高一上学期期末考试题
- 格式:doc
- 大小:469.00 KB
- 文档页数:4
江苏省连云港市2023-2024学年高一上学期期末语文试卷一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成小题。
①党的二十大报告提出,要“扎实推动乡村产业、人才、文化、生态、组织振兴”。
其中,文化振兴既是乡村振兴的重要内容,也为实现乡村全面振兴注入活力。
②中华民族五千多年历史孕育了丰富的乡土文化,如宗族文化、节庆文化、耕读文化、祭祀文化等。
这些文化元素相互交织形构了朴素的乡村价值观和认知体系,进而构建了乡村社会的行为规范。
随着社会经济的快速发展,传统乡土文化蕴含的礼俗秩序开始在乡村社会中消解,乡村出现了内核“空心”。
重塑乡土文化,建设乡村精神家园,对筑牢乡村振兴之根,确保乡村社会的持续稳定发展具有重要意义。
③乡村优秀传统文化记录了乡村历史、信仰、习俗和生活方式,成为维系乡村社会深层情感的集体记忆。
重视物质文化遗产的传承,保护好古树、古桥、古村落、古建筑等蕴含丰富历史信息和文化内涵且不可再生的文化资源,保留代表性乡村公共记忆景观。
积极推进剪纸、捏面人等非物质文化遗产保护,培育乡村文化的传承人,延续和发展历史遗留的珍贵精神财富。
鼓励年轻人学习传统技艺和表演,让更多的年轻人认识和了解地方乡村传统文化,培养他们的文化自信和认同感。
在保护和传承中寻根溯源,从而在中国传统式的“乡愁”中滋养乡土文化归属。
④涵养乡风文明可以为乡村发展提供精神动力和智力支持,有效地满足农民对美好生活精神层面的需要,提升农民的主人翁意识和社会责任意识,同时进一步增强农民的文化自信和文化认同。
加强乡风文明建设,要在传承优秀传统文化的基础上,充分发挥先进文化的引领作用,尊重乡村本位和农民主体地位。
围绕农民需要提供文化服务,组织农民开展文化活动,提升农民素质和乡风文明程度。
⑤党的领导是乡村振兴的前提和方向保证,是乡村社会的凝聚力和向心力的坚实保障。
涵养乡风文明,必须坚持和加强党对农村工作的全面领导,强化基层党组织的政治担当,推进改革创新,发挥好党建引领作用。
深圳中学2023-2024学年度第一学期期末考试试题评分标准年级:高一 科目:数学命题人:贺险峰 审题人:邱才颙、黎建蒙单项选择题:题号 1 2 3 4 5 6 7 8 答案 CB AB CC BA多项选择题:题号 9 10 11 12 答案 ABCACDBCAB二、填空题:13. 95 . 14. 12 . 15. 43 . 16.1[4,]2−一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【详解】依题意,“居民人数多”, “男、女使用手机扫码支付的情况差异不大”, “老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异”, 所以最合理的是按年龄段分层随机抽样. 故选:C2.【详解】因为7πrad 3154=,终边落在第四象限,且与45−角终边相同,故与7π4的终边相同的角的集合{}{}31536045360S k k αααα==+⋅==−+⋅ 即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限. 故选:B.3.【详解】根据三角函数定义可知3cos 5α=, 又22sin cos 1αα+=,则225cos 31sin cos ααα−===. 故选:A4.【详解】因为21cos 212sin 3αα=−=,所以3sin 3α=±,因为()0,πα∈,所以3sin 3α=. 故选:B .5.【详解】因为某人的血压满足函数式()11525sin(160π)P t t =+,又因为1sin(160π)1t −≤≤,所以11525()11525P t −≤≤+,即90()140P t ≤≤, 即此人的血压在血压计上的读数为140/90mmhg ,故①正确; 因为收缩压为140mmhg ,舒张压为90mmhg ,均超过健康范围, 即此人的血压不在健康范围内,故②错误,③正确; 对于函数()11525sin(160π)P t t =+,其最小正周期2π1160π80T ==(min ), 则此人的心跳为180T=次/分,故④正确; 故选:C6.【详解】由题图可知:2023年母亲周末陪伴孩子日均时长超过8小时的占比为138.7%3>,A 说法正确;2023年父母周末陪伴孩子日均时长超过6小时的占比为131.5%24.2%55.7%2+=>,B 说法正确;2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为38.7% 2.5%36.2%−=,C 说法错误;2023年父母周末陪伴孩子日均时长的10个时段占比的中位数为21.4%19.0%20.2%2+=,D 说法正确. 故选:C .7.【详解】将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,得到2sin 2y x =的图象, 再向右平移π6个单位长度,得到()ππ2sin 22sin 263g x x x ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭的图象.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ2π2,333x ⎡⎤−∈−⎢⎥⎣⎦,令π23x t −=,π2π,33t ⎡⎤∈−⎢⎥⎣⎦,则关于t 的方程2sin t a =在π2π,33−⎡⎤⎢⎥⎣⎦上有两个不等的实数根1t ,2t ,所以12πt t +=,即12ππ22π33x x −+−=,则125π6x x +=,所以()125π3tan tan 63x x +==−. 故选:B8.【详解】考虑三角函数的定义域,将选项代入验证可得最大“好整数”为1 故选:A二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.【详解】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确; 根据弧度的定义知,180︒一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确. 故选:ABC.10.【详解】ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ππ1cos cos 332x x ⎛⎫=−−== ⎪⎝⎭,A 正确;tan10tan 35tan10tan 35︒+︒+︒︒()()tan 10351tan10tan 35tan10tan 35=︒+︒−︒︒+︒︒tan 451=︒=,B 不对;22tan 22.512tan 22.511tan 451tan 22.521tan 22.522︒︒==︒=−︒−︒,C 正确;()2311cos 403sin502cos 2012223sin 503sin503sin502−︒−︒−︒===−︒−︒−︒,D 正确. 故选:ACD11.【详解】因为由频率分布直方图无法得出这组数据的最大值与最小值, 所以这组数据的极差可能为70,也可能为小于70的值,所以A 错误;因为(0.00820.0120.01540.030)10700.651a a a a ++++++⨯=+=,解得0.005a =, 所以B 正确;该校竞赛成绩的平均分的估计值550.00510650.00810x =⨯⨯+⨯⨯+750.01210850.01510950.03010⨯⨯+⨯⨯+⨯⨯10540.0051011520.0051090.7+⨯⨯⨯+⨯⨯⨯=分,所以C 正确.设这组数据的第30百分位数为m ,则(0.0050.0080.012)10(80)0.015100.3m ++⨯+−⨯⨯=,解得2413m =, 所以D 错误. 故选:BC .12.【详解】因为ππ31sin ,cos ,3322⎛⎫⎛⎫−=− ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由三角函数的定义得1sin 2α=,3cos 2α=−,所以5π2π,6k k α∈=+Z , 则()()cos sin 2sin cos 2sin 2f x x x x ααα=−=−5π5πsin 22πsin 2,66x k x k ∈⎛⎫⎛⎫=−−=− ⎪ ⎪⎝⎭⎝⎭Z ,A: 22111cos 22sin 222αα⎛⎫−==⨯= ⎪⎝⎭,故A 正确;B :因为5π62π4ππsin sin 1332f ⎛⎫⎛⎫=−== ⎪⎪⎝⎭⎝⎭,所以2π3x =是()y f x =的图象的一条对称轴,故B 正确;C :将函数()y f x =图象上的所有点向左平移5π6个单位长度, 所得到的函数解析式为5π5πsin 2sin 2665π6y x x ⎡⎤⎛⎫⎛⎫=+−=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故C 错误;D :令()0f x =,得5πsin 206x ⎛⎫−= ⎪⎝⎭,解得5π5ππ2π,,6122k x k k x k ∈∈−=⇒=+Z Z , 仅0k =,1,即5π11π,1212x =符合题意, 即()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有两个零点,故D 错误.故选:AB三、填空题:本题共4小题,每小题5分,共20分. 13.【详解】设所求平均成绩为x ,由题意得5092309020x ⨯=⨯+⨯,∴95x =. 故答案为:9514.【详解】因为π02α<<且11cos c 2πos 73α=<=,则ππ32α<<, 又02βπ<<,所以π3παβ<+<,且()533sin 142αβ+=<, 所以π2π3αβ<+<,则()()211cos 1sin 14αβαβ+=−−+=−,243sin 1cos 7αα=−=, 所以()()()cos cos cos cos sin sin βαβααβααβα=+−=+++⎡⎤⎣⎦111534311471472=−⨯+⨯=. 故答案为:12 15.【详解】因为函数()()sin 0,02f x x πωϕωϕ⎛⎫=+>≤≤ ⎪⎝⎭是R 上的奇函数,则()()f x f x −=−,即sin cos cos sin x x ϕωωϕ=−, 又因为0ω>,所以sin 0ϕ=,因为π02ϕ≤≤,所以0ϕ=;故()sin f x x ω=; 又因为图象关于点3π,04A ⎛⎫⎪⎝⎭对称,则3ππ4k ω=,Z k ∈,所以43k ω=,Z k ∈,因为函数在区间π0,4⎡⎤⎢⎥⎣⎦上是单调函数,则12ππ24ω⨯≥,得04ω<≤;所以43ω=, 故答案为:43.16.【详解】cos cos sin sin cos cos 1y αβαβαβ=−+−−(cos 1)cos (sin )sin (cos 1)βαβαβ=+−−+22(cos 1)sin sin()(cos 1)ββαϕβ=+++−+22cos sin()(cos 1)βαϕβ=++−+由sin()[1,1]αϕ+∈−,得22cos (cos 1)22cos (cos 1)y ββββ−+−+≤≤+−+, 令1cos t β=+,则[0,2]t ∈,则2222t t y t t ≤≤−−−, 所以22212()422y t t t ≥−−=−++≥−,当且仅当2t =,即cos 1β=时取等号,且222112()222y t t t ≤−=−−+≤,当且仅当22t =,即1cos 2β=−时取等号, 所以y 的取值范围为1[4,]2−.故答案为:1[4,]2−四、解答题:本题共6小题,共20分.解答应写出文字说明、证明过程或演算步骤.17(本题满分10分)已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫−−− ⎪⎝⎭=⎛⎫−−− ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α−=,求()f α的值.【详解】(1)()f α=()sin cos sin cos sin sin αααααα⋅⋅−==−⋅ --------------5分(2)由诱导公式可知()1sin πsin 5αα−=−=,即1sin 5α=−--------7分又α是第三象限角,所以22126cos 1sin 155αα⎛⎫=−−=−−=− ⎪⎝⎭------------9分 所以()26cos 5f αα=−=.-----------------------10分18(本题满分12分)据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨? 【详解】(1)()0.0150.0250.0500.0650.0850.0500.0200.0150.00531a +++++++++⨯=,1.300a ∴=--------------------2分 用水量在(]9,12的频率为0.06530.195⨯=,392000.195n ∴==(户)---------------4分 (2)()0.0150.0250.0500.0650.08530.720.8++++⨯=<,()0.0150.0250.0500.0650.0850.05030.870.8+++++⨯=>,0.800.7215316.60.870.72−∴+⨯=−(吨)-------------------------8分(3)设该市居民月用水量最多为m 吨,因为16.6349.870⨯=<,所以m 16.6>, 则()16.6316.6570w m =⨯+−⨯≤,解得20.64m ≤,答:该市居民月用水量最多为20.64吨.------------------------12分19(本题满分12分)已知函数()()223sin πcos 2cos f x x x x =−+.(1)若ππ,63x ⎡⎤∈−⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =−在区间π,6m ⎡⎤−⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.【详解】(1)由题意得()()223sin πcos 2cos f x x x x=−+π3sin2cos 212sin 216x x x ⎛⎫=++=++ ⎪⎝⎭,-----------------4分当ππ,63x ⎡⎤∈−⎢⎥⎣⎦,则ππ5π2[,]666x +∈−,则1πsin 2126x ⎛⎫−≤+≤ ⎪⎝⎭,则π02sin 2136x ⎛⎫≤++≤ ⎪⎝⎭,即函数()f x 的值域为[]0,3;---------------------6分(2)由题()()π2sin 216g x x f x ⎛⎫+ ⎪⎝=−⎭=在区间π,6m ⎡⎤−⎢⎥⎣⎦上有且仅有两个零点,--------7分当π,6x m ⎡⎤∈−⎢⎥⎣⎦时,πππ2[,2]666u x m =+∈−+,原问题转化为sin y u =在ππ[,2]66m −+有且仅有2个零点,-----------------9分故π5π11ππ22π,61212 m m ≤+<≤<解得,即5π11π,1212m ⎡⎫⎪⎢⎣⎭的取值范围是.-------------12分20(本题满分12分)某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1xy ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份. (参考数据:lg 20.3010,lg 30.4711≈≈).【详解】(1)函数()0,1x y ka k a =>>与()120,0y px k p k =+>>在()0,∞+上都是增函数, 随着x 的增加,函数()0,1xy ka k a =>>的值增加的越来越快,而函数()120,0y px k p k =+>>的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型()0,1xy ka k a =>>符合要求,------2分根据题意可知2x =时,24y =;3x =时,36y =,所以232436ka ka ⎧=⎨=⎩,解得32323a k ⎧=⎪⎪⎨⎪=⎪⎩,故该函数模型的解析式为*32323N 2,11,x y x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭;---6分(2)当0x =时,323y =,元旦放入凤眼莲的覆盖面积是232m 3,---------8分 由3233210323x⎛⎫⋅>⨯ ⎪⎝⎭,得3102x⎛⎫> ⎪⎝⎭,-------------9分 所以32lg1011log 10 5.93lg3lg 20.47110.3010lg 2x >==≈≈−−,----------------11分 又*N x ∈,所以6x ≥,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.-----------12分21(本题满分12分)已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线2x π=−是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*R,N n λ∈∈,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.【详解】(1)由三角函数的周期公式可得2π2πω==,()()sin 2f x x ϕ∴=+,--------2分 令()π2πZ 2x k k ϕ+=+∈,得()ππZ 422k x k ϕ=−+∈, 由于直线2x π=−为函数()y f x =的一条对称轴,所以,()πππZ 2422k k ϕ−=−+∈, 得()3ππZ 2k k ϕ=+∈,由于0πϕ<<,1k ∴=−,则2ϕπ=, 因此,()πsin 2cos 22f x x x ⎛⎫=+= ⎪⎝⎭;-------------------4分(2)将函数()y f x =的图象向右平移π4个单位,得到函数ππcos 2cos 2sin 242y x x x ⎡⎤⎛⎫⎛⎫=−=−= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为()sin g x x =,-----------------6分()()()2cos 2sin 2sin sin 1F x f x g x x x x x λλλ=+=+=−++,令()0F x =,可得22sin sin 10x x λ−−=,令[]sin 1,1t x =∈−,得2210t t λ−−=,280λ∆=+>,则关于t 的二次方程2210t t λ−−=必有两不等实根1t 、2t ,则1212t t =−,则1t 、2t 异号,(i )当101t <<且201t <<时,则方程1sin x t =和2sin x t =在区间()()0,πN n n *∈均有偶数个根,从而方程22sin sin 10x x λ−−=在()()0,πN n n *∈也有偶数个根,不合乎题意;-----------8分(ii )当11t =−时,则2102t <<,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根, 所以,关于x 的方程22sin sin 10x x λ−−=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ−−=在()0,1348π上有36742022⨯=个根, 由于方程1sin x t =在区间()1348π,1349π上无实数根,方程2sin x t =在区间()1348π,1349π上有两个实数解, 因此,关于x 的方程22sin sin 10x x λ−−=在区间()0,1349π上有2024个根,不合乎题意,-------------------10分 (iii )当11t =,则2102t −<<,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ−−=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ−−=在()0,1348π上有36742022⨯=个根, 由于方程1sin x t =在区间()1348π,1349π上只有一个根,方程2sin x t =在区间()1348π,1349π上无实数解,因此,关于x 的方程22sin sin 10x x λ−−=在区间()0,1349π上有2023个根,合乎题意; 此时,2211110λλ⨯−⨯−=−=,得1λ=,综上所述:1λ=,1349n =.---------------------------12分22(本题满分12分)已知二次函数()f x 满足:()2132f x x x +=++.()24log 231xg x ⎛⎫=+ ⎪−⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明); (3)设()2cos cos 2h x x m x =+(,2ππ2x ⎡⎤∈−⎢⎥⎣⎦),若()()f h x g h x ≥⎡⎤⎡⎤⎣⎦⎣⎦,求实数m 的值. 【详解】(1)由题意()2132f x x x +=++,令1t x =+,则1x t =−,有()22(1)3(1)2f t t t t t =−+−+=+,故()2f x x x =+ ------------2分(2)函数()24log 231x g x ⎛⎫=+ ⎪−⎝⎭,由420031x x +>⇒>−,即定义域为()0,+∞, 且4231xu =+−在()0,+∞上单调递减及2log y u =单调递增 所以()24log 231xg x ⎛⎫=+⎪−⎝⎭在()0,+∞上单调递减.---------------4分 且()g x 的值域是()1,+∞------------------6分(3)结合(2)结论知()24log 231xg x ⎛⎫=+⎪−⎝⎭在()0,+∞上单调递减且()12g =, 又()2f x x x =+在()0,+∞上单调递增且()12f =故当1x ≥时,()()2,01f x g x x ≥≥<<时,()()2f x g x <<, 由()()()1f h x g h x h x ≥⇒≥⎡⎤⎡⎤⎣⎦⎣⎦恒成立,-----------------8分 即()22cos 2cos 11x m x +−≥在,22x ππ⎡⎤∈−⎢⎥⎣⎦上恒成立,设[]cos 0,1x t =∈, 则不等式()22210mt t m +−+≥在[]0,1t ∈上恒成立,-----------9分 ①当0m =时,不等式化为210t −≥,显然不满足恒成立; ②当0m >时,将0t =代入得()10m −+≥,与0m >矛盾; ③当0m <时,只需()()10,1,12210,1,m m m m m m −+≥⎧≤−⎧⎪⇒⇒=−⎨⎨+−+≥≥−⎪⎩⎩,综上,实数m 的值为1−.---------------------12分。
山东省潍坊市2023-2024学年高一上学期期末考试英语试题学校:___________姓名:___________班级:___________考号:___________一、阅读理解Why waste time and money booking a hotel when you can enjoy the beautiful British countryside at these wonderful motorhome and caravan (旅行拖车) destinations in the UK.Ferneley’s Ice Cream and CafeLocated between the coast and the countryside, this beautiful location offers a bit of everything for families, and their dogs. What makes Ferneley’s stand out is their family farm that creates fresh local produce using milk from their own cows. It’s also a great chance for kids to learn more about what goes on at a farm and how they raise their cattle.Halfpenny Green VineyardProducing prize-winning English wines for over 30 years, Halfpenny Green Vineyard, is a wine-lover’s favourite in the green Staffordshire countryside. You can park up your campervan for free and take a guided tour around the site while tasting the produce. On top of all this, there is a wild Zoological Park, which is home to a wide variety of animals, providing an educational experience for the whole family.Fur and Feather InnThe beautiful Woodfordes Brewery in Norwich is situated right next to the inn, offering bookable tours and prize-winning beer. Park up and have some real beer before lying down for the night in the van. The building itself is of British style, a country pub in the heart of the Norfolk Broads. This is a must-visit for beer lovers.Rectory FarmWith a mass of parking space, a large pick-your-own farm with large fields and a wide variety of fruits and vegetables and a children’s woodland play area, the Rectory Farm offers the perfect family day out. It’s even got a lovely farm shop with an outdoor cafe, so you can sit and relax with a coffee while the kids eat their fruits.1.What can visitors do in Halfpenny Green Vineyard?A.Make wines.B.Win some prizes.C.Learn knowledge about animals.D.Visit the site at will.2.Which destination is the least likely choice for families with kids?A.Ferneley’s Ice Cream and Cafe.B.Halfpenny Green Vineyard.C.Fur and Feather Inn.D.Rectory Farm.3.Where is the text probably taken from?A.A tourist review.B.A geography book.C.A novel.D.A travel brochure.In 1943, Roman Totenberg, a violinist, bought a rare (稀有的) and special violin called a Stradivarius. It was made in 1734, in Italy, by Antonio Stradivari. Only about 600 of his violins are believed to still exist. They were regarded as the rarest and best instruments in the world.Roman’s Stradivarius was his musical partner for 38 years. Then bad luck struck; the violin was stolen from his office after a concert while he greeted well-wishers. He was shocked and upset by its loss. “Yes, it’s a bit like losing your arm,” he told his daughter, Jill.It took Roman a year to find and buy a new violin as the size and tones (音质) of each were different from his. He had to learn his musical pieces all over again! Roman kept playing into his 90s and taught at Boston University until he died in 2012, aged 101.His daughter says, “We wondered from time to time if the violin would surface, but... Our mother and father taught us to keep moving forward and not think over what life throws at you.”In 2015, the wife of the man who stole the violin wanted to know if it was really a Stradivarius. She had looked after him when he was dying from cancer and now it belonged to her. She took it to master violin maker and dealer Phillip Injeia. He recognized it immediately and contacted the FBI. Jill, who received the call from FBI, said in an interview, “I said, ‘I have to call my sisters. I’ll tell them not to get their hopes up,’ but Phillip Injeian said, ‘You don’t have to do that. This is the violin.’”Jill said they would sell the violin, not to a collector but someone who would play it. She said it would finally be in the hands of another great artist and its amazing voice would be heard in concert halls around the country.4.Why did Roman feel like he had lost an arm after the violin was stolen?A.It cost him a lot of money.B.It had served as a useful arm.C.It had been his musical partner.D.It was created by a famous maker.5.What is the turning point of this story?A.The FBI got in touch with Jill.B.The Stradivarius was found missing.C.Roman Totenberg died in 2012, aged 101.D.The violin was taken to a master violin maker and dealer.6.Why would the family like the violin to be owned by a violinist?A.They intended to become well-known.B.They wanted to sell it at a higher price.C.They hoped to remember Roman Totenberg.D.They wished to make the most of the Stradivarius.7.Which words can best describe Phillip Injeian?A.Expert and confident.B.Creative and careful.C.Learned and proud.D.Strong-willed and friendly.It’s reported that about 20 percent of the Amazon rainforest has disappeared during thespecies native to the Amazon River area, it’s affecting humans worldwide. When it comes to the protection of the Amazon, it’s hard for many people to relate because they don’t feel connected to the area. There are actually a lot of direct connections, no matter how far away we are.A connection that affects everyone on the planet is climate (气候) change. Planting new trees in the forest is basically a way of removing CO2 from the air. Rain forests have a carbon (碳) reduction nearly equal to half of what is in the air. About half of that is in the Amazon. Another case in point is a big snake called the bushmaster that lives in the Amazon. Today, millions of people use medicines made from its venom (毒液) to treat high blood pressure. So they have longer, fuller, and more productive lives.In the 1960s, there was only one highway in the entire Amazon. That’s an area as large as the continental United States with one highway and three million people. Today, there are between 30 million to 40 million people, countless roads, and about 20 percent forests have been cut down. But on the plus side, 50 years ago there were only two national parks and a national forest and a reserve in Brazil. Today, more than 50 percent of the Amazon is under some form of protection.“There’s been a lot of damage done and forest lost, but nothing is gone until it’s gone”, noted National Geographic explorer Dr. Thomas Lovejoy. “We want to see more shared planning between the departments of transportation, energy, agriculture, and the other industries in the area. We think Amazon cities can have higher quality of life and keep people in existing cities so there’s less reason to deforest.”8.Which can replace the underlined word “Deforestation” in paragraph 1?A.Planting more trees.B.Destroying the forests.C.Protecting the species.D.Polluting the rivers.9.What might the partial loss of the Amazon rainforest lead to?A.The increase of extreme weather.B.The removal of CO2.C.More people with high blood pressure.D.The overgrowth of the bushmaster. 10.How does paragraph 3 mainly develop?A.By making comparisons.B.By listing reasons.C.By explaining a definition.D.By making a summary.11.What is Dr. Thomas’ attitude towards the future of the Amazon rainforest?A.Doubtful.B.Worried.C.Positive.D.Uncaring.While screen time is known to affect sleep, new research suggests that interactive (互动的) activities, such as texting friends or playing video games, put off and reduce the time spent asleep to a greater degree than passive (被动的) screen time like watching television, especially for teens.The team studied the daytime screen-based activities of 475 teenagers using daily surveys. They asked the teens how many hours they had spent that day communicating with friends through social media and how many hours they spent playing video games, surfing the internet and watching television or videos. Finally, the researchers asked if they had joined in any of these activities in the hour before bed.Next, the team measured their sleep time for one week. The researchers found that the teens spent an average of two hours per day communicating with friends via social media, about 1.3 hours playing video games, less than an hour surfing the internet and about 1.7 hours watching television or videos. For every hour throughout the day that they used screens to communicate with friends, they fell asleep about 11 minutes later averagely. For every hour to play video games, they fell asleep about 9 minutes later. Those who talked, texted orplayed games in the hour before bed lost the most sleep: about 30 minutes later.Interestingly, David, lead author of the study, said the team found no obvious relations between passive screen-based activities and sleep. “It could be that passive activities are less mentally exciting than interactive activities,” said Anne, co-author of the study. “It’s a tricky situation,” she said. “These screen tools are really important to everyone nowadays, so it’s hard to put a limit on them, but if you’re really looking out for a teenager’s health and well-being, you might consider limiting the more interactive activities, especially in the hour before bed.”12.Which of the following belongs to interactive screen activities?A.Seeing movies.B.Watching videos.C.Texting friends.D.Surfing the internet.13.Who might lose the most sleep according to the text?A.Lucy who watched a three-hour movie before going to bed.B.Jack who had a 30-minute video chat with his brother before bed.C.Sam who played computer games for two hours throughout the day.D.Amy who chatted with her friends on WeChat for one hour in the morning. 14.What does the underlined word “tricky” mean in paragraph 4?A.Frightening.B.Awkward.C.Hopeless.D.Encouraging. 15.What can be a suitable title for the text?A.Screen time activities cut down our sleep hoursB.Interactive screen use reduces sleep time in teenagersC.Passive screen use is better than interactive screen useD.Parents should prevent children from using social mediaReading is a healthy habit that everyone should develop from childhood because of theThe following will discuss the effects of not reading books, so you can basically consider and judge where you are and understand how reading can be beneficial.17 People who don’t read and don’t like to read find it harder to learn than people who actually read. For example, most students who fail to develop a reading habit find it difficult to get through school. This then leads to students dropping out, which is bad for society. Reading is a habit that strengthens the brain and develops your inborn love ofwanting to learn more. Therefore, not being addicted to books closes you off from this.Narrow mindedness. Reading a variety of books broadens the readers’ mind. Most people who don’t read have a certain narrow mindedness to them that can easily be noticed.18 When you don’t read, you’re forced to take everything at face value and then create and shape your views in this way.Low brain power. One advantage of reading is its ability to improve brain function. Reading can help people become better thinkers and use brains more effectively. People who don’t read usually have low brain power because they don’t exercise the brain as much as readers do. 19Poor imagination. Reading books allows you to tap into your imaginative power. 20 This is important because it expands (拓展) your thought process as well as the ability to understand. People who don’t read books usually are short of the inspiration necessary to create imagination. This makes it difficult to be creative.A.Learning difficulty.B.The reason for this is simple.C.Such exercise strengthens the brain.D.Inability to fully understand the world.E.It then makes you picture what you read.F.It is developed slowly just as any habit would.G.The ability to read is important in today’s world.二、完形填空As Hallee gets to the finish line of the 800-metre run for kids, the crowd is cheeringWhen the twins were five, Jada decided that she wanted to be a(n) 27 . Her parents signed her up for Little Athletics, a track-and-field organisation for children. After watching Jada’s first training period, Hallee 28 her parents and said, “I can do that, too. Sign me up.” “Would she even be able to 29 ? Hallee doesn’t have feeling in her waist (腰) and lower legs,” thought her Dad, Gavin. 30 , Hallee’s parents had such strong belief in her that they signed her up.Hallee’s running wasn’t without its challenges. Her legs ached badly during and after races, and she 31 people would laugh at her. Her parents helped her work through her 32 by attending all her events.In fact, nobody laughed; people were shocked at her 33 . When asked what she would 34 to other children, Hallee offered two powerful suggestions: “Don’t 35 when people say you can’t do something. And try your best.”21.A.amazing B.funny C.embarrassing D.natural 22.A.melted B.broke C.stopped D.opened 23.A.waiting B.changing C.going D.thinking 24.A.aware B.eager C.afraid D.unable 25.A.suffered B.searched C.spoke D.read 26.A.harder B.better C.stronger D.heavier 27.A.designer B.engineer C.boxer D.runner 28.A.calmed down B.turned down C.referred to D.turned to 29.A.run B.walk C.jump D.dance 30.A.Instead B.However C.So D.Besides 31.A.feared B.learned C.accepted D.forgot 32.A.confusion B.curiosity C.confidence D.anxiety 33.A.determination B.creativity C.hobby D.imagination 34.A.bring B.say C.write D.add 35.A.compete B.cheat C.listen D.improve三、语法填空阅读下面短文,在空白处填入1个适当的单词或括号内单词的正确形式。
内蒙古呼和浩特市回民中学2024-2025学年高一语文上学期期末考试试题(A卷)(卷面分值:150分,考试时长:150分钟)一、现代文阅读(24分)(一)论述类文本阅读(本题共3小题,6分)阅读下面的文字,完成1-3题。
陶渊明——魏晋风流的杰出代表安贫乐道与崇尚自然,是陶渊明思索人生得出的两个主要结论,也是他人生的两大支柱和艺术化人生的详细表现。
“安贫乐道”是陶渊明的为人准则。
他所谓的“道”,偏重于个人的品德节操方面,体现了儒家思想。
他特殊推崇颜回、黔娄、袁安、荣启期等安贫乐道的贫士,要像他们那样努力保持品德节操的纯净,决不为追求高官厚禄而玷污自己。
他并不一般地鄙视出仕,而是不愿同流合污。
他希望建功立业,又要功成身退。
他也考虑贫富的问题,安贫和求富在他心中常常发生冲突,但是他能用“道”来求得平衡:“贫富常交战,道胜无戚颜。
”(《咏贫士》其五)而那些安贫乐道的古代贤人,也就成为他的榜样:“何以慰吾怀,赖古多此贤。
”。
(《咏贫士》其二)他的晚年很贫困,到了挨饿的程度,但是并没有丢失其为人的准则。
“崇尚自然”是陶渊明对人生更深刻的哲学思索。
“自然”一词不见于《论语》、《孟子》,而是老庄哲学特有的范畴。
老庄所谓“自然”不同于近代与人类社会相对而言的客观的物质性的“自然界”,它是一种状态,非人为的、原来如此的、自然而然的。
世间万物皆按其原来的面貌而存在,依其自身固有的规律而变更,无须任何外在的条件和力气。
人应当顺应自然的状态和变更,抱朴而含真。
陶渊明希望返归和保持自己原来的、未经世俗异化的、天真的性情。
所谓“质性自然、非矫厉所得。
”(《归去来兮辞序》),说明自己的质性自然如此,受不了绳墨的约束。
所谓“久在樊笼里,复得返自然”(《归园田居》其一),表达了返回自然得到自由的喜悦。
在《形影神》里,他让“神”辨自然以释“形”、“影”之苦。
“形”指代人企求长生的愿望,“影”指代人求善立名的愿望,“神”以自然之义化解它们的苦恼。
完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。
(−∞,3)∪(5,+∞)B。
(−∞,3)∪[5,+∞)C。
(−∞,3]∪[5,+∞)D。
(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。
a^3B。
a^3/2C。
a^3/4D。
都不对3.下列指数式与对数式互化不正确的一组是A。
e=1与ln1=0B。
8^(1/3)=2与log2^8=3C。
log3^9=2与9=3D。
log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。
x^2B。
x^3C。
e^xD。
1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。
log2B。
−1/lg2C。
lg2D。
−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。
y=−3x^−2B。
y=3^xC。
y=log_3xD。
y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。
深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A. 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C.D. 5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg 为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值④此人的心跳为80次/分.的其中正确结论的个数为( )A. 1B. 2C. 3D. 46. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长10个时段占比的中位数为20.2%7. 将函数()2sin f x x =图象上所有点横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B.C.D. 8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1B. 2C. 3D. 4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.的的的9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为8112. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.14. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.15. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.16. cos()cos cos 1y αβαβ=++--的取值范围是_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1xy ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈-⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法【答案】C 【解析】【分析】根据抽样方法确定正确答案.【详解】依题意,“居民人数多”, “男、女使用手机扫码支付的情况差异不大”,“老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异”,所以最合理的是按年龄段分层随机抽样.故选:C 2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C. ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈【答案】B 【解析】【分析】AC 项角度与弧度混用,排除AC ;D 项终边在第三象限,排除D.【详解】因为7πrad 3154= ,终边落在第四象限,且与45- 角终边相同,故与7π4终边相同的角的集合.的{}{}31536045360S k k αααα==+⋅==-+⋅即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限.故选:B.3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-【答案】A 【解析】【分析】利用三角函数定义以及同角三角函数之间的平方关系即可得出结果.【详解】根据三角函数定义可知3cos 5α=,又22sin cos 1αα+=53cos α===.故选:A4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C. D. 【答案】B 【解析】【分析】根据余弦的二倍角公式即可求解.【详解】因为21cos 212sin3αα=-=,所以sin α=,因为()0,πα∈,所以sin α=.故选:B .5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人的血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值 ④此人的心跳为80次/分其中正确结论的个数为( )A. 1 B. 2 C. 3 D. 4【答案】C 【解析】【分析】根据所给函数解析式及正弦函数的性质求出()P t 的取值范围,即可得到此人的血压在血压计上的读数,从而判断①②③,再计算出最小正周期,即可判断④.【详解】因为某人的血压满足函数式()11525sin(160π)P t t =+,又因为1sin(160π)1t -≤≤,所以11525()11525P t -≤≤+,即90()140P t ≤≤,即此人的血压在血压计上的读数为140/90mmhg ,故①正确;因为收缩压为140mmhg ,舒张压为90mmhg ,均超过健康范围,即此人的血压不在健康范围内,故②错误,③正确;对于函数()11525sin(160π)P t t =+,其最小正周期2π1160π80T ==(min ),则此人的心跳为180T=次/分,故④正确;故选:C6. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时的占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长的10个时段占比的中位数为20.2%【答案】C 【解析】【分析】根据题意结合统计相关知识逐项分析判断.【详解】由题图可知:2023年母亲周末陪伴孩子日均时长超过8小时的占比为138.7%3>,A 说法正确;2023年父母周末陪伴孩子日均时长超过6小时的占比为131.5%24.2%55.7%2+=>,B 说法正确;2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为38.7% 2.5%36.2%-=,C 说法错误;2023年父母周末陪伴孩子日均时长的10个时段占比的中位数为21.4%19.0%20.2%2+=,D 说法正确.故选:C .7. 将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B. C.D. 【答案】B 【解析】【分析】根据函数图象的变换可得()π2sin 23g x x ⎛⎫=-⎪⎝⎭,即可结合正弦函数的对称性得12πt t +=,进而125π6x x +=,即可求解.【详解】将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,得到2sin 2y x =的图象,再向右平移π6个单位长度,得到()ππ2sin 22sin 263g x x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π23x t -=,π2π,33t ⎡⎤∈-⎢⎥⎣⎦,则关于t 的方程2sin t a =在π2π,33-⎡⎤⎢⎥⎣⎦上有两个不等的实数根1t ,2t ,所以12πt t +=,即12ππ22π33x x -+-=,则125π6x x +=,所以()125πtan tan 6x x +==.故选:B8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1 B. 2C. 3D. 4【答案】A 【解析】【分析】利用三角函数定义域代入选项逐个验证即可得出结论.【详解】考虑三角函数的定义域,对于选项A ,当1k =时,sin π,cos π,tan πn n n 对于任意整数n ,都是整数,满足题意;对于B ,当2k =时,2ππtantan n n k =对于整数1,没有意义,不满足题意;同理可得对于C 和D ,当3ππtantan n n k =或4ππtan tan n n k =时,代入验证可知不满足题意;所以可知最大“好整数”为1故选:A二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关【答案】ABC 【解析】【分析】根据角度制与弧度制的定义,以及角度制和弧度制的换算公式,以及角的定义,逐项判定,即可求解.【详解】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确;根据弧度的定义知,180︒一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确.故选:ABC.10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒【答案】ACD 【解析】【分析】利用两角差的余弦公式,诱导公式,二倍角公式即可逐个选项判断.【详解】ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ππ1cos cos 332x x ⎛⎫=--== ⎪⎝⎭,A 正确;tan10tan 35tan10tan 35︒+︒+︒︒()()tan 10351tan10tan 35tan10tan 35=︒+︒-︒︒+︒︒tan 451=︒=,B 不对;22tan 22.512tan 22.511tan 451tan 22.521tan 22.522︒︒==︒=-︒-︒,C 正确;()2311cos 403sin502cos 2012223sin 503sin503sin502-︒-︒-︒===-︒-︒-︒,D 正确.故选:ACD11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为81【答案】BC【解析】【分析】利用频率分布直方图,用样本估计总体,样本的极差、平均值、百分位数相关知识计算即可.【详解】因为由频率分布直方图无法得出这组数据的最大值与最小值,所以这组数据的极差可能为70,也可能为小于70的值,所以A 错误;因为(0.00820.0120.01540.030)10700.651a a a a ++++++⨯=+=,解得0.005a =,所以B 正确;该校竞赛成绩的平均分的估计值550.00510650.00810x =⨯⨯+⨯⨯+750.01210850.01510950.03010⨯⨯+⨯⨯+⨯⨯10540.0051011520.0051090.7+⨯⨯⨯+⨯⨯⨯=分,所以C 正确.设这组数据的第30百分位数为m ,则(0.0050.0080.012)10(80)0.015100.3m ++⨯+-⨯⨯=,解得2413m =,所以D 错误.故选:BC .12. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点【答案】AB 【解析】【分析】利用三角函数的定义求得α,从而得到()f x 的解析式,进而利用三角函数的性质与平移的结论,逐一分析各选项即可得解.【详解】因为ππ1sin ,cos 332⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由三角函数的定义得1sin 2α=,cos α=,所以5π2π,6k k α∈=+Z ,则()()cos sin 2sin cos 2sin 2f x x x x ααα=-=-5π5πsin 22πsin 2,66x k x k ∈⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭Z ,A : 22111cos 22sin 222αα⎛⎫-==⨯= ⎪⎝⎭,故A 正确;B :因为5π62π4ππsin sin 1332f ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,所以2π3x =是()y f x =的图象的一条对称轴,故B 正确;C :将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为5π5πsin 2sin 2665π6y x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故C 错误;D :令()0f x =,得5πsin 206x ⎛⎫-= ⎪⎝⎭,解得5π5ππ2π,,6122k x k k x k ∈∈-=⇒=+Z Z ,仅0k =,1,即5π11π,1212x =符合题意,即()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有两个零点,故D 错误.故选:AB三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.【答案】95【解析】【分析】利用平均数的求法计算即可.【详解】设所求平均成绩为x ,由题意得5092309020x ⨯=⨯+⨯,∴95x =.故答案为:9514. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.【答案】12##0.5【解析】【分析】根据题意,分别求得()sin ,cos ααβ+,再由余弦的差角公式,代入计算,即可得到结果.【详解】因为π02α<<且11cos c 2πos 73α=<=,则ππ32α<<,又02βπ<<,所以π3παβ<+<,且()sin αβ+=<,所以π2π3αβ<+<,则()11cos 14αβ+==-,sin α==,所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++⎡⎤⎣⎦11111472=-⨯+=.故答案为:1215. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.【答案】43【解析】【分析】由函数为奇函数,得0ϕ=,再根据函数图像关于点3,04A π⎛⎫⎪⎝⎭对称,可知43kω=,根据函数的单调性可得04ω<≤,进而得解.【详解】因为函数()()sin 0,02f x x πωϕωϕ⎛⎫=+>≤≤ ⎪⎝⎭是R 上的奇函数,则()()f x f x -=-,即sin cos cos sin x x ϕωωϕ=-,又因为0ω>,所以sin 0ϕ=,因为π02ϕ≤≤,所以0ϕ=;故()sin f x x ω=;又因为图象关于点3π,04A ⎛⎫⎪⎝⎭对称,则3ππ4k ω=,Z k ∈,所以43k ω=,Z k ∈,因为函数在区间π0,4⎡⎤⎢⎥⎣⎦上是单调函数,则12ππ24ω⨯≥,得04ω<≤;所以43ω=,故答案为:43.16. cos()cos cos 1y αβαβ=++--取值范围是_________.【答案】1[4,]2-【解析】【分析】由和角的余弦公式变形给定函数,再利用辅助角公式变形,结合正弦函数的性质用含cos β的关系式表示y ,再借助二次函数最值求解即得.【详解】cos cos sin sin cos cos 1y αβαβαβ=-+--(cos 1)cos (sin )sin (cos 1)βαβαβ=+--+)(cos 1)αϕβ=+-+)(cos 1)αϕβ=+-+由sin()[1,1]αϕ+∈-,得(cos 1)(cos 1)y ββ-+≤≤+,令t =,则t ∈,则22t y t ≤≤--,所以221(42y t t ≥-=-+≥-,当且仅当t =,即cos 1β=时取等号,且2211(22y t t ≤-=-+≤,当且仅当t =,即1cos 2β=-时取等号,的所以y 的取值范围为1[4,]2-.故答案为:1[4,]2-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.【答案】(1)()cos f αα=-(2【解析】【分析】(1)利用诱导公式化简即可;(2)利用诱导公式及同角三角函数的关系计算即可.【小问1详解】因为()()()()3πsin πcos 2πcos 2πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin cos sin sin αααααα⋅⋅-==-⋅,所以()cos fαα=-.【小问2详解】由诱导公式可知()1sin πsin 5αα-=-=,即1sin 5α=-,又α是第三象限角,所以cos α===所以()cos fαα=-=.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?【答案】(1)1300a =,200n = (2)16.6吨 (3)20.64吨【解析】【分析】(1)频率分布直方图总面积为1,由此即可求解.(2)先判断所求值所在的区间,再按比例即可求解.(3)按题意列不等式即可求解.【小问1详解】()0.0150.0250.0500.0650.0850.0500.0200.0150.00531a +++++++++⨯= ,1.300a ∴=用水量在(]9,12频率为0.06530.195⨯=,392000.195n ∴==(户)【小问2详解】()0.0150.0250.0500.0650.08530.720.8++++⨯=< ,()0.0150.0250.0500.0650.0850.05030.870.8+++++⨯=>,0.800.7215316.60.870.72-∴+⨯=-(吨)【小问3详解】设该市居民月用水量最多为m 吨,因为16.6349.870⨯=<,所以m 16.6>,则()16.6316.6570w m =⨯+-⨯≤,解得20.64m ≤,答:该市居民月用水量最多为20.64吨.19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.【答案】(1)[]0,3(2)5π11π,1212⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用诱导公式以及二倍角公式化简可得()f x 的表达式,结合ππ,63x ⎡⎤∈-⎢⎥⎣⎦,确定π26x +的范围,即可求得答案;(2)由π,6x m ⎡⎤∈-⎢⎥⎣⎦,确定πππ2[,2666x m +∈-+,根据()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,结合正弦函数的零点,列出相应不等式,即求得答案.【小问1详解】由题意得()()2πcos 2cos f x x x x=-+的πcos 212sin 216x x x ⎛⎫=++=++ ⎪⎝⎭,当ππ,63x ⎡⎤∈-⎢⎥⎣⎦,则ππ5π2[,666x +∈-,则1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,则π02sin 2136x ⎛⎫≤++≤ ⎪⎝⎭,即函数()f x 的值域为[]0,3;【小问2详解】由题可得π6m >-,当π,6x m ⎡⎤∈-⎢⎥⎣⎦时,πππ2[,2666x m +∈-+,()()π2sin 216g x x f x ⎛⎫+ ⎪⎝=-⎭=,且()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,而sin y x =在π[,2π)6-有且仅有2个零点,分别为0,π,故π5π11ππ22π,61212m m ≤+<∴≤<,即5π11π,1212m ⎡⎫∈⎪⎢⎣⎭.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1x y ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).【答案】(1)选择模型()0,1x y ka k a =>>符合要求,*32323N 2,11,xy x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭ (2)六月份【解析】【分析】(1)根据指数函数与幂函数的增长速度即可选得哪一个模型,再利用待定系数法即可求出该模型的解析式;(2)由(1)结合已知可得3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,再结合已知数据即可得出答案.【小问1详解】函数()0,1x y ka k a =>>与()120,0y pxk p k =+>>在()0,∞+上都是增函数,随着x 的增加,函数()0,1x y kak a =>>的值增加的越来越快,而函数()120,0y px k p k =+>>的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型()0,1x y kak a =>>符合要求,根据题意可知2x =时,24y =;3x =时,36y =,所以232436ka ka ⎧=⎨=⎩,解得32323a k ⎧=⎪⎪⎨⎪=⎪⎩,故该函数模型的解析式为*32323N 2,11,x y x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭;【小问2详解】当0x =时,323y =,元旦放入凤眼莲的覆盖面积是232m 3,由3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,得3102x ⎛⎫> ⎪⎝⎭,所以32lg1011log 10 5.93lg 3lg 20.47110.3010lg 2x >==≈≈--,又*N x ∈,所以6x ≥,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.【答案】(1)()cos2f x x =(2)1,1349n λ==【解析】【分析】(1)由周期求得ω,再由对称性求得ϕ得解析式;(2)由图象变换求得()g x ,然后可得()F x 的表达式,令[]sin 1,1t x =∈-,()0F x =化为22210,Δ80t t λλ--==+>,则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,然后分类讨论()0F x =在(0,π)n 上解的个数后得出结论.【小问1详解】由三角函数的周期公式可得()()2π2,sin 2πf x x ωϕ==∴=+,令()π2π2x k k Z ϕ+=+∈,得()ππ422k x k Z ϕ=-+∈,由于直线π2x =-为函数()y f x =的一条对称轴,所以,()πππZ 2422k k ϕ-=-+∈,得()3ππZ 2k k ϕ=+∈,由于0π,1k ϕ<<∴=-,则π2ϕ=,因此,()πsin 2cos22f x x x ⎛⎫=+= ⎪⎝⎭;小问2详解】将函数()y f x =的图象向右平移π4个单位,得到函数ππcos 2cos 2sin242y x x x ⎡⎤⎛⎫⎛⎫=-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为()sin g x x =,()()()2cos2sin 2sin sin 1F x f x g x x x x x λλλ=+=+=-++ ,令()0F x =,可得22sin sin 10x x λ--=,令[]sin 1,1t x =∈-,得22210,Δ80t t λλ--==+>,【则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,(i )当101t <<且201t <<时,则方程1sin x t =和2sin x t =在区间()()*0,πNn n ∈均有偶数个根,从而方程22sin sin 10x x λ--=在()()*0,πNn n ∈也有偶数个根,不合乎题意;(ii )当11t =-时,则212t =,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上无实数根,方程2sin x t =在区间()1348π,1349π上有两个实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2024个根,不合乎题意,(iii )当11t =,则212t =-,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上只有一个根,方程2sin x t =在区间()1348π,1349π上无实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2023个根,合乎题意;此时,1122λ-+=,1λ=,综上所述:1,1349n λ==.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+ ⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.【答案】(1)()2f x x x =+ (2)在()0,∞+上单调递减,值域是()1,+∞.(3)1-【解析】【分析】(1)利用换元法,令1t x =+,代入化简即可求出函数的解析式;(2)可设4231x u =+-,利用复合函数的单调性,即可判定函数的单调性,进而求得值域;(3)由(2)知,()12g =,()12f =,结合()(),f x g x 的单调性可知当1x ≥时,()()2,01f x g x x ≥≥<<时,()()2f x g x <<,由()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦恒成立,即为()1h x ≥恒成立,设[]cos 0,1x t =∈,只需不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,讨论m 的取值范围即可求解.【小问1详解】由题意()2132f x x x +=++,令1t x =+,则1x t =-,有()()22(1)312f t t t t t =-+-+=+,故()2f x x x =+【小问2详解】函数()24log 231x g x ⎛⎫=+⎪-⎝⎭,由420031x x +>⇒>-,即定义域为()0,∞+,且4231x u =+-在()0,∞+上单调递减及2log y u =单调递增所以()24log 231x g x ⎛⎫=+ ⎪-⎝⎭在()0,∞+上单调递减.因为()0,x ∞∈+,42231x u =+>-,所以()g x 的值域是()1,∞+【小问3详解】结合(2)结论知()24log 231x g x ⎛⎫=+⎪-⎝⎭在()0,∞+上单调递减且()12g =,又()2f x x x =+在()0,∞+上单调递增且()12f =故当1x ≥时,()()2,01f xg x x ≥≥<<时,()()2f x g x <<,由()()()1f h x g h x h x ⎡⎤⎡⎤≥⇒≥⎣⎦⎣⎦恒成立,即()22cos 2cos 11x m x +-≥在ππ,22x ⎡⎤∈-⎢⎥⎣⎦上恒成立,设[]cos 0,1x t =∈,则不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,①当0m =时,不等式化为210t -≥,显然不满足恒成立;②当0m >时,将0=t 代入得()10m -+≥,与0m >矛盾;③当0m <时,只需()()10,1,12210,1,m m m m m m ⎧-+≥≤-⎧⎪⇒⇒=-⎨⎨+-+≥≥-⎪⎩⎩,综上,实数m 的值为-1.【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想.。
海淀区高一年级练习数 学考生须知:1.本试卷共6页,共三道大题,26道小题,满分150分,考试时间120分钟.2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在答题卡上,用黑色字迹签字笔作答.4.考试结束,请将本试卷交回.一、选择题:共14小题,每小题4分,共56分.在每小题列出的四个选项中,选出符合题目要求的一项1.已知全集{}2,1,0,1,2U =--,集合{}2,1,0A =--,则U A = ( )A .{}1,2,3B .{}1,2C .()0,2D .()1,22.某学校有高中学生1500人,初中学生1000人.学生社团创办文创店,想了解初高中学生对学校吉祥物设计的需求,用分层抽样的方式随机抽取若干人进行问卷调查,已知在初中学生中随机抽取了100人,则在高中学生中抽取了( )A .150人B .200人C .250人D .300人3.命题“,20x x ∃∈+≤R ”的否定是( )A .,20x x ∃∈+>RB .,20x x ∃∈+<RC .,20x x ∀∈+>RD .,20x x ∀∈+<R 4.方程组202x y x x +=⎧⎨+=⎩解集是( )A .()(){}1,1,1,1--B .()(){}1,1,2,2-C .()(){}1,1,2,2--D .()(){}2,2,2,2-- 5.某部门调查了200名学生每周的课外活动时间(单位:h ),制成了如图所示的频率分布直方图,其中课外活动时间的范围是[]10,20,并分成[)[)[)[)[]10,12,12,14,14,16,16,18,18,20五组.根据直方图,判断这200名学生中每周的课外活动时间不少于14h 的人数是( )A .56B .80C .144D .1846.若实数a ,b 满足a b >,则下列不等式成立的是( )A .a b >B .a c b c +>+C .22a b >D .22ac bc >7.函数()22x f x x =+的零点所在的区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,28.在同一个坐标系中,函数()()()log ,,x a a f x x g x a h x x -===的部分图象可能是( )A .B .C .D .9.下列函数中,既是奇函数,又在()0,+∞上单调递减的是( )A .()f x x =B .()f x x x =-C .()11f x x 2=+ D .()3f x x = 10.已知0.1232,log 3,log 2a b c ===,则实数a ,b ,c 的大小关系是( )A .c a b >>B .c b a >>C .a c b >>D .a b c >>11.已知函数()1212x f x a =-+,则“1a =”是()f x 为奇函数的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件12.已知函数()()2log 12f x x x =++-,则不等式()0f x <的解集为A .(),1-∞B .()1,1-C .()0,1D .()1,+∞13.科赫(Koch )曲线是几何中最简单的分形,科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线……在分形中,一个图形通常由N 个与它的上一级图形相似,且相似比为r 的部分组成.若1D r N=,则称D 为该图形的分形维数.那么科赫曲线的分形气维数是( )A .2log 3B .3log 2C .1D .32log 2 14.已知函数()2,,x a x a f x x x a +≤⎧=⎨>⎩,若存在非零实数0x ,使得()()00f x f x -=-成立,则实数a 的取值范围是( )A .(],0-∞B .1,4⎛-∞⎤ ⎥⎝⎦ C .[]4,0 D .12,4⎡-⎤⎢⎥⎣⎦ 二、填空题:共6小题,每小题5分,共30分15.函数()()lg 1f x x =-的定义域是__________.16.已知幂函数()f x 经过点()2,8,则函数()f x =___________.17.农科院作物所为了解某种农作物的幼苗质量,分别从该农作物在甲、乙两个不同环境下培育的幼苗中各随机抽取了15株幼苗进行检测,量出它们的高度如下图(单位:cm ):记该样本中甲、乙两种环境下幼苗高度的中位数分别为a ,b ,则a b -=___________.若以样本估计总体,记甲、乙两种环境下幼苗高度的标准差分别为12,s s ,则1s ____2s (用“<,>或=”连接).18.已知函数()4f x x a x=+-没有零点,则a 的一个取值为_______;a 的取值范围是___________.19.已知函数()22,0,0x x x f x x ⎧≥⎪=⎨-<⎪⎩,则()f x 的单调递增区间为________;满足()4410f x <⨯的整数解的个数为____________(参考数据:lg 20.30≈)20.共享单车已经逐渐成为人们在日常生活中必不可少的交通工具.通过调查发现人们在单车选择时,可以使用“Tullock 竞争函数”进行近似估计,其解析式为()()[],0,1,01aa a x S x x a x x =∈>+-(其中参数a 表示市场外部性强度,a 越大表示外部性越强).给出下列四个结论:①()S x 过定点11,22⎛⎫ ⎪⎝⎭; ②()S x 在[]0,1上单调递增;③()S x 关于12x =对称; ④取定x ,外部性强度a 越大,()S x 越小.其中所有正确结论的序号是______________.三、解答题:共64分,解答应写出文字说明,演算步骤或证明过程.21.(本小题12分)化简求值:(I )()10.530.204640.13π927-⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭ (II )5log 333325log 2log 59-+ 22.(本小题12分)已知一元二次方程22320x x +-=的两个实数根为12,x x求值:(I )2212x x +;(II )1211x x + 23.(本小题9分)国务院正式公布的《第一批全国重点文物保护单位名单》中把重点文物保护单位(下述简称为“第一批文保单位”)分为六大类.其中“A :革命遗址及革命纪念建筑物”、“B :石窟寺”、“C :古建筑及历史纪念建筑物”、“D :石刻及其他”、“E :古遗址”、“F :古墓葬”,北京的18个“第一批文保单位”所在区分布如下表:(I )某个研学小组随机选择北京市“第一批文保单位”中的一个进行参观,求选中的参观单位恰好为“C :古建筑及历史纪念建筑物”的概率;(II )小王同学随机选择北京市“第一批文保单位”中的“A :革命遗址及革命纪念建筑物”中的一个进行参观:小张同学随机选择北京市“第一批文保单位”中的“C :古建筑及历史纪念建筑物”中的一个进行参观.两人选择参观单位互不影响,求两人选择的参观单位恰好在同一个区的概率;(III )现在拟从北京市“第一批文保单位”中的“C :古建筑及历史纪念建筑物”中随机抽取2个单位进行常规检查,记抽到海淀区的概率为1P ,抽不到海淀区的概率记为2P ,试判断1P 和2P 的大小(直接写出结论).24.(本小题9分)已知集合{}25320,22|A x x x B x x ⎧⎫=--<=-≥⎨⎬⎩⎭(I )求,R A B A B ;(II )记关于x 的不等式()222440x m x m m -+++≤的解集为M ,若B M R =,求实数m 的取值范围.25.(本小题11分)已知函数()()()ln 1ln 1f x x k x =-++,请从条件①、条件②这两个条件中选择一个作为已知,解答下面的问题:条件①:()()0f x f x +-=条件②:()()0f x f x --=注:如果选择条件①和条件②分别解答,按第一个解答记分.(I )求实数k 的值;(II )设函数()()()11k F x x x =-+,判断函数()F x 在区间上()0,1的单调性,并给出证明;(III )设函数()()2k g x f x x k =++,指出函数()g x 在区间()1,0-上的零点的个数,并说明理由.26.(本小题11分)已知函数()()(),,f x g x h x 的定义域均为R ,给出下面两个定义:①若存在唯一的x ∈R ,使得()()()()f g x h f x =,则称()g x 与()h x 关于()f x 唯一交换;②若对任意的x ∈R ,均有()()()()f g x h f x =,则称()g x 与()h x 关于()f x 任意交换.(I )请判断函数()1g x x =+与()1h x x =-关于()2f x x =是唯一交换还是任意交换,并说明理由;(II )设()()()22()20,1f x a x a g x x bx =+≠=+-,若存在函数()h x ,使得()g x 与()h x 关于()f x 任意交换,求b 的值;(III )在(II )的条件下,若()g x 与()f x 关于()11x x e x e ω-=+唯一交换,求a 的值.。
绝密★启用前邯郸市2023—2024学年第一学期期末质量检测高一语文(答案在最后)班级____________姓名____________注意事项:1.答卷前.考生务必将自己的姓名、班级和考号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
表面上,种子拥有致命毒素似乎是很合理的,这是一种自然的适应性改变。
毕竟,为了保护种子。
有什么办法比杀死任何想要吃掉它们的东西更好呢?但实际上,从令人讨厌到真正致命的这个进化步骤要复杂得多。
当一粒种子受到攻击时,植物的当务之急就是让攻击者停下来,这也是苦味、辣味和灼烧感很常见的原因。
直接的生理不适赶走了种子掠食者,并告诫它们不要再来。
它们甚至可以将这个教训传递给其他同类。
相反,毒素可能需要过几个小时或几天才能发挥效力,这样就无法阻止正在掠食种子的攻击者了。
理论上说,像蓖麻毒蛋白这样无味的毒素可能会让一只动物吃光一棵蓖麻植株的所有种子,然后离开,并在不知道原因的情况下死去。
因此,引发不适感的化学物质可以阻止各类种子掠食者,而致命的毒素只能消灭单独的掠食者,这是一场持久战。
这引发了一个问题,是什么进化诱因促使一些毒素不断变强,导致像蓖麻毒蛋白这样的化合物具有几乎令人难以理解的强大效力?“似乎没有明显的答案。
”当我提出这个问题的时候,德里克·比利告诉我。
我有段时间没联系他了,但当我遇到无法解决的难题时,这位种子研究方面的“神”总是慷慨地帮助我。
他解释说.种子的毒素往往以不同的方式影响不同的攻击者。
为了使一只动物感到轻微胃痛,并警告它不要再吃这种种子,而进化出来的物质,也许对另一只动物来说是完全致命的。
2024北京朝阳高一(上)期末物理2024.1(考试时间90分钟满分100分)一、本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.下列物理量属于标量的是A.速度 B.加速度 C.力 D.路程2.小郑同学对田径比赛中的一些运动进行了思考,其中正确的是A.原地投掷实心球的成绩,其依据是实心球的位移大小B.跳远比赛中研究运动员起跳是否犯规时,可以将其看成质点C.跳高比赛中运动员以“背越式”飞越横杆时,其重心可能低于横杆D.在标准跑道上的400米跑比赛中小红获得冠军,是由于她全程的平均速度最大3.如图甲、乙所示,分别表示物体运动的位移x、速度v随时间t的变化图像。
下列说法正确的是A.甲图中物体在0~t1时间内沿x轴正向做匀加速直线运动B.甲图中物体在t1~t2时间内沿x轴正向做匀速直线运动C.乙图中物体在0~t1时间内速度的变化率保持恒定D.乙图中物体在t1~t2时间内处于静止状态4.如图所示,台秤放置在水平地面上,物块静止在水平秤盘上。
下列说法正确的是A.地面受到的压力是由于台秤底座发生微小形变产生的B.物块所受支持力的反作用力是地面受到的压力C.物块的重力与秤盘对物块的支持力是一对相互作用力D.台秤对地面的压力与地面对台秤的支持力是一对平衡力5.在太空舱内可采用动力学方法测物体质量。
先对质量为m0的标准物体施加一水平推力,测得其加速度大小为2m/s2;然后将该标准物体与待测物体紧靠在一起施加相同的水平推力,测得其共同加速度大小为1m/s2。
若m0=2kg,则待测物体的质量为A.1kg B.2kg C.3kg D.4kg6.无人快递车可以完成短途物流配送。
在一条东西方向的平直公路上进行实验测试,确定某交通岗亭为位置零点,以向西方向为正方向,如图所示。
快递车某段时间在此公路上运动的位置坐标x随时间t的变化规律为x = 2t 2 -4t + 9(x 、t 均取国际单位)。
高一数学上册期末考试试卷及答案解析一、单选题 1.设全集2,1,0,1,2U,集合{}{}0,1,21,2A =-,B=,则()U A B =( )A .{}01, B .{}0,1,2 C .{}1,1,2- D .{}0,1,1,2-2.“5x >”是“3x >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对 4.下列命题中,既是全称量词命题又是真命题的是( ) A .矩形的两条对角线垂直 B .对任意a ,b ∈R ,都有a 2 + b 2≥ 2(a ﹣b ﹣1) C .∃x ∈R , |x | + x = 0 D .至少有一个x ∈Z ,使得x 2 ≤2成立5.已知02x <<,则y = )A .2B .4C .5D .66.若110a b <<,则下列结论不正确的是( ) A .22a b <B .1ba <C .2b aa b +>D .2ab b <7.命题p :“2R,240x ax ax ∃∈+-≥”为假命题的一个充分不必要条件是( ) A .40aB .40a -≤<C .30a -≤≤D .40a -≤≤8.集合{1,2,4}A =,{}2B x x A =∈,将集合A ,B 分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是( ) A .B .C .D .二、多选题9.已知集合222{2,1,4},{0,2}A a a a B a a =+-=--,5A ∈,则a 为( ) A .2B .2-C .5D .1-10.若正实数,a b 满足1a b +=,则下列说法正确的是( ) A .ab 有最小值14 B C .1122a b a b +++有最小值43D .22a b +有最小值1211.下列命题为真命题的是( ). A .若a b >,则11b a >B .若0a b >>,0c d <<,则abd c < C .若0a b >>,且0c <,则22cc a b > D .若a b >,且11a b>,则0ab < 12.若“x M x x ∀∈>,”为真命题,“3x M x ∃∈>,”为假命题,则集合M 可以是( )A .()5-∞-,B .(]31--,C .()3+∞,D .[]03,三、填空题13.若命题2:0,30p x x ax ∀≥-+>,则其否定为p ⌝:__________________.14.已知:282p x -≤-≤,:1q x >,:2r a x a <<.若r 是p 的必要不充分条件,且r 是q 的充分不必要条件,则实数a 的取值范围为______. 15.设集合{}{}21,2,R (1)0A B x x a x a ==∈-++=,若集合C = A B ,且C 的子集有4个,则实数a 的取值集合为______________. 16.若a ∈R ,0b >,3a b +=,则当=a ______时,1||3||a a b +取得最小值.四、解答题17.求解下列问题:(1)已知0b a <<,比较1a 与1b 的大小; (2)比较()()37x x ++和()()46x x ++的大小.18.已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-. (1)求A B ,R ()A B ⋃: (2)若BC C =,求实数m 的取值范围.19.已知不等式20x ax b -+<的解集为{}17x x <<. (1)求实数,a b 的值.(2)求不等式101ax bx +>-的解集.20.已知0,0x y >>,且280x y xy +-=,求(1)xy 的最小值; (2)x y +的最小值. 21.22.“绿水青山就是金山银山”,为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碳化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+,3050x ≤≤,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)当处理量为多少吨时,每吨的平均处理成本最少?(2)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?参考答案:1.A 【分析】先求出UB ,再根据交集的定义可求()U A B ∩.【详解】{}2,0,1UB =-,故(){}0,1UAB =,故选:A.2.A 【分析】根据集合与充分必要条件的关系,判断选项. 【详解】{}5x x > {}3x x >,所以“5x >”是“3x >”的充分不必要条件. 故选:A3.C 【分析】由集合的表示方法判断①,④;由集合中元素的特点判断②,③.【详解】①{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确; ③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示. 故选:C .4.B 【分析】根据全称量词和特称量词命题的定义判断,全称量词命题要为真命题必须对所以的成立,对选项逐一判断即可.【详解】A 选项为全称量词命题,却是假命题,矩形的两条对角线相等,并不垂直,故A 错误.C,D 选项是特称量词命题,故错误. B 选项是全称量词命题,用反证法证明, 因为()()2222222110a b a b a b +-++=-++≥所以对,a b ∀∈R ,()2221a b a b +--≥,故B 正确.故选:B. 5.【答案】A 【分析】设直角三角形的两个直角边为x ,y ,由此可得2225x y +=,又面积1=2S xy ,利用基本不等式可求面积的最大值. 【详解】设直角三角形的两个直角边为x ,y ,则2225x y +=, 又1=2S xy由基本不等式可得221125=2224x y S xy ⎛⎫+≤= ⎪⎝⎭(当且仅当x =y 立) 故选:A.6.B 【分析】由110a b <<得出0b a <<,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误. 【详解】110a b<<,0b a ∴<<,0b a ∴->->,22a b ∴<,A 选项正确;1b b a a-=>-,B 选项错误;由基本不等式可得2baa b +≥=,当且仅当1b a =时等号成立,1b a >,则等号不成立,所以2baa b +>,C 选项正确;0b a <<,2b ab ∴>,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.7.C 【分析】由题意,p ⌝为真命题,进而可得p ⌝为真命题时的充要条件,再根据充分与必要条件的性质判断选项即可. 【详解】命题2:R,240p x ax ax ∃∈+-≥为假命题,即命题2:R,240p x ax ax ⌝∀∈+-<为真命题.首先,0a =时,40-<恒成立,符合题意; 其次0a ≠时,则0a <且2(2)160a a ∆=+<,即40a ,综上可知,40a .结合选项可得,{}{}3040a a a a -≤≤⊆-<≤,即:30a -≤≤是40a 的一个充分不必要条件. 故选:C8.C 【分析】记U A B =⋃,然后分析每个选项对应的集合的运算并求解出结果进行判断即可.【详解】因为{}1,2,4A =,{}2B x x A=∈,所以{}2,B =--,记{}2,U AB ==--,对于A 选项,其表示(){}4U A B =,不满足;对于B 选项,其表示(){}2,U A B =--,不满足;对于C 选项,其表示(){2,U A B =--,满足;对于D 选项,其表示{}1,2A B =,不满足;故选:C.9.BC 【分析】结合元素与集合的关系,集合元素的互异性来求得a 的值.【详解】依题意5A ∈,当215a+=时,2a =或2a =-,若2a =-,则{}{}2,5,12,0,4A B ==,符合题意;若2a =,则220a a --=,对于集合B ,不满足集合元素的互异性,所以2a =不符合.当245a a -=时,1a =-或5a =,若1a =-,则212a +=,对于集合A ,不满足集合元素的互异性,所以1a =-不符合.若5a =,则{}{}2,26,5,0,18A B ==,符合题意. 综上所述,a 的值为2-或5. 故选:BC10.BCD 【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【详解】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误;由()222a b a b =+++=12a b ==时,,故B 选项正确;由11111(33)22322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭111[(2)(2)]3221222322a b a b a b a b a b a b a b a b ⎛⎫=++++ ⎪++⎝⎭++⎛⎫=++ ⎪++⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,所以1122a b a b +++有最小值43,故C 选项正确;由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确. 故选:BCD.11.BCD 【解析】举反例说明选项A 错误;利用不等式的性质证明出选项B ,C 正确;利用作差法证明出选项D 正确.【详解】选项A :当取1a =,1b =-时,11b a <,∴本命题是假命题. 选项B :已知0a b >>,0cd <<,所以110dc->->,∴abd c ->-,故abd c <,∴本命题是真命题. 选项C :222211000a b a b a b >>⇒>>⇒<<,∵0c <,∴22cca b >,∴本命题是真命题. 选项D :111100b aa b a b ab->⇒->⇒>, ∵a b >,∴0b a -<,∴0ab <,∴本命题是真命题. 故选:BCD【点睛】本题考查不等式的性质,考查命题的真假,属于基础题. 12.AB 【解析】根据假命题的否定为真命题可知3x M x ∀∈≤,,又x M x x ∀∈>,,求出命题成立的条件,求交集即可知M 满足的条件.【详解】3x M x ∃∈>,为假命题,3x M x ∴∀∈≤,为真命题,可得(,3]M ⊆-∞,又x M x x ∀∈>,为真命题, 可得(,0)M ⊆-∞, 所以(,0)M ⊆-∞,故选:AB【点睛】本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.13.20,30x x ax ∃≥-+≤【分析】直接利用存在量词写出其否定即可. 【详解】因为命题2:0,30p x x ax ∀≥-+>, 所以其否定p ⌝:20,30x x ax ∃≥-+≤.故答案为:20,30x x ax ∃≥-+≤.14.()5,6【分析】根据充分与必要条件,可得p ,q ,r 中集合的包含关系,再根据区间端点列式求解即可.【详解】易得:610p x ≤≤.记p ,q ,r 中x 的取值构成的集合分别为A ,B ,C ,由于r 是p 的必要不充分条件,r 是q 的充分不必要条件,则AC ,CB ,则016210a a a >⎧⎪≤<⎨⎪>⎩,解得56a <<,即实数a 的取值范围是()5,6.故答案为:()5,615.{}1,2【分析】先求出集合B 中的元素,再由C 的子集有4个,可知集合C 中只有2个元素,然后分1,2a a ==和1a ≠且2a ≠三种情况求解即可.【详解】由2(1)0x a x a -++=,得1x =或x a =, 因为集合C = A B ,且C 的子集有4个, 所以集合C 中只有2个元素, ①当1a =时,{}1B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以1a =满足题意,②当2a =时,{}1,2B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以2a =满足题意, ③当1a ≠且2a ≠时,{}1,B a =, 因为{}1,2A =,所以{}1,2,A B a =,即{}1,2,C a =,不合题意,综上,1a =或2a =,所以实数a 的取值集合为{}1,2, 故答案为:{}1,216.32-【分析】由题知3a <,进而分0<<3a 和0a <两种情况,结合基本不等式求解即可.【详解】解:因为3a b +=,0b >,所以30b a =->,即3a <.当0<<3a 时,11173||99999a ab a b a a b a b a b ++=+=++≥+, 当且仅当34a =时取等号,所以当34a =时,13a a b+取得最小值79;当0a <时,11139999a a b a b a a ba b a b ++=--=---≥-+59=, 当且仅当32a =-时取等号,所以当32a =-时,13a a b+取得最小值59.综上所述,当32a =-时,13a a b+取得最小值.故答案为:32-17.(1)11a b <(2)()()()()3746x x x x ++<++【分析】(1)利用差比较法比较大小. (2)利用差比较法比较大小.(1)11110,0,0,0,b a b a ab b a a b ab a b-<<>-<-=<<.(2)()()()()()()()()4630,737634x x x x x x x x ++=-<-+<+++++.18.(1){|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或;(2)52m ≤. 【分析】(1)由并集的定义及补集的定义进行计算即可; (2)BC C =等价于C B ⊆,按B =∅和B ≠∅讨论,分别列出不等式,解出实数m 的取值范围. (1)∵集合{|15}A x x =<≤,{}|04B x x =<<, ∴{|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或.(2) 因为BC C =,所以C B ⊆,当B =∅时,则121m m +≥-,即2m ≤;当B ≠∅时,则12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,解得522m <≤;综上,实数m 的取值范围为52m ≤.19.(1)8,7a b ==;(2)11(,)(,)87-∞-⋃+∞【分析】(1)由解集得到方程20x ax b -+=的根,利用韦达定理可求,a b .(2)利用(1)中的结果并把分式不等式转化为一元二次不等式可求解集.【详解】(1)因为不等式20x ax b -+<的解集是{}17x x <<. 所以20x ax b -+=的解是1和7.故1771ab +=⎧⎨⨯=⎩,解得 87a b =⎧⎨=⎩. (2)由101ax bx +>-得81071x x +>-,即()()81710x x +->, 解得18x <-或17x >,故原不等式的解集为11(,)(,)87-∞-⋃+∞. 20.(1)64;(2)18.【解析】(1)由280x y xy +-=,得到821x y +=,利用基本不等式,即可求解. (2)由280x y xy +-=,得821x y +=,根据8282()()10y xx y x y x y x y +=++=++,结合不等式,即可求解.【详解】(1)由280x y xy +-=,可得821x y +=,又由0,0x y >>,可得821x y =+≥,当且仅当82x y =,即4x y =时,等号成立,即64xy ≥, 所以xy 的最小值为64. (2)由280x y xy +-=,得821x y +=,因为0,0x y >>,可得8282()()101018y x x y x y x y x y +=++=++≥+, 当且仅当82y xx y =,即12,6x y ==时等号成立,所以x y +的最小值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 21.(1)[0,254] (2){}|2a a <【分析】(1)首先求解集合A ,再求二次函数的值域;(2)首先将不等式,参变分离得2452x x a x -+-<-,转化为求函数的最值,即可求解. (1)2230x x --≤等价于()()2310x x -⋅+≤,.解得312x -≤≤所以3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭. ∴二次函数223253424y x x x ⎛⎫=-++=--+ ⎪⎝⎭, 函数在区间31,2⎡⎤-⎢⎥⎣⎦单调递增,所以当32x =时,y 取最大值为254, 当1x =-时,y 取最小值为0,所以二次函数234y x x =-++.x A ∈的值域是[0,254]. (2)由(1)知3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭ ∵()24520x a x a +-+->恒成立. 即24520x ax x a +-+->恒成立.∴()2245x a x x -⋅>-+-恒成立. .∵312x -≤≤.∴20x -<.()()222214545122222x x x x x a x x x x x-+-+--+∴<===-+----∵20x ->,∴()1222x x-+≥-.. 当且仅当122x x -=-且312x -≤≤时,即1x =时,等号成立,. ∴2a <,故a 的取值范围为{}|2a a < 22.(1)31a b ==, (2)32a -≤<-或45a <≤ (3)53a ≥-【分析】(1)根据二次函数与对应不等式和方程的关系,利用根与系数的关系,即可求出a 、b 的值;(2)由()1f x b <-得()23220x a x a -+++<,令()()2322h x x a x a =-+++,求出()0h x <解集中恰有3个整数时a 的取值范围即可.(3)由()f x b ≥在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立,化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,,()2111t t g t t t t+-==-+,求出()g t 的最大值,进一步求出实数a 的取值范围;(1)解:因为函数()()2321f x x a x a b =-++++,a ,b R ∈,又()0f x >的解集为{2|x x <或4}x >,所以2,4方程()23210x a x a b -++++=的两根,由()2432421a a b ⎧+=+⎨⨯=++⎩, 解得31;a b ==, (2)由()1f x b <-得()23220x a x a -+++<, 令()()2322h x x a x a =-+++,则()()()()12h x x a x =-+-,知()20h =,故()0h x <解集中的3个整数只能是3,4,5或1-,0,1;①若解集中的3个整数是3,4,5,则516a <+≤,得45a <≤;②解集中的3个整数是1-,0,1;则211a -≤+<-,得32a -≤<-;综上,由①②知,实数a 的取值范围为32a -≤<-或45a <≤. (3)因为函数()()2321f x x a x a b =-++++,a ,b R ∈,由()f x b 在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立, 化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,, 设()2111t t g t t t t +-==-+,因为在()g t 在[]53--,上单调递增, 即()153133g t --+=--,所以53a ≥-. 23.(1)40吨(2)不会获利,700万元【分析】(1)根据已知条件,结合基本不等式的公式,即可求解.(2)当3050x ≤≤时,该工厂获利S ,则()2220401600(30)700S x x x x =--+=---,再结合二次函数的性质,即可求解. (1)由题意可得,二氧化碳的平均处理成本1600()40yP x x x x==+-,3050x ≤≤,当3050x ≤≤时,1600()404040P x x x =+-≥=, 当且仅当1600x x=,即40x =等号成立, 故()P x 取得最小值为(40)40P =,故当处理量为40吨时,每吨的平均处理成本最少. (2)当3050x ≤≤时,该工厂获利S , 则()2220401600(30)700S x xx x =--+=---,当3050x ≤≤时,max 7000S =-<,故该工厂不会获利,国家至少需要补贴700万元,该工厂不会亏损.。
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 集合{}{}R x y y B R x x y y A x ∈==∈+==,2,,1,则A B ⋂等于
A. ()+∞,0
B. {}1,0
C. {}1,2
D. {})2,1(),1,0(
2.函数23212---=x x x y 的定义域 A. ]1,(-∞ B. ]2,(-∞ C. ]1,21()21
,(-⋂--∞ D. ]1,2
1()21,(-⋃--∞ 3.若直线10mx y +-=与直线230x y -+=平行,则m 的值为
A. 2
B. 2-
C. 12
D. 12
- 4.直线0ax by c ++=经过第一、第二、第四象限,则,,a b c 应满足
A .ab >0,bc >0
B .ab >0,bc <0
C .ab <0,bc >0
D .ab <0,bc <0
5.已知两条不同的直线n m ,,两个不同的平面βα,,则下列命题中正确的是
A.若,,//,βαβα⊥⊥n m 则n m ⊥
B.若,,,//βαβα⊥⊥n m 则n m //
C.若,,,βαβα⊥⊥⊥n m 则n m ⊥
D.若,//,//,//βαβαn m 则n m //
6. 已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为
A .21+
B .2
C .3
D .2
7. 两条平行线1l :3x -4y -1=0,与2l :6x -8y -7=0间的距离为
A.12
B. 35
C. 65 D .1
8.在梯形ABCD 中,o ABC 90=∠,//,222AD BC BC AD AB === .将梯形ABCD 绕
AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为
A.23π
B.43π
C.53
π D.2π 9.设c b a ,,均为正数,且a a
21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c 2log 21=⎪⎭⎫ ⎝⎛.则 A .c b a << B .a b c << C . b a c << D . c a b <<
10.某三棱锥的三视图如右图所示,该三棱锥的表面积是
A .56125+
B . 60125+
C .3065+
D . 2865+
11.已知函数2
)(|,|23)(x x g x x f =-=,构造函数⎩⎨⎧>≥=)()(),()()(),()(x f x g x f x g x f x g x F ,那么函数)(x F y =
A. 有最大值1,最小值1-
B. 有最大值1,无最小值
C. 有最小值1-,无最大值 D .有最大值3,最小值1
12. 已知球的直径4SC =,B A ,是球面上的两点2AB =, 045BSC ASC ∠=∠=,则棱锥S ABC -的体积是
A. 335
B. 334
C. 332
D. 3
3 二.填空题: 本大题共4小题,每小题5分,共20分.
13.过点)2,1(且与直线3450x y +-=垂直的直线方程_______________.
14.长方体的一个顶点上三条棱长分别是3、4、5,且它的八个顶点都在同一球面上,这个球的表面积是_______________.
15.函数log (1)8a y x =-+(0a >且1)a ≠的图象恒过定点P ,P 在幂函数()f x 的图象上, 则(3)f =___________.
16.如图,已知四棱锥ABCD P -,底面ABCD 为正方形,⊥PA 平面ABCD .给出下列
命题:
①AC PB ⊥;②平面PAB 与平面PCD 的交线与AB 平行;
③平面⊥PBD 平面PAC ;④PCD ∆为锐角三角形.
其中正确命题的序号是_______________. (写出所有正确命题的序号)
三.解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.
17. (本小题满分10分)
A B D
C P
已知点)1,2(-P ,求:
(Ⅰ)过点P 且与直线032=+-y x 平行的直线方程;
(Ⅱ)过点P 且与原点距离为2的直线方程.
18. (本小题满分12分)
设U R =,}{}{13
,24A x x B x x =≤≤=<<,}{1C x a x a =≤≤+(a 为实数) (Ⅰ)分别求A
B ,()U A
C B ; (Ⅱ)若B C C =,求a 的取值范围.
19. (本小题满分12分)
如下的三个图中,分别是一个长方体截去一个角所得多面体的直观图以及它的主视图和左(侧)视图(单位:cm )
(Ⅰ)按照给出的尺寸,求该多面体的体积;
(Ⅱ)在所给直观图中连结'BC ,证明:'BC ∥面EFG .
20. (本小题满分12分)
如图,在三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB ∆为等边三角形,AC BC ⊥且2AC BC ==,,O M 分别为AB ,VA 的中点.
(Ⅰ)求证:平面MOC ⊥平面VAB ;
(Ⅱ)求三棱锥A MOC -的体积.
21.(本小题满分12分)
已知函数)32(log )(2
21+-=ax x x f .
(Ⅰ)若函数的定义域为R ,求实数a 的取值范围; (Ⅱ)若函数的值域为]1,(--∞,求实数a 的值;
(Ⅲ)若函数在区间)1,21(上为增函数,求实数a 的取值范围.
22.(本小题满分12分)
如图甲,⊙O 的直径2AB =,圆上两点,C D 在直径AB 的两侧,使o o DAB CAB 60,45=∠=∠,沿直径AB 折起,使两个半圆所在的平面互相垂直(如图乙),F 为BC 的中点,E 为AO 的中点.P 为AC 上的动点,根据图乙解答下列各题:
(Ⅰ)求三棱锥ABC D -的体积.
(Ⅱ)求证:不论点P 在何位置,都有DE ⊥BP ;
(Ⅲ)在BD 弧上是否存在一点G ,使得FG ∥平面ACD 若存在,试确定点G 的位置,并给出证明;若不存在,请说明理由.
|。