80 千米,返回时每小时行100 千米,往返共用9 小时,甲、乙两地相距多少千米?答案:设去时用了x 小时,则返回时用了9 - x 小时,80x = 100×(9 - x),80x = 900 - 100x,180x = 900,x = 5,甲、乙两地相距80×5 = 400(千米)题目18甲、乙两车同时从A、B 两地相对开出,甲车每小时行50 千米,乙车每小时行60 千米,经过4 小时两车相遇,A、B 两地相距多少千米?答案:(50 + 60)×4 = 440(千米)题目19一辆汽车以每小时75 千米的速度行驶,行驶了3 小时后离目的地还有120 千米,到达目的地一共需要多长时间?答案:已行驶路程= 75×3 = 225(千米),总路程= 225 + 120 = 345(千米),总时间= 345÷75 = 4.6(小时)题目20一列火车长200 米,以每秒25 米的速度通过一座长400 米的大桥,从车头上桥到车尾离桥一共需要多长时间?答案:(200 + 400)÷25 = 24(秒)题目21甲、乙两人同时从相距800 米的两地相向而行,甲每分钟走60 米,乙每分钟走40 米,几分钟后两人相遇?答案:800÷(60 + 40)= 8(分钟)题目22一辆汽车4 小时行驶了320 千米,照这样的速度,再行驶2 小时,一共行驶了多少千米?答案:速度= 320÷4 = 80(千米/时),2 小时行驶80×2 = 160(千米),一共行驶320 + 160 = 480(千米)题目23A、B 两地相距560 千米,一辆客车从A 地开往B 地,每小时行70 千米,几小时后离B 地还有140 千米?答案:(560 - 140)÷70 = 6(小时)题目24一辆汽车从甲地到乙地,前 2 小时平均每小时行40 千米,后3 小时平均每小时行60 千米,甲地到乙地的全程是多少千米?答案:2×40 + 3×60 = 80 + 180 = 260(千米)题目25小明和小刚从相距1200 米的两地同时相对走来,小明每分钟走70 米,小刚每分钟走50 米,几分钟后两人相遇?答案:1200÷(70 + 50)= 10(分钟)题目26一辆汽车以90 千米/时的速度行驶6 小时,然后以60 千米/时的速度行驶4 小时,这辆汽车一共行驶了多少千米?答案:90×6 + 60×4 = 540 + 240 = 780(千米)题目27甲乙两地相距600 千米,一辆货车从甲地开往乙地,每小时行50 千米,已经行驶了8 小时,距离乙地还有多远?答案:50×8 = 400(千米),600 - 400 = 200(千米)题目28一艘快艇的速度是70 千米/时,行驶350 千米需要多长时间?答案:350÷70 = 5(小时)题目29明明跑步的速度是6 米/秒,跑480 米需要多长时间?答案:480÷6 = 80(秒)题目30一辆客车从A 地出发去B 地,每小时行85 千米,10 小时后超过中点120 千米,A、B 两地相距多少千米?答案:10 小时行驶的路程为85×10 = 850(千米),总路程的一半为850 - 120 = 730(千米),A、B 两地相距730×2 = 1460(千米)题目31小红和小丽同时从相距960 米的两地相对而行,小红每分钟走70 米,小丽每分钟走50 米,几分钟后两人还相距160 米?答案:(960 - 160)÷(70 + 50)= 800÷120 = 20 / 3(分钟)题目32一辆汽车从甲地开往乙地,前半程的速度是60 千米/时,后半程的速度是40 千米/时,这辆汽车的平均速度是多少?答案:设全程为“1”,前半程时间为1/2÷60 = 1/120,后半程时间为1/2÷40 = 1/80,总时间为1/120 + 1/80 = 1/48,平均速度为1÷(1/48)= 48(千米/时)题目33一列火车长300 米,每秒行35 米,通过一座长1200 米的大桥,需要多长时间?答案:(300 + 1200)÷35 = 1500÷35 = 300 / 7(秒)题目34甲、乙两车同时从相距500 千米的两地出发,相向而行,甲车每小时行70 千米,乙车每小时行80 千米,几小时后两车相遇?答案:500÷(70 + 80)= 500÷150 = 10 / 3(小时)题目35一辆汽车4 小时行驶了360 千米,照这样的速度,行驶720 千米需要多长时间?答案:速度为360÷4 = 90(千米/时),720÷90 = 8(小时)题目36A、B 两地相距720 千米,一辆客车从A 地开往B 地,每小时行80 千米,行驶了6 小时后,距离B 地还有多远?答案:80×6 = 480(千米),720 - 480 = 240(千米)题目37一艘游船的速度是45 千米/时,在一条河中顺水行驶 3 小时,行驶了150 千米,这条河的水流速度是多少?答案:顺水速度= 150÷3 = 50(千米/时),水流速度= 50 - 45 = 5(千米/时)题目38小明和小刚分别从相距1800 米的两地同时出发,相向而行,小明每分钟走85 米,小刚每分钟走75 米,多少分钟后两人相遇?答案:1800÷(85 + 75)= 1800÷160 = 11.25(分钟)题目39一辆汽车从甲地到乙地,去时的速度是90 千米/时,用了5 小时,返回时用了 6 小时,返回时的速度是多少?答案:路程= 90×5 = 450(千米),返回速度= 450÷6 = 75(千米/时)题目40一条公路长800 米,工人叔叔已经修了6 天,每天修70 米,还剩多少米没修?答案:6×70 = 420(米),800 - 420 = 380(米)题目41一辆自行车的速度是12 千米/时,行驶60 千米需要多长时间?答案:60÷12 = 5(小时)题目42甲、乙两地相距450 千米,一辆货车以50 千米/时的速度从甲地开往乙地,出发 3 小时后,离乙地还有多远?答案:50×3 = 150(千米),450 - 150 = 300(千米)题目43一架飞机以800 千米/时的速度飞行1500 千米,需要多长时间?答案:1500÷800 = 1.875(小时)题目44一辆汽车3 小时行驶了225 千米,照这样的速度,8 小时能行驶多少千米?答案:速度= 225÷3 = 75(千米/时),8 小时行驶75×8 = 600(千米)题目45一条跑道长400 米,小明每秒跑5 米,他跑完全程需要多少秒?答案:400÷5 = 80(秒)题目46一辆客车从A 地到B 地,每小时行65 千米,12 小时后距离B 地还有180 千米,A、B 两地相距多少千米?答案:65×12 + 180 = 780 + 180 = 960(千米)题目47一艘轮船从甲港开往乙港,速度是30 千米/时,8 小时到达,返回时用了6 小时,返回时的速度是多少?答案:路程= 30×8 = 240(千米),返回速度= 240÷6 = 40(千米/时)题目48小红和小明分别从相距1500 米的两地同时出发,相向而行,10 分钟后相遇,小红每分钟走80 米,小明每分钟走多少米?答案:两人的速度和为1500÷10 = 150(米/分),小明的速度= 150 - 80 = 70(米/分)题目49一辆汽车2 小时行驶了160 千米,按照这样的速度,行驶560 千米需要多少小时?答案:速度= 160÷2 = 80(千米/时),时间= 560÷80 = 7(小时)题目50一条公路,工人每天修80 米,修了10 天,还剩400 米没修,这条公路全长多少米?答案:80×10 + 400 = 800 + 400 = 1200(米)题目51一辆摩托车以60 千米/时的速度行驶5 小时,然后以80 千米/时的速度行驶3 小时,这辆摩托车一共行驶了多少千米?答案:60×5 + 80×3 = 300 + 240 = 540(千米)题目52甲、乙两地相距700 千米,一辆汽车从甲地开往乙地,前4 小时行驶了280 千米,照这样的速度,还需要几小时到达乙地?答案:速度= 280÷4 = 70(千米/时),剩余路程= 700 - 280 = 420(千米),还需时间= 420÷70 = 6(小时)题目53一列高铁3 小时行驶了960 千米,照这样的速度,5 小时能行驶多少千米?答案:速度= 960÷3 = 320(千米/时),5 小时行驶320×5 = 1600(千米)题目54小明和小刚从相距1680 米的两地同时相对走来,小明每分钟走75 米,小刚每分钟走85 米,几分钟后两人相遇?答案:1680÷(75 + 85)= 1680÷160 = 10.5(分钟)题目55一辆汽车从A 地开往 B 地,平均速度是72 千米/时,行驶了8 小时,A、B 两地相距多少千米?答案:72×8 = 576(千米)题目56一条水渠长1200 米,已经修了4 天,每天修150 米,还剩多少米没修?答案:4×150 = 600(米),1200 - 600 = 600(米)题目57一架飞机从甲地飞往乙地,每小时飞行900 千米,4 小时到达,如果每小时飞行800 千米,需要多少小时到达?答案:路程= 900×4 = 3600(千米),时间= 3600÷800 = 4.5(小时)题目58一辆汽车5 小时行驶了450 千米,照这样的速度,行驶720 千米需要多长时间?答案:速度= 450÷5 = 90(千米/时),时间= 720÷90 = 8(小时)题目59甲、乙两车同时从A、B 两地相对开出,甲车每小时行48 千米,乙车每小时行52 千米,经过5 小时两车相遇,A、B 两地相距多少千米?答案:(48 + 52)×5 = 500(千米)题目60一辆汽车以每小时85 千米的速度行驶,行驶了4 小时后离目的地还有150 千米,到达目的地一共需要多长时间?答案:已行驶路程= 85×4 = 340(千米),总路程= 340 + 150 = 490(千米),总时间= 490÷85 = 5.8(小时)题目61一艘轮船从港口出发,顺水航行3 小时,行驶了120 千米,已知水流速度为每小时5 千米,轮船在静水中的速度是多少?答案:顺水速度= 120÷3 = 40(千米/时),静水速度= 40 - 5 = 35(千米/时)题目62小丽和小美从相距1200 米的两地同时出发,相向而行,12 分钟后相遇。
五年级行程问题应用题100道及答案(1)两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。
(2)一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。
14时10分时火车追上这位工人,15秒后离开。
14时16分迎面遇到一个向南走的学生,12秒后离开这个学生。
问:工人与学生将在何时相遇?(3)在双轨铁道上,速度为千米/小时的货车时到达铁桥,时分秒完全通过铁桥,后来一列速度为千米/小时的列车,时分到达铁桥,时分秒完全通过铁桥,时分秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?(4)田田和牛牛两人分别从甲、乙两地同时出发,如果两个人同向而行,田田26分钟可以赶上牛牛;如果两个人相向而行的话,6分钟就可以相遇.已知牛牛每分钟走50米,求甲、乙两地之间的路程.(5)一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。
求水流的速度.(6)甲、乙、丙三人沿湖边一固定点出发,甲按顺时针方向走,乙与丙按逆时针方向走,甲第一次遇到乙后又走了30秒遇到丙,再过4分钟第二次遇到乙.已知甲、乙的速度比是3:2,湖的周长是900米,求丙的速度.(7)一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?(8)当当和田田两人从相距1089米的两地同时出发相向而行,已知当当每分钟走52米,他们经过11分钟相遇,那么,请问:田田每分钟走多少米?(9)在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔4分钟相遇一次;如果两人从同处同向同时跑,每隔20分钟相遇一次,已知环形跑道的长度是1600米,那么两人的速度分别是多少?(10)一辆小汽车从武汉到杭州需要8小时,一辆大客车从杭州到武汉需要10小时.两车同时从两地出发相向而行,几小时相遇?(11)小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了15小时.小明去时用了多长时间?(12)甲乙两人分别从两地同时出发同向而行,两地相距800米,乙在前面,甲在后面.乙每分钟走30米,甲每分钟走50米,请问:多久后甲可以追上乙?(13)一只蚂蚁沿着等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行45厘米,30厘米,36厘米,那么蚂蚁爬一周平均每分钟爬行几厘米?(14)小王和小李两人分别从甲、乙两地同时出发同向而行,小李在前,小王在后面.甲、乙两地相距84千米,小王一共经过4小时追上了小李小李每小时走10千米,请问:小王每小时走多少千米?(15)甲、乙两人同时从地出发到地,经过3小时,甲先到地,乙还需要1小时到达地,此时甲、乙共行了35千米.求,两地间的距离.(16)周六,乐乐骑自行车去朋友家参加聚会,已知乐乐与朋友家相距3600米,乐乐去的时候速度为300米/分,回来的速度是600米/分.求乐乐来回的平均速度.(17)小白和小青分别从甲、乙两地相向而行,小白开车每小时行驶60千米,小青开车每小时行驶80千米,两人相遇在距离中点40千米的地方.求甲乙两地之间的距离.(18)当当从教室去图书馆还书,如果每分钟走100米,能在图书馆闭馆前2分钟到达.如果每分钟走50米,到达时就要超出闭馆时间2分钟,求教室到图书馆的路程.(19)甲、乙两人在周长为400米的环形跑道上同时同地同向而行,甲每分钟走60米,乙每分钟走40米,甲每追上乙一次,两人就会击一次掌,当两人击了第5次掌时,甲掉头往回走,每相遇一次仍击一次掌,两人又击了10次掌,问此时两人各走了多少米?(20)甲在乙前面100米,于是乙以每分钟50米的速度向他追去,已知甲每分钟走40米,问:乙多长时间能追上甲呢?(21)王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲,他应以多大的速度往回开?(22)在环形跑道上,甲、乙两人同时同地出发,若背向而行,每6分钟相遇一次;若同向而行,每20分钟甲追上乙一次,已知环形跑道的长度是1200米,现在两个人站在跑道上相距300米的地方同向出发,甲何时第一次追上乙?(23)当每天早上按时从家里出发去上学,乐乐每天早上也按时出门去散步,两人相向而行,当当每分钟走60米,乐乐每分钟走40米,两人每天都在同一时刻相遇,有一天当当提前出门,因此比平早9分钟与乐乐相遇,这天当当比平常提前多久出门?(24)上午8点整,甲从A地出发匀速去B地,8点20分甲与从B地出发匀速去A地的乙相遇;相遇后甲将速度提高到原来的3倍,乙速度不变;8点30分,甲、乙两人同时到达各自的目的地.那么,乙从B地出发时是8点几分.(25)小明在420米长的环形跑道上跑了一圈,前一半时间的速度为8米/秒,后一半时间的速度为6米/秒.问:他后一半路程用了多少时间?(26)田田和当当沿着学校的环形林荫道散步,田田每分钟走55米,当当每分钟走65米.已知林荫道周长是480米,他们从同一地点同时背向而行,(1)经过多长时间两人第一次相遇?(2)又经过多长时间两人第二次相遇?(3)到第10次相遇共走几圈,共用多长时间?(4)在他们第10次相遇后,田田再走多少米就回到出发点?(27)一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?(28)汽车上山用了5小时,速度为每小时36千米.下山只用了4小时,汽车下山每小时行驶了多少千米?(29)甲、乙两辆汽车分别从A、B两地出发相对而行,甲车每小时行48千米,乙车每小时行50千米,若甲先出发1小时,再经过5小时与乙相遇,求A、B 两地间的距离.(30)甲和乙驾车从相距700千米的两地同时出发相向而行,甲每小时行驶48千米,乙每小时行驶52千米,请问:两人多久后相遇?(31)一辆汽车从甲地出发,开往相距190千米的乙地.它先以80千米/时的速度行驶了0.8小时,然后以90千米/时的速度行驶.(1)汽车再行驶多少小时才能到达乙地?(2)汽车全程平均每小时行驶多少千米?(保留一位小数(32)在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?(33)小明骑自行车到朋友家聚会,一路上他注意到每隔12分钟就有一辆公交车从后边追上小乐,小明骑着骑着突然车胎爆了,小明只好以原来骑车三分之一的速度推着车往回走,这时他发现公交车以每隔4分钟一辆的频率迎面开过来,公交车站发车的间隔时间到底为多少?(34)一辆汽车从甲城经过乙城开往丙城,共行驶了36小时.从甲城到乙城每小时行驶32千米,从乙城到丙城每小时行驶27千米.已知甲、乙两城之间的距离是640千米.问:全程共有多少千米?(35)甲、乙两车分别从A,B两地同时出发,相向而行.出发时,甲、乙的速度之比是5:4,相遇后甲的速度减少20%,乙的速度增加20%.这样当甲到达B地时,乙离A地还有10千米.那么A,B两地相距多少千米?(36)乐乐和田田两人分别从A、B两地同时出发相向而行,已知乐乐每分钟走50米,田田走完全程要18分钟.出发3分钟,两人仍相距450米问:两人出发多久后能相遇?(37)上学路上当当发现田田在他前面,于是就开始追田田.当当每分钟走70米,田田每分钟走45米,当当一共经过了30分钟才追上田田,请问:两人开始相距多远?(38)甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离.(39)一个人从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行到乙地.骑车时每小时行驶12千米,步行时每小时走4千米.问:这个人走完全程的平均速度是多少?(40)甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的 1.5倍,而且甲比乙速度快。
1、火车从A地开往B地,每小时行100千米,4小时到达,火车提速后,若要2小时到达,火车提速后每小时行多少千米?
2、小王开车从甲地到乙地,每小时行80千米,6小时到达,返回时,每小时多行16千米,小王到达甲地需要多少小时?
3、A、B两地相距150千米,两列火车从A到B地,快车每小时行75千米,慢车每小时行50千米,当快车到达B地时,慢车离B地还有多少千米?
4、甲、乙两地相距810千米,一俩车3小时行270千米,照这样计算,行完剩下的路程还要多少小时?
5、韩雪的家距离学校480米,原计划7点40从家出发8点到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?。
行程问题五年级练习题一、问题描述小明要从家里出发,先去银行取钱,然后去超市买东西,最后回家。
已知以下信息:1. 从家到银行的距离是500米;2. 从银行到超市的距离是800米;3. 从超市到家的距离是600米。
请帮助小明回答下面的问题。
二、问题回答根据题目所给的信息,我们可以将小明的行程绘制成如下图所示的路径:[家] --- 500米 ---> [银行] --- 800米 ---> [超市] --- 600米 ---> [家]1. 小明总共走了多少米?小明总共走了500米 + 800米 + 600米 = 1900米。
2. 小明从家走到银行,再从银行走到超市,总共走了多少米?小明从家走到银行的距离是500米,再从银行走到超市的距离是800米,总共走了500米 + 800米 = 1300米。
3. 小明从超市走回家,总共走了多少米?小明从超市走回家的距离是600米。
4. 小明从家走到超市的总距离和从超市走回家的总距离相等吗?小明从家走到超市的总距离是500米 + 800米 = 1300米,从超市走回家的总距离是600米,两者不相等。
5. 小明从家走到超市再回家的总距离是多少米?小明从家走到超市的距离是1300米,再从超市走回家的距离是600米,总共走了1300米 + 600米 = 1900米。
三、问题解析通过对题目提供的行程信息进行计算,我们可以得出小明的行程问题的解答如上所示。
根据小明行程的路径和距离,我们可以计算出小明总共走了1900米,从家走到超市再回家的总距离也是1900米。
同时,我们还可以得出小明从家走到银行,再从银行走到超市的总距离是1300米,小明从超市走回家的距离是600米。
通过这些计算,我们可以更好地理解和解决行程问题。
总结:行程问题是数学中常见的问题类型,通过计算行程的距离和路径,可以帮助我们解答与行程相关的问题。
在解答问题时,我们需要将行程的路径和距离清晰地绘制出来,并根据问题的要求进行计算。
五年级数学常考的行程问题练习(附答案)1.两个城市相距500千米,一列客车和一列货车同时从两个城市相对开出,客车平均速度是每小时55千米,货车平均速度是每小时45千米。
两车开出后几小时相遇?2.两辆汽车同时从甲乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经4小时相遇。
甲乙两地相距多少千米?3.客车与货车分别从相距275千米的两站同时相向开出,2.5小时在途中相遇。
已知客车每小时行60千米,货车每小时行多少千米?4.两辆汽车同时从相距465千米的两地相对开出,4.5小时后两车还相距120千米。
一辆汽车每小时行37千米,另一辆汽车每小时行多少千米?5.丙列火车同时从甲乙两城相对开出。
一列火车每小时行60千米,另一列火车每小时行80千米。
4小时后还相距210千米,求两城距离。
6.甲乙两队合挖一条水渠,甲队从东往西挖,乙队从西往东挖,甲队每天挖75米,比乙队每天多挖2.5米。
两队合作8天后还差52米这条水渠全长多少米?7.甲乙两地相距484千米,一辆汽车从甲地开往乙地,1.5小时后,一辆摩托车从乙地开往甲地,4小时与迎面开来的汽车相遇。
已知汽车每小时行40千米,求摩托车每小时行多少千米?8.甲镇与乙镇相距138千米,张王二人骑自行车分别从两镇同时出发相向而行。
张每小时行13千米,王每小时行12千米,王在行时中因修车耽误1小时,然后继续行进。
求从出发到相遇经过几小时?9.甲乙两城相距240千米。
客车从甲城开往乙城,每小时行50千米,货车从乙城开往甲城,每小时行30千米。
两车同时出发,2小时后还相距多少千米?10.甲、乙二人从相距31.2千米的两村相对起来,甲每小时行4千米,乙每小时行4.8千米。
两人相遇时乙行14.4千米,甲比乙先出发几小时?【参考答案】1.500/(55+45)=5(小时)2.(56+63)×4=476(千米)3.276/2.5-60=50(千米)4.(465-120)/4.5=39.7(千米)5.(60+80)×4+210=770(千米)6.(75=75-2.5)×8+52=1232(米)7.(484-40×1.5)/4-40=66(千米)8.(138-13)/(13+12)+1=6(小时)9.240-(50+30)×2=80(千米)10.(31.2-14.4)/4-14.4/4.8=1.2(小时)。
行程问题(一)【知识分析】相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度和×时间=路程,今天,我们学校这类问题。
【例题解读】例1客车和货车同时分别从两地相向而行,货车每小时行85千米,客车每小时行90千米,两车相遇时距全程中点8千米,两地相距多少千米?【分析】根据题意,两车相遇时货车行了全程的一半-8千米,客车行了全程的一半+8千米,也就是说客车比货车多行了8×2=16千米,客车每小时比货车多行90-85=5千米。
那么我们先求客车和货车两车经过多少小时在途中相遇,然后再求出总路程。
(1)两车经过几小时相遇?8×2÷(90-85)=3.2小时(2)两地相距多少千米?(90+85)×3.2=560(千米)例2小明和小丽两个分别从两地同时相向而行,8小时可以相遇,如果两人每小时多少行1.5千米,那么10小时相遇,两地相距多少千米?【分析】两人每小时多少行1.5千米,那么10小时相遇,如果以这样的速度行8小时,这时两个人要比原来少行1.5×2×8=24(千米)这24千米两人还需行10-8=2(小时),那么减速后的速度和是24÷2=12(千米)容易求出两地的距离1.5×2×8÷(10-8)×=120千米【经典题型练习】1、客车和货车分别从两地同时相向而行,2.5小时相遇,如果两车每小时都比原来多行10千米,则2小时就相遇,求两地的距离?2、在一圆形的跑道上,甲从a点,乙从b点同时反方向而行,8分钟后两人相遇,再过6分钟甲到b点,又过10分钟两人再次相遇,则甲环形一周需多少分钟?【知识分析】两车从两地同时出发相向而行,第一次相遇合起来走一个全程,第二次相遇走了几个全程呢?今天,我们学习这类问题【例题解读】例 a、b两车同时从甲乙两地相对开出,第一次在离甲地95千米处相遇,相遇后两车继续以原速行驶,分别到达对方站点后立即返回,在离乙地55千米处第二次相遇,求甲乙两地之间的距离是多少千米?【分析】a、b两车从出发到第一次相遇合走了一个全程,当两年合走了一个全程时,a车行了95千米从出发到第二次相遇,两车一共行了三个全程,a车应该行了95×3=285(千米)通过观察,可以知道a车行了一个全程还多55千米,用285千米减去55千米就是甲乙两地相距的距离95×3—55=230千米【经典题型练习】1、甲乙两车同时从ab两地相对开出,第一次在离a地75千米相遇,相遇后两辆车继续前进,到达目的地后立即返回,第二次相遇在离b地45千米处,求a、b两地的距离2、客车和货车同时从甲、乙两站相对开出,第一次相遇在距乙站80千米的地方,相遇后两车仍以原速前进,在到达对方站点后立即沿原路返回,两车又在距乙站82千米处第二次相遇,甲乙两站相距多少千米?【知识分析】在行程问题中,有时候两车同时出发,但中途因意外可能需要停车,有时候不一定同时出发,也可能同一车在不同的时间段的速度不一样,今天我们学习这种变化的问题。
行程问题---多人相遇问题及练习板块一多人从两端出发——相遇问题【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从A地出发到B地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。
求这辆卡车的速度。
【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。
此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B 两地相距多少米?【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。
已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?【例5】一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。
五年级数学上册典型例题系列之第一单元:行程问题专项练习(解析版)1.甲乙两地相距600千米,一列客车和一列货车同时从甲地开往乙地,客车比货车早到2小时,客车到达乙地时,货车行了440千米,客车行完全程需要多少小时?【答案】5.5小时【分析】根据题意,货车2小时可以行驶(600-440)千米,据此先利用除法求出货车的速度,再用总路程600千米除以货车速度,求出货车行完全程需要的时间。
最后,用货车行完全程的时间减去2小时,即可求出客车行完全程要多少小时。
【详解】货车速度:(600-440)÷2=160÷2=80(千米/时)货车时间:600÷80=7.5(小时)客车时间:7.5-2=5.5(小时)答:客车行完全程需要5.5小时。
【点睛】本题考查了行程问题,灵活运用“速度×时间=路程”是解题的关键。
2.一列货车前往疫区运送抗疫物资,2小时行驶160km。
从出发地到疫区有1000km,按照这样的速度,全程需要多少小时?【答案】12.5小时【分析】根据题意可得出货车速度,运用路程=速度×时间,进行计算可得出答案。
【详解】全程需要的时间为:÷÷1000(1602)=÷100080=(小时)。
12.5答:全程需要12.5小时。
【点睛】本题主要考查的是路程问题及小数运算,解题的关键是熟练运用小数相关运算,进而得出答案。
3.随着旅游景区公路的改造。
从市区到景区的路程由原来的28.8千米缩短到22.4千米。
现在小明和小刚骑车到景区的速度比原来快了多少?【答案】7千米/时【分析】根据“速度=路程÷时间”分别求出现在和原来的速度,再求差即可。
【详解】22.4÷1.4-28.8÷3.2=16-9=7(千米/时)答:现在小明和小刚骑车到景区的速度比原来快7千米/时。
【点睛】解答此题应根据速度、时间、路程三者之间的关系进行解答。
五年级数学行程问题一、行程问题题目。
1. 甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?- 解析:这是一个相遇问题,相遇时间 = 总路程÷速度和。
甲、乙的速度和为6 + 4=10千米/小时,总路程是20千米,所以相遇时间为20÷10 = 2小时。
2. 一辆汽车从甲地开往乙地,速度是85千米/小时,用了6小时,返回时只用了5小时,返回时的速度是多少?- 解析:根据路程 = 速度×时间,从甲地到乙地的路程为85×6 = 510千米。
返回的路程也为510千米,返回时间是5小时,所以返回速度为510÷5 = 102千米/小时。
3. 小明和小红在周长为400米的环形跑道上跑步,小明每秒跑5米,小红每秒跑3米,他们从同一地点同时出发,同向而行,多少秒后小明第一次追上小红?- 解析:这是一个追及问题,追及时间 = 追及路程÷速度差。
在环形跑道上同向而行,追及路程就是跑道的周长400米,速度差为5 - 3 = 2米/秒,所以追及时间为400÷2 = 200秒。
4. 两列火车从相距720千米的两地同时相对开出,甲车每小时行80千米,乙车每小时行70千米,经过几小时两车相遇?- 解析:相遇时间 = 总路程÷速度和,两车速度和为80+70 = 150千米/小时,总路程720千米,相遇时间为720÷150 = 4.8小时。
5. 一辆客车和一辆货车分别从甲、乙两地同时出发,相向而行,客车的速度是75千米/小时,货车的速度是65千米/小时,经过3小时两车还相距40千米,甲、乙两地相距多少千米?- 解析:两车3小时行驶的路程之和为(75 + 65)×3=420千米,再加上相距的40千米,甲、乙两地相距420+40 = 460千米。
6. 甲、乙两人在一条长300米的直路上来回跑步,甲的速度是每秒4米,乙的速度是每秒3米,如果他们同时从路的两端出发,当他们跑了10分钟后,共相遇了几次?- 解析:10分钟=10×60 = 600秒。
行程问题(一)姓名例1.甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?例2.一列货车早晨6时从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,中午12时两车同时经过途中某站,然后仍继续前进,问:当客车到达甲地时,货车离乙地还有多少千米?例3.两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。
例4.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?例5.甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,修车用了1小时.在出发4小时后,甲、乙二人相遇,又已知甲的速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?例6.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?例7.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在它们出发后的5小时.6小时,8小时先后与甲、乙、丙三辆车相遇,求丙车的速度。
练习1.甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少?3.甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.4.甲、乙二人从相距100千米的A、B两地出发相向而行,甲先出发1小时.他们二人在乙出后的4小时相遇,又已知甲比乙每小时快2千米,求甲、乙二人的速度.5.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长为385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少?6.前进钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米?7. A,B两村相距 2800米,小明从 A村步行出发 5分后,小军骑车从B村出发,又经过10分两人相遇。
五年级数学上册《行程问题》经典应用题例1:两个县城相距22千米,甲、乙二人同时从两城出发,相对而行,甲每小时行6千米,乙每小时行5千米,几小时后相遇?解:总路程÷速度和=相遇时间22÷(6+5)=2(小时)答:2小时后相遇。
例2:两个县城相距22千米,甲、乙二人同时从两城出发,相对而行,2小时后相遇,甲每小时行6千米,乙每小时行多少千米?解:总路程÷相遇时间=速度和22÷2=11(千米)速度和—甲速度=乙速度11—6=5(千米)答:乙每小时行5千米。
例3:甲、乙二人同时从A、B两个县城相对而行,甲每小时行6千米,乙每小时行5千米,2小时后二人还相距4千米。
两个县城相距多远?解:速度和×相遇时间=总路程(6+5)×2=22(千米)22+4=26(千米)答:两个县城之间相距26千米。
例4:东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?解:总路程÷相遇时间=速度和60÷3=20(千米)利用和差问题的解法:甲:(20+10)÷2=15(千米)乙:(20—10)÷2=5 (千米)答:甲的速度是每小时15千米,乙的速度是每小时5千米。
例5:体育场的环形跑道长600米,小刚和小华在跑道的同一起跑线上,同时向相反方向起跑,小刚每分钟跑152米,小华每分钟跑148米。
几分钟后他们第1次相遇?几分钟后第3次相遇?解:总路程÷速度和=相遇时间600÷(152+148)=2(分钟)600×3÷(152+148)=6(分钟)答:2分钟后他们第1次相遇,6分钟后第3次相遇。
例6:A港和B港相距662千米,上午9点一艘“寒山”号快艇从甲港开往乙港,中午12点另一艘“天远”号快艇从乙港开往甲港,到16点两艇相遇,“寒山”号每小时行54千米,“天远”号的速度比“寒山”号快多少千米?解:寒山号一共行了多少千米?(16—9)×54=378(千米)天远号行了多少千米?662—378=284(千米)天远号速度多少?284÷(16—12)=71(千米)天远号比寒山号每小时快多少千米?71—54=17(千米)答:天远号比寒山号每小时快17千米。
五年级数学行程应用题一、行程应用题20题及解析。
1. 甲、乙两人分别从A、B两地同时出发相向而行,甲每小时行5千米,乙每小时行4千米,经过3小时两人相遇。
A、B两地相距多少千米?- 解析:这是一个相遇问题,根据公式:路程 = 速度和×相遇时间。
甲、乙的速度和为5 + 4=9千米/小时,相遇时间是3小时,所以A、B两地相距9×3 = 27千米。
2. 一辆汽车从甲地开往乙地,速度是每小时60千米,5小时到达。
如果速度变为每小时75千米,那么几小时可以到达?- 解析:首先根据公式路程 = 速度×时间,求出甲地到乙地的路程为60×5 = 300千米。
当速度变为75千米/小时时,再根据时间 = 路程÷速度,可得时间为300÷75 = 4小时。
3. 小明和小红在周长为400米的环形跑道上跑步,小明的速度是每分钟200米,小红的速度是每分钟150米。
如果两人同时同地同向出发,几分钟后小明第一次追上小红?- 解析:这是一个追及问题,在环形跑道上同向出发,追及路程就是跑道的周长。
根据追及时间 = 追及路程÷速度差,小明和小红的速度差为200 - 150 = 50米/分钟,追及路程为400米,所以追及时间为400÷50 = 8分钟。
4. 甲、乙两车分别从相距600千米的A、B两地同时出发,相向而行,甲车每小时行40千米,乙车每小时行60千米。
几小时后两车相距100千米?- 解析:分两种情况讨论。
- 情况一:两车还未相遇时相距100千米,此时两车行驶的路程和为600 - 100 = 500千米,速度和为40+60 = 100千米/小时,根据时间 = 路程和÷速度和,可得时间为500÷100 = 5小时。
= 700千米,速度和为100千米/小时,时间为700÷100 = 7小时。
5. 一艘轮船从甲港开往乙港,顺水每小时行25千米,4小时到达。
《行程问题》练习题(含答案)行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现.行程问题包括:相遇问题、追及问题、流水行船问题、环形行程问题等等,思维灵活性大,辐射面广,但万变不离根本,就是距离、速度、时间三个基本量之间的关系,即:距离=速度×时间 .在这三个量中,已知两个,可求出第三个未知量.这一讲就是通过例题加深对这三个基本数量关系的理解.解决行程问题时,画图分析是一个非常有效的方法,我们一定要养成画图解决问题的好习惯!【复习1】甲、乙两辆汽车从东、西两地同时相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地间的距离是多少千米?分析:画图分析.相遇时甲车比乙车多行:32×2=64(千米),甲车每小时比乙车多行:56-48=8(千米),甲、乙两车从同时出发到相遇要:64÷8=8(小时),东、西两地间的距离是:(56+48)×8=832(千米).【复习2】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。
已知C离A有80米,D离B有60米,求这个圆的周长.分析:从A点出发到第一次相遇,两人共走了0.5圈;从A点出发到第二次相遇,两人共走了1.5圈。
因为1.5÷0.5=3,所以第二相遇时甲走的路程是第一次相遇时的3倍,即弧ACD=AC×3=240(米),则弧AB=240—BD=180(米),圆周长为180×2=360(米)【复习3】两名运动员在湖的周围环形道上练习长跑. 甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?分析:在封闭的环形道上同向运动属追及问题,反向运动属相遇问题.同地出发,其实追及路程或相隔距离就是环形道一周的长.这道题的解题关键就是先求出环形道一周的长度. 环形道一周的长度:(250-200)×45=2250(米).反向出发的相遇时间:2250÷(250+200)=5(分钟).【例1】汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?分析:假设AB两地之间的距离为480÷2=240千米,那么总时间=480÷48=10(小时),回来时的速度=240÷(10-240÷40)=60(千米/时).【前铺】汽车上山以30千米/时的速度,到达山顶后立即以60千米/时的速度下山.求该车的平均速度.分析:注意平均速度=总路程÷总时间,我们可以把上山的路程看作“1”,那么就有:(1+1)÷(113060)=40(千米/时),在这里我们使用的是特殊值代入法,当然可以选择其他方便计算的数值,比如上山路程可以看作60千米,总时间=(60÷30)+(60÷60)=3,总路程=60×2=120,平均速度=120÷3=40(千米/时).【例2】一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?分析:假设每条边长为200厘米,则总时间=200÷50+200÷20+200÷40=4+10+5=19(分钟),爬行一周的平均速度=200×3÷19=113119(厘米/分钟).【例3】老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?分析:设上山路为x千米,下山路为2x千米,则上下山的平均速度是:(x+2x)÷(x÷22.5+2x ÷36)=30(千米/时),正好是平地的速度,所以行AD总路程的平均速度就是30千米/时,与平地路程的长短无关.因此共需要72÷30=2.4(时).【例4】小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行. 每隔9分钟就有辆公共汽车从后面超过他,每隔7分钟就遇到迎面开来的一辆公共汽车. 问:该路公共汽车每隔多少分钟发一次车?公共汽车的速度是小明步行速度的几倍?分析:假设小明在路上向前行走了63(7、9的最小公倍数)分钟后,立即回头再走63分钟,回到原地.这时在前63分钟他迎面遇到63÷7=9(辆)车,后63分钟有63÷9=7(辆)车追上他,那么在两个63分钟里他共遇到朝同一方向开来的16辆车,所以发车的时间间隔为:63×2÷(9+7)=778(分).公共汽车的发车时间以及速度都是不变的,所以车与车之间的间隔也是固定不变的. 根据每隔9分钟就有辆公共汽车从后面超过他,我们可以得到:间隔=9×(车速-步速);每隔7分钟就遇到迎面开来的一辆公共汽车,我们可以得到:间隔=7×(车速+步速),所以9×(车速-步速)=7×(车速+步速),化简可得:车速=8倍的步速.【巩固】小红放学后沿着公共汽车的线路以4千米/时的速度往家走,一边走一边数来往的公共汽车. 到家时迎面来的公共汽车数了11辆,后面追过的公共汽车数了9辆. 如果公共汽车按相等的时间间隔发车,那么公共汽车的平均速度是多少?分析:我们可以假设小红放学走到家共用99分钟,那么条件就可以转化为:“每隔9分钟就有辆公共汽车迎面开来,每隔11分钟就有辆公共汽车从后面超过他”.根据汽车间隔一定,可得:间隔=11×(车速-步速)=9×(车速+步速),化简可得:车速=10倍的步速.所以车速为40千米/时.【例5】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟. 有一个人从乙站出发沿电车线路骑车前往甲站. 他出发的时候,恰好有一辆电车到达乙站. 在路上他又遇到了10辆迎面开来的电车。
小学五年级数学行程问题(带答案)例题1、甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?解答:从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。
两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。
64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。
32×2÷(56-48)=8(小时)(56+48)×8=832(千米)练习一1、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?解答:两人的路程差:120+120=240(米)时间:240÷(100-80)=12(分钟)总路程:(100+80)x12=2160(米)2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。
甲、乙两地相距多少千米?解答:两车的路程差:75(米)时间:750÷(65-40)=3(小时)总路程:(40+65)x3+75=390(米)3、甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。
东村到西村的路程是多少米?解答:如果甲继续行5分钟:5x120=600(米)乙的时间:600÷(120-100)=30(分钟)总路程:30x100=3000(米)例题二、快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?解答:快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。
五年级数学行程问题练习题(含解析答案) 行程问题例1:乌龟和小兔比赛跑步,起点是大树,乌龟以每分钟10米的速度向终点跑去,而小兔认为自己跑得快,所以就先在大树旁睡觉了,睡了82分钟后醒来看见乌龟正好到达终点。
解析:起点是大树旁边的起跑线和跑道,小兔睡了82分钟,乌龟以10米/分钟的速度跑到终点。
因此,乌龟跑了82×10=820米。
答案:大树离终点有820米。
例2:大树到终点的距离是XXX。
乌龟跑到终点后发现小兔子不见了,就马上以每分钟10米的速度往回跑。
同时,小兔以每分钟400米的速度向终点跑去。
它们要经过多少分钟相遇?解析:乌龟在终点处,小兔开始以每分钟400米的速度向终点跑去,它们相遇时停止。
因此,他们相向而行,需要计算他们相遇的时间。
答案:路程÷速度和=相遇时间,820÷(400+10)=2(分钟)。
他们经过2分钟相遇。
小结:这是行程问题中经常遇到的相遇问题。
两者同时从两地相向而行,这就是相遇问题。
相遇的时间可以用路程÷速度和来表示。
例3:XXX运动场上有一条250米长的环形跑道。
XXX 和XXX同时从起点同方向出发,XXX每秒跑6米,XXX每秒跑4米。
XXX第一次追上小红时用了多少时间?这时两人各跑了多少米?解析:XXX和XXX在环形跑道的同一点同时出发,小明快,XXX慢。
XXX跑了3圈,XXX跑了2圈,XXX追上小红时停止。
因此,需要计算追及时间。
答案:追及时间=路程差÷速度差=250÷(6-4)=125(秒)。
XXX在追上小红时跑了750米,XXX跑了500米。
举一反三练:1.XXX和XXX骑自行车同时从一个地点出发,沿环湖公路相背而行,1.5小时两人相遇。
已知XXX每小时行12千米,XXX每小时行10千米,问环湖公路长多少千米?解析:XXX和XXX相背而行,相遇后停止。
因此,需要计算他们相遇的时间,然后用时间×速度和来计算路程。
行程问题(一)专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。
两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。
64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。
32×2÷(56-48)=8(小时)(56+48)×8=832(千米)答:东、西两地相距832千米。
练习一1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。
甲、乙两地相距多少千米?例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。
此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。
(40×3-25×2-7)÷3=21(千米)答:慢车每小时行21千米。
练习二1,兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
小学五年级行程应用题及答案1 、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11, 假如甲每小时行驶 4.5 千米,乙行了 5 小时。
求 AB两地相距多少千米?解: AB距离 =(4.5 ×5)/ ( 5/11 )=49.5 千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行 28 千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的行程比 =5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程 =28/ (7/36 )=144 千米3、甲乙两人绕城而行,甲每小时行 8 千米,乙每小时行 6 千米。
此刻两人同时从同一地址相背出发,乙碰到甲后,再行4 小时回到原出发点。
求乙绕城一周所需要的时间?解:甲乙速度比 =8:6=4:3相遇时乙行了全程的3/7那么 4 小时就是行全程的4/7因此乙行一周用的时间 =4/ (4/7 )=7 小时4、甲乙两人同时从 A 地步行走向 B 地,当甲走了全程的 14 时,乙离 B 地还有 640 米,当甲走余下的 56 时,乙走完整程的 710,求AB两地距离是多少米?解:甲走完 1/4 后余下 1-1/4=3/4那么余下的 5/6 是 3/4 ×5/6=5/8此时甲一共走了1/4+5/8=7/8那么甲乙的行程比 =7/8 :7/10=5 :4因此甲走全程的1/4 时,乙走了全程的1/4 ×4/5=1/5那么 AB距离 =640/(1-1/5 )=800 米5、甲,乙两辆汽车同时从 A,B 两地相对开出 , 相向而行。
甲车每小时行 75 千米,乙车行完整程需 7 小时。
两车开出 3 小时后相距15 千米, A,B 两地相距多少千米?解:一种状况:此时甲乙还没有相遇乙车 3 小时行全程的 3/7甲 3 小时行 75×3=225 千米AB 距离 =(225+15)/ (1-3/7 )=240/ (4/7 )=420 千米一种状况:甲乙已经相遇(225-15)/ (1-3/7 )=210/ (4/7 )=367.5 千米6、甲,已两人要走完这条路,甲要走 30 分,已要走 20 分,走3 分后,甲发现有东西没拿,拿东西耽搁 3 分,甲再走几分钟跟已相遇?解:甲相当于比乙晚出发3+3+3=9分钟将所有行程看作单位 1那么甲的速度 =1/30乙的速度 =1/20甲拿完东西出发时,乙已经走了1/20 ×9=9/20那么甲乙合走的距离1-9/20=11/20甲乙的速度和 =1/20+1/30=1/12那么再有( 11/20 )/ (1/12 )=6.6 分钟相遇7、甲,乙两辆汽车从 A 地出发,同向而行,甲每小时走 36 千米,乙每小时走 48 千米,若甲车比乙车早出发 2 小时,则乙车经过多少时间才追上甲车?解:行程差 =36×2=72 千米速度差 =48-36=12 千米 / 小时乙车需要 72/12=6 小时追上甲8、甲乙两人分别从相距 36 千米的 ab 两地同时出发 , 相向而行 , 甲从a 地出发至 1 千米时, 发现有物件过去在 a 地,便立刻返回,去了物件又立刻从 a 地向b 地前进,这样甲、乙两人恰幸亏a,b 两地的终点处相遇,又知甲每小时比乙多走0.5 千米,求甲、乙两人的速度?解:甲在相遇时实质走了36×1/2+1 ×2=20 千米乙走了 36×1/2=18 千米那么甲比乙多走20-18=2 千米那么相遇时用的时间 =2/0.5=4 小时因此甲的速度 =20/4=5 千米 / 小时乙的速度 =5-0.5=4.5千米/小时9、两列火车同时从相距 400 千米两地相向而行 , 客车每小时行60 千米,货车小时行40 千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和 =60+40=100千米 / 小时分两种状况,没有相遇那么需要时间 =(400-100)/100=3 小时已经相遇那么需要时间 =(400+100)/100=5 小时10、甲每小时行驶 9 千米,乙每小时行驶 7 千米。
行程问题(一)
【知识分析】
相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度和×时间=路程,今天,我们学校这类问题。
【例题解读】
例1客车和货车同时分别从两地相向而行,货车每小时行85千米,客车每小时行90千米,两车相遇时距全程中点8千米,
两地相距多少千米?
【分析】根据题意,两车相遇时货车行了全程的一半-8千米,客车行了全程的一半+8千米,也就是说客车比货车多行了8×2=16千米,客车每小时比货车多行90-85=5千米。
那么我们先求客车和货车两车经过多少小时在途中相遇,然后再求出总路程。
(1)两车经过几小时相遇?8×2÷(90-85)=3.2小时
(2)两地相距多少千米?(90+85)×3.2=560(千米)
例2小明和小丽两个分别从两地同时相向而行,8小时可以相遇,如果两人每小时多少行1.5千米,那么10小时相遇,两地
相距多少千米?
【分析】两人每小时多少行1.5千米,那么10小时相遇,如果以这样的速度行8小时,这时两个人要比原来少行1.5×2×8=24(千米)这24千米两人还需行10-8=2(小时),那么减速后的速度和是24÷2=12(千米)容易求出两地的距离
1.5×2×8÷(10-8)×=120千米
【经典题型练习】
1、客车和货车分别从两地同时相向而行,2.5小时相遇,如果两车
每小时都比原来多行10千米,则2小时就相遇,求两地的距离?
2、在一圆形的跑道上,甲从a点,乙从b点同时反方向而行,8
分钟后两人相遇,再过6分钟甲到b点,又过10分钟两人再次相遇,则甲环形一周需多少分钟?
【知识分析】
两车从两地同时出发相向而行,第一次相遇合起来走一个全程,第二次相遇走了几个全程呢?今天,我们学习这类问题
【例题解读】
例 a、b两车同时从甲乙两地相对开出,第一次在离甲地95千米处相遇,相遇后两车继续以原速行驶,分别到达对方站点后立即返回,在离乙地55千米处第二次相遇,求甲乙两地之间的距离是多少千米?
【分析】a、b两车从出发到第一次相遇合走了一个全程,当两年合走了一个全程时,a车行了95千米
从出发到第二次相遇,两车一共行了三个全程,a车应该行了95×3=285(千米)通过观察,可以知道a车行了一个全程还多55千米,用285千米减去55千米就是甲乙两地相距的距离
95×3—55=230千米
【经典题型练习】
1、甲乙两车同时从ab两地相对开出,第一次在离a地75千米相
遇,相遇后两辆车继续前进,到达目的地后立即返回,第二次相遇在离b地45千米处,求a、b两地的距离
2、客车和货车同时从甲、乙两站相对开出,第一次相遇在距乙站
80千米的地方,相遇后两车仍以原速前进,在到达对方站点后立即沿原路返回,两车又在距乙站82千米处第二次相遇,甲乙两站相距多少千米?
【知识分析】
在行程问题中,有时候两车同时出发,但中途因意外可能需要停车,有时候不一定同时出发,也可能同一车在不同的时间段的速度不一样,今天我们学习这种变化的问题。
【例题解读】
例题北京和上海之间大约相距1150千米,两辆汽车同时从两地相向而行,甲车行驶6小时后停下来修车,这是两车相距160千米,乙车保持原速继续行驶,经过2小时与甲车相遇,求甲车的速度【分析】根据题意可以知道,甲车行驶6小时后停下来修车,两车相距160千米是乙车单独行驶的,我们可以先求乙车的速度,同时,甲乙两车同行的路程是1150—160=990千米,求出两车的速度和,便可以知道甲车的速度了
(1150—160)÷6—160÷2=85千米
【经典题型练习】
1、甲乙两地相距205千米,小货车和农用车同时从两地出发相向而行,小货车行驶2小时候停下来修车,这时两车相距45千米,农用车保持原速继续前进,经过1.5小时与小货车相遇,求小货车的速度。
2、大欢和小欢两人由家里到新华书店买书,大欢每分钟行50米,小欢每分钟行45米,小欢比大欢早出发2分钟,结果大欢比小欢早1分钟到达新华书店,求家到新华书店有多远?
【知识分析】
在环形跑道上,反向而行相当于是相遇问题,同向而行相当于是追赶问题【例题解读】
例1 陈丹和林龙分别以不同速度,在周长为500米的环形跑道上跑步,林龙的速度是每分钟180米,(1)如果两人从同一地点同时出发,反向跑步,75秒时第一次相遇,求陈丹的速度,(2)若两人以上面的速度从同一地点同时出发同向而行,陈丹跑多少圈后才能第一次追上林龙?
【分析】(1)两人相遇就是合起来走一个全程,因此
500÷(75÷60)—180=220米
(2)陈丹第一次追上林龙,也就是比林龙多跑一圈,所以
500÷(220—180)=12.5分
220×12.5÷500=5.5圈
【经典题型练习】
1、程程和海峰分别以不同的速度,在周长为400米的环形跑道上
跑步,程程的速度是每分钟180米,海峰的速度是每分钟200
米,如果两人从同一地点同时出发同向而行,海峰跑多少圈后
才能第一次追上程程?
2、有一条长80米的环形走廊,兄妹两人同时从同一地点同一方向
出发,妹妹以每秒1米的速度步行,哥哥以每秒5米的速度奔
跑,在哥哥第二次追上妹妹时,花了多少秒?。