信息光学试卷A附参考复习资料
- 格式:docx
- 大小:171.43 KB
- 文档页数:3
1. 若对函数()()ax c a x h sin =进行抽样,其允许的最大抽样间隔为aX a 11≤或 ((){},,x xx F h x rect a a a x B X a B ⎛⎫= ⎪⎪⎝⎭≤=≤111222)2.一列波长为λ,振幅为A 的平面波,波矢量与x 轴夹角为α,与y 轴夹角为β,与z 轴夹角为γ,则该列波在d z =平面上的复振幅表达式为()()()[]βαγcos cos ex p cos ex p ,y x jk jkd A y x U +=3、透镜对光波的相位变换作用是由透镜本身的性质决定的。
在不考虑透镜的有限孔径效应时,焦距为f 的薄凸透镜的相位变换因子为()⎥⎦⎤⎢⎣⎡+-222exp y x fjk4.对于带限函数g(x,y),按照抽样定理,函数g 的空间带宽积为 16L X L Y B X B Y5. 就全息图的本质而言,散射物体的平面全息图,记录过程是 与 的干涉过程,记录在全息记录介质上的是 。
再现过程是在再现光照明情况下光的 过程。
若再现光刚好是记录时的参考光,其再现像有 。
(再现像的个数与特点)物光 参考光 干涉条纹 衍射 两个像,一个是+1级衍射光所成的原始像,另一个是-1级衍射光所成的共轭像,分别在零级两侧。
6.写出菲涅尔近似条件下,像光场(衍射光场)()U x y d ,,与物光场(初始光场)()U x y 000,,0间的关系式,并简述如何在频域中求解菲涅尔衍射积分? 菲涅耳近似条件下,衍射光场()U x y d ,,与初始物光场()U x y 000,,0间的关系为()()()()()220000000exp ,,,,0exp 2jkd jk U x y d U x y x x y y dx dy j d d λ+∞-∞⎧⎫⎡⎤=-+-⎨⎬⎣⎦⎩⎭⎰⎰菲涅耳衍射积分(上式)可以写成如下卷积形式()()()()22000exp ,,,,0exp 2jkd jk U x y d U x y x y j d d λ⎡⎤=*+⎢⎥⎣⎦上式两边进行傅里叶变换得(){}(){}()()22000exp ,,,,0exp 2jkd jk F U x y d F U x y F x y j d d λ⎧⎫⎡⎤=*+⎨⎬⎢⎥⎣⎦⎩⎭先求出()(){}0000,,,0x y U f f F U x y =和()()()()22222exp ,exp exp 122x y x y jkd jk H f f F x y jkd f f j d d λλ⎧⎫⎧⎫⎡⎤⎪⎪⎡⎤=+=-+⎨⎬⎨⎬⎢⎥⎢⎥⎣⎦⎪⎪⎣⎦⎩⎭⎩⎭即可得()(){},,,x y U f f F U x y d =再进行傅里叶反变换即可得菲涅耳衍射场()(){}1,,,x y U x y d F U f f -=7.简述利用SFFT 编程实现菲涅尔衍射的主要过程。
信息光学复习提纲信息光学的特点Ch1. 线性系统分析1.矩形函数:①定义②图像③作用④傅里叶变换谱函数2.sinc函数:①定义②图像③作用④傅里叶变换谱函数3.三角函数:①定义②图像③作用④傅里叶变换谱函数4.符号函数:①定义②图像③作用④傅里叶变换谱函数5.阶跃函数:①定义②图像③作用④傅里叶变换谱函数6.余弦函数:①定义②图像③作用④傅里叶变换谱函数7. 函数:①三种定义②四大性质③作用8.梳状函数:①定义②图像③作用④傅里叶变换谱函数9.高斯函数:①定义②图像③作用④傅里叶变换谱函数10.傅里叶变换(常用傅里叶变换对)11.卷积:四大步骤,两大效应12.互相关、自相关的定义、物理意义13.傅里叶变换的基本性质和有关定理14.线性系统理论15.线性不变系统的输入输出关系,脉冲响应函数,传递函数16.抽样定理求抽样间隔Ch2. 标量衍射理论1. 标量衍射理论成立的两大条件2.平面波及球面波表达式:exp[(cos cos cos )]A ik x y z αβγ++(求平面波的空间频率))](2exp[]exp[22y x zik ikz z A + 3.惠更斯——菲涅耳原理:()⎰⎰∑=dsrikr K P U cQ U )exp()()(0θ 4.基尔霍夫衍射理论: ⎰⎰∑-=dsrikr r n r n r ikr a j Q U )exp(]2),cos(2),cos([)exp(1)(0000λ令()()θλK rikr j Q P h )exp(1,=所以()⎰⎰∑=ds Q P hP UQ U ,)()(0当光源足够远,且入射光在孔径平面上各点的入射角都不大时,(),1,cos 0≈r n(),1,cos ≈r n ().1≈∴θK故()z ikr j Q P h )exp(1,λ=,]})()[(211{20020zy y z x x z r -+-+≈ 5. 菲涅耳衍射——近场衍射:0000202000022)](2exp[)](2exp[),()](2exp[)exp(),(dy dx yy xx zj y x z jk y x U y x zjkz j jkz y x U +-++=⎰⎰∞∞-λπλ6. 夫琅禾费衍射——远场衍射:(根据屏函数求衍射光强分布)000000022)](2exp[),()](2exp[)exp(),(dy dx yy xx zj y x U y x zjkz j jkz y x U +-+=⎰⎰∞∞-λπλ 7.衍射的角谱理论:(角谱的传播,求角谱分布)Ch.3 光学成像系统的频率特性1.透镜的傅里叶变换性质: ①相位变换作用:)](2exp[),(),(22y x f jky x p y x t +-=(二次位相因子)②透镜的傅里叶变换特性:(满足条件?什么情况下实现准确傅立叶变换) a. 物在透镜前b.物在透镜后 2. 衍射受限系统的点扩散函数:⎰⎰∞∞--+--=--yd x d y y y x x x j y d x d P d K y y x x h i i i i ii i ~~]}~)~(~)~[(2exp{)~,~()~,~(002200πλλλ 光瞳相对于i d λ足够大时,理想情况:点物成点像)~,~()~,~(22o i o i i o i o i y y x x d K y y x x h --≅--δλ3. 相干照明下衍射受限系统的成像规律:),(),(~),(i i g i i i i i y x U y x h y x U *=其中,)]~,~([),(~y d x d P F y x h i i i i λλ=,),(1),(0My M x U M y x U i i i i g =4.衍射受限系统的相干传递函数(CTF ):()()ηλξληξi i d d P H ,,=(坐标轴反演)5. 截止频率:圆形光瞳:o c oc i c d DM d D λρρλρ2,2=== 正方形光瞳:不同方向的截止频率不同,45度时最大)22max ic d aλρ= 6. 衍射受限系统的非相干传递函数(OTF ) 7. OTF 与CTF 的关系Ch.4 光学全息1. 普通照相与全息照相的比较2. 全息照相的核心:波前记录和再现①方法:干涉法(标准方法,即将空间相位调制→空间强度调制) ②特点:全息图实际上就是一幅干涉图 ③全息图的分类:a 。
光信息处理(信息光学)复习提纲第一章线性系统分析1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?2.空间频率分量的定义及表达式?3.平面波的表达式和球面波的表达式?4.相干照明下物函数复振幅的表示式及物理意义?5.非相干照明下物光强分布的表示式及物理意义?6.线性系统的定义7.线性系统的脉冲响应的表示式及其作用8.何谓线性不变系统9.卷积的物理意义10.线性不变系统的传递函数及其意义11.线性不变系统的本征函数第二章标量衍射理论1.衍射的定义2.惠更斯-菲涅耳原理3.衍射的基尔霍夫公式及其线性表示4.菲涅耳衍射公式及其近似条件5.菲涅耳衍射与傅立叶变换的关系6.会聚球面波照明下的菲涅耳衍射7.夫琅和费衍射公式8.夫琅和费衍射的条件及范围9.夫琅和费衍射与傅立叶变换的关系10.矩形孔的夫琅和费衍射11.圆孔的夫琅和费衍射(贝塞尔函数的计算方面不做要求)12.透镜的位相变换函数13.透镜焦距的判别14.物体位于透镜各个部位的变换作用15.几种典型的傅立叶变换光路第三章光学成象系统的传递函数1.透镜的脉冲响应2.相干传递函数与光瞳函数的关系3.会求几种光瞳的截止频率4.强度脉冲响应的定义5.非相干照明系统的物象关系6.光学传递函数的公式及求解方法7.会求几种情况的光学传递函数及截止频率第五章光学全息1.试列出全息照相与普通照相的区别2.简述全息照相的基本原理3.试画出拍摄三维全息的光路图4.基元全息图的分类5.结合试验谈谈做全息实验应注意什么(没做过实验,只谈一些理论性的注意方面)6.全息照相为什么要防震,有那些防震措施,其依据是什么7.如何检测全息系统是否合格8.全息照相的基本公式9.全息中的物像公式及解题(重点)复 习第一章 线性系统分析1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?时间量 空间量22v T πωπ==22K f ππλ== 时间角频率 空间角频率其中:v ----时间频率 其中:f ---空间频率T----时间周期λ-----空间周期物理意义:由图1.7.3知:(设光在z x ,平面内传播,0=y )cos xd λα=, 又 ∵ 1x xf d =联立得:cos x f αλ=讨论:① 当090,,<γβα时0,,>z y x f f f ,表示k沿正方向传播;②标量性,当α↗时,αcos ↘→x f ↘→x d ↗ 当α↘时,αcos ↗→x f ↗→x d ↘ ③标量性与矢量性的联系条纹密x d ↘→x f ↗→α↘→θ↗x x f d 1=λαcos =x f 条纹疏x d ↗→x f ↘→α↗→θ↘2.空间频率分量的定义及表达式?{}γβαcos ,cos ,cos k k ={}z y x r ,,=)cos cos cos (γβαz y x k r k ++=⋅代入复振幅表达式:()()()[]γβαμcos cos cos ex p ,,,,0z y x jk z y x z y x U ++=()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x z y ++=λπμ2ex p ,,0式中:λαcos =x f ,λβcos =yf ,λγcos =z f3.平面波的表达式和球面波的表达式?平面波()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x U λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x U z y x ++=πμ2ex p ,,0球面波()1,,jkr aU x y z e γ=()21212212121221⎪⎪⎭⎫ ⎝⎛++=++=z y x z z y x r近轴时()1,,U x y z ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛++=1221021exp z y x jkz r a()⎪⎪⎭⎫ ⎝⎛+⋅≈1221102exp exp z y x jk jkz z a ⎪⎪⎭⎫ ⎝⎛+=12202exp z y x jkU若球面波中心不在坐标原点,上式改为:()1,,U x y z ()()⎥⎥⎦⎤⎢⎢⎣⎡++-=1202002exp z y y x x jkU4.相干照明下物函数复振幅的表示式及物理意义?设()y x f ,为一物函数的复振幅,其傅氏变换对为 ()()(),exp 2x y x y F f f f x y j f x f y dxdyπ∞-∞⎡⎤=-+⎣⎦⎰⎰ ()()(),exp 2x yxyxyf x y F f f j f x f y df dfπ∞-∞⎡⎤=+⎣⎦⎰⎰可见:物函数()y x f ,可以看作由无数振幅不同()x y x y F f f df df 方向不同()cos ,cos xyf f αλβλ==的平面波相干迭加而成。
判断题1、反射型体全息图用白光再现时,再现像是单色的。
()2、空间滤波系统中,在频谱面加微分滤波器可以实现图像边缘增强。
()3、白光光学信息处理系统中,由于白光是非相干光,所以系统不存在物理上的频谱面,因而无法利用空间滤波的方法进行图像处理。
()4、系统即具有叠加性又具有均匀性,则这种系统称为线性系统。
()5、利用彩虹全息图制作的模压全息图是反射型全息图。
()6、反射型体积全息图,可以利用白光再现,再现象是彩色像。
()7、空间滤波系统中,在频谱面上放入低通滤波器,可以使像面得到的图像边缘增强。
()8、复数空间滤波器可采用光学全息或计算全息的方法来制作。
()9、非相干光学信息处理系统无法实现两幅图像的相关和卷积运算。
()10、液晶光阀是一种光寻址空间光调制器。
()填空题1、匹配滤波图像识别系统中,假定基准图像为s(x,y),s(x,y)的付里叶变换为S(ξ,η),则匹配空间滤波器的透过率函数H(ξ,η)满足。
2、列举四种二元振幅滤波器:、、。
3、设f(x,y)在x方向的最大空间频率为Bx,y方向最大空间频率为By,对函数f(x,y)抽样,则抽样间隔△x,△y应满足。
4f相干光信息处理系统中,各透镜的作用是。
5、卷积运算有两种效应,一种是,还有一种就是被卷函数经过卷积运算,其细微结构在一定程度上被消除,函数本身的起伏振荡变得平缓圆滑,这种效应是________________。
6、写出两种光学相关图像识别的方法:、。
7、列举三种计算全息编码方法:、。
8、空间光调制器按寻址类型分类,可分为寻址和寻址两种。
9、的傅里叶变换是。
10、把抽样间隔满足奈奎斯特抽样定理,经过抽样后的图像还原成原图像有两种途径 ,分别为:叙述题1、说明模压全息图的制作过程。
2、彩虹全息照相中使用狭缝的作用是什么?3、讨论在白光光学信息处理系统中,采用何种方法,使该系统既不存在相干噪声,又在某 种程度上保留了相干光学处理系统对复振幅进行运算的能力。
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。
1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。
1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。
于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。
信息光学试题经典浓缩版~~ 一、选择题(每题2分)1、《信息光学》即《付里叶光学》课程采用的主要数学分析手段是________________。
A 、光线的光路计算B 、光的电磁场理论C 、空间函数的付里叶变换2、高斯函数)](exp[22y x +-π的付里叶变换为________________。
A 、1B 、),(y x f f δC 、)](exp[22y x f f +-π 3、1的付里叶变换为_________________。
A 、),(y x f f δB 、)sgn()sgn(y xC 、)()(y x f Comb f Comb4、余弦函数x f 02cos π的付里叶变换为_________________。
A 、)]()([2100f f f f x x ++-δδB 、)sin()sin(y x f fC 、15、圆函数Circ(r)的付里叶变换为_________________ A 、ρπρ)2(1J B 、1C 、),(y x f f δ6、在付里叶光学中,通常是以_________________理论为基础去分析各种光学问题的。
A 、非线性系统B 、线性系统7、_________________是从空间域内描述相干光学系统传递特性的重要光学参量。
A 、脉冲响应B 、相干传递函数8、_________________是从空间频域内描述相干光学系统传递特性的重要光学参量。
A 、脉冲响应B 、相干传递函数9、_________________是从空间域内描述非相干光学系统传递特性的重要光学参量。
A 、点扩散函数B 、非相干传递函数(光学传递函数)10、_______________是从空间频域内描述非相干光学系统传递特性的重要光学参量。
A 、点扩散函数B 、非相干传递函数(光学传递函数)11、某平面波的复振幅分布为)](2exp[),(y f x f i A U y x y x +=π那么其在不同方向的空间频率为_________________,它也是复振幅分布的空间频谱。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==信息光学试卷篇一:3信息光学试卷信息光学一、填空题(共30分,每空2分)1. 与微波一样,光波是一种_____波,其在真空中的速度_____米/秒。
2. 从傅立叶光学的角度看,透镜的作用是_______________。
3. 全息术包括物光波前的纪录和再现两个过程,全息照片同时记录了波前的___信息和___信息。
4. 光学成像系统分相干光学成像系统和非相干光学成像系统,相干光学成像系统的传递函数称___,非相干光学成像系统的传递函数称___。
5. 全息记录的原理不仅可用于光波波段,也可用于电子波,、和声波等,只要波动过程在形成干涉花样时具有足够的相干性即可。
6. 若??和?分别表示光波的波长范围和平均波长,则准单色光需要满足的条件是。
7. 正弦型振幅全息图透射率为t?t0?t1cos2??x,其中t0是平均透射率,t1是调制幅度。
在最佳的理想情况下t0=1/2,t1=1/2。
该情况下可得最佳衍射效率为。
8. 菲涅耳近似其实质是用来代替球面的子波;夫琅和费近似实质是用代替球面子波。
9. 关于成像质量的评价,主要有两种方法:二、简答题(共20分)1、简述标量衍射理论适用的条件。
(6分)2、简述阿贝成像的原理(6分)3、根据二元滤波所作用的频率区间可将二元振幅滤波器分为哪几类?并简要说明其特点。
(8分)三、证明题(16分,每题8分)1、证明傅立叶变换变换关系式:F{rect(x)rect(y)}=sinc(fx)sinc(fy)2、一个函数的“等效面积”?XY可定义为?????XY?????g(x,y)dxdyg(0,0),而g的“等效带宽”则通过它的变换式G由下式定义:??X??G(f?fXfY,fY)dfXdfY?????G(0,0)。
证明:?XY??fXfY?1。
1. 求符号函数sgn(x)的傅里叶变换。
(15分)
3. 与几何成像相比,请简述全息照相的基本特点。
(5分)
4. 请简述阿贝二次成像理论。
(4分)
5. 采用一维光栅调制时,如何实现图像的相加和相减。
(7分) 三、计算题(共30分)
2. 出瞳是边长为a 的正方形,出瞳函数为
(),x y P x y rect rect a a ⎛⎫⎛⎫
= ⎪ ⎪⎝⎭⎝⎭
(1)若成像系统为衍射受限相干成像系统时,求相干传递函数及其截止频率;
(2)若成像系统为衍射受限非相干成像系统时,求光学传递函数及其截止频率。
(15分)
1. 请画出三透镜(或称为4f )成像系统的光路图,并说明图中所用元件的名称以及每个透镜的作用。
(15分)。
信息光学考卷及答案一、选择题(每题1分,共5分)1. 下列哪种现象属于光的衍射现象?A. 光的折射B. 光的干涉C. 光的散射D. 光的衍射A. 全反射B. 折射C. 衍射D. 干涉3. 下列哪种元件在光纤通信系统中起到放大信号的作用?A. 光发射器B. 光接收器C. 光衰减器D. 光放大器4. 光学系统中的分辨率与下列哪个因素有关?A. 光波长B. 焦距C. 口径5. 在全息摄影中,下列哪个元件用于记录光强和相位信息?A. 激光器B. 全息胶片C. 光阑D. 透镜二、判断题(每题1分,共5分)1. 光的干涉现象是由于光波相遇时产生的相位差引起的。
(√)2. 光的衍射现象说明光具有波动性。
(√)3. 光纤通信系统中,光发射器和光接收器必须使用相同波长的光源。
(×)4. 全息摄影可以实现对三维物体的立体显示。
(√)5. 光学系统中的像差可以通过使用透镜组合来消除。
(×)三、填空题(每题1分,共5分)1. 光的波长越长,其在介质中的折射率越______。
(小)2. 光纤通信系统中,常用的光源是______。
(激光器)3. 光的干涉现象中,两束相干光的相位差为______时,出现亮条纹。
(整数倍波长)4. 全息摄影的基本原理是利用光的______和______。
(干涉、衍射)5. 光学系统中的像差主要包括______和______。
(球差、彗差)四、简答题(每题2分,共10分)1. 简述光的干涉现象及其应用。
2. 光的衍射现象有哪些特点?3. 光纤通信系统中,为什么需要使用光放大器?4. 全息摄影的步骤有哪些?5. 简述光学系统中的像差及其校正方法。
五、应用题(每题2分,共10分)1. 一束光通过狭缝后,在屏幕上形成衍射图样。
已知光波长为500nm,狭缝宽度为0.01mm,求第一暗条纹的位置。
2. 一光纤通信系统,光源波长为1300nm,光纤长度为10km,求信号在光纤中传播的时间。
第一章 1.1已知不变线性系统的输入为()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1f δx g'x ==F 图形从略, (2)()()()()()x s π2co 3211f δ311f 31f x g'x x x +=⎭⎬⎫⎩⎨⎧++-+=δδF 图形从略。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}x x f rect x y x y x h y x f y x g x π4cos π4cos 7π4cos δ7x sin 7π4cos ,,,111111==⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛===----F F F F F F F F F F(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛⋅*=⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==---75rect 75rect π4cos 775sinc 75f sinc 7575π4cos δ7x sin 775rect 75rect π4cos ,,,x 11112y x x f rect f x y y x x y x h y x f y x g x y F F F F F F F F(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.5 若对二维函数()()ax a y x h 2=sinc ,抽样,求允许的最大抽样间隔并对具体抽样方法进行说明。