带电粒子在磁场中的运动应用
- 格式:pdf
- 大小:298.93 KB
- 文档页数:5
带电粒子在电磁场中运动的科技应用1.加速器带电粒子在电场中加速的科技应用主要是加速器。
加速加速器直线加速器、回旋加 速器、电子感应加速器有三种,在高考试题中,直线加速器往往不单独命题,常常与磁 偏转和回旋加速器结合起来,考查单一问题的多过程问题:回旋加速器有时单独命题, 也常常与直线加速器结合起来命题。
例1. 1930年劳伦斯制成了世界上第一台回旋加速器,英原 理如图1所示,这台加速器由两个铜质D 形盒Di 、 留有空隙,下列说法正确的是( )离子由加速器的中心附近进入加速器 离子由加速器的边缘进入加速器 离子从磁场中获得能疑 离子从电场中获得能量 A.B. C. D. 答案:AD解析:离子由加速器的中心附近进入加速器,在电场中加速获得能量,在磁场中偏 转时,洛伦兹力不做功,能量不变,由于进入磁场的速度越来越大,所以转动的半径也 越来越大,故选项AD 正确。
例2.电子感应加速器工作原理如图2所示(上 图为侧视图、下图为真空室的俯视图),它主要有上、 下电磁铁磁极和环形真空室组成。
当电磁铁绕组通以 交变电流时,产生交变磁场,穿过真空盒所包囤的区 域内的磁通量随时间变化,这时頁•空盒空间内就产生 感应涡旋电场。
电子将在涡旋电场作用下得到加速。
(1) 设被加速的电子被“约朿"在半径为r 的圆周 上运动,整个圆而区域内的平均磁感应强度为求 电子所在圆周上的感生电场场强的大小与&的变化率 满足什么关系。
(2) 给电磁铁通入交变电流,一个周期内电子能被加速几次? (3)在(1)条件下,为了维持电子在恒泄的轨道上加速,电子轨道处的磁场从应 满足什么关系?解析:(1)设被加速的电子被“约朿"在半径为『的圆周上运动,在半径为「的圆而 上,通过的磁通量为0二"疗.&是整个圆而区域内的平均磁感应强度,电子所在圆周 上的感生电场场强为左‘°E 二 3 根据法拉第电磁感应龙律 Az 得,ec A5E 况2"二——帀 A/感生电场的大小 2 A/ 0(2)给电磁铁通入交变电流如图3所示,从而产生变化的磁场,变化规律如图4 所示(以图2中所标电流产生磁场的方向为正方向),要使电子能被逆时针(从上往下 看,以下同)加速,一方而感生电场应是顺时针方向,即在磁场的第一个或第四个1/4 周期内加速电子:而另一方面电子受到的洛仑兹力应指向圆心,只有磁场的第一或第二 个1/4周期才满足。
带电粒子在电磁场中运动的应用1、电视机电视机的显像管中,电子束的偏转是用磁偏转技术实现的。
电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区。
磁场方向垂直于圆面。
磁场区的中心为O ,半径为r 。
当不加磁场时,电子束将通过O 点而打到屏幕的中心M 点。
为了让电子束射到屏幕边缘P ,需要加磁场,使电子束转一已知角度θ,此时磁场的磁感应强度B 应为多少?解析: 电子在磁场中沿圆弧运动,如图所示,圆心为O ′,半径为R 。
以v 表示电子进入磁场时的速度,m 、e 分别表示电子的质量和电量,则221mv eU = R mv evB 2= Rr tg =2θ 由以上各式解得 221θtg e mU r B = 2、电磁流量计电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积)。
为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a 、b 、c ,流量计的两端与输送液体的管道相连接(图中虚线)。
图中流量计的上下两面是金属材料,前后两面是绝缘材料,现于流量计所在处加磁感强度为B 的匀强磁场,磁场方向垂直于前后两面。
当导电液体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值。
已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为 A. )(ac bR B I ρ+ B. )(c b aR B I ρ+ C. )(b a cR B I ρ+ D. )(abc R B I ρ+ 答案: A3、质谱仪下图是测量带电粒子质量的仪器工作原理示意图。
设法是某有机化合物的气态分子导入图中所示的容器A 中,使它受到电子束轰击,失去一个电子变成正一价的分子离子。
分子离子从狭缝s 1以很小的速度进入电压为U 的加速电场区(初速不计),加速后,再通过狭缝s 2、s 3射入磁感强度为B 的匀强磁场,方向垂直于磁场区的界面PQ 。
第6节 带电粒子在匀强磁场中的运动1.洛伦兹力方向总是垂直于速度方向,所以洛伦兹力不对带电粒子做功,它只改变带电粒子速度的方向,不改变带电粒子速度的大小.2.垂直射入匀强磁场的带电粒子,在匀强磁场中做匀速圆周运动.洛伦兹力充当向心力.即Bq v =m v 2r ,所以r =m v Bq ,由v =2πr T ,得知T =2πmBq3.质谱仪的原理和应用 (1)原理图:如图1所示.图1(2)加速:带电粒子进入质谱仪的加速电场,由动能定理得:qU =12m v 2①(3)偏转:带电粒子进入质谱仪的偏转磁场做匀速圆周运动,洛伦兹力提供向心力:q v B =m v 2r②(4)由①②两式可以求出粒子的质量、比荷、半径等,其中由r =1B 2mUq可知电荷量相同时,半径将随质量变化.(5)质谱仪的应用:可以测定带电粒子的质量和分析同位素 4.回旋加速器的原理及应用 (1)构造图:如图2所示.回旋加速器的核心部件是两个D 形盒.图2(2)原理回旋加速器有两个铜质的D 形盒D 1、D 2,其间留有一空隙,加以加速电压,离子源处在中心O 附近,匀强磁场垂直于D 形盒表面.粒子在两盒空间的匀强磁场中,做匀速圆周运动,在两盒间的空隙中,被电场加速.如果交变电场的周期与粒子在磁场中的运动周期相同,粒子在空隙中总被加速,半径r 逐渐增大,达到预定速率后,用静电偏转极将高能粒子引出D 形盒用于科学研究.(3)用途加速器是使带电粒子获得高能量的装置,是科学家探究原子核的有力工具,而且在工、农、医药等行业得到广泛应用.5.一个质量为m 、电荷量为q 的粒子,在磁感应强度为B 的匀强磁场中做匀速圆周运动,则下列说法中正确的是( )A .它所受的洛伦兹力是恒定不变的B .它的速度是恒定不变的C .它的速度与磁感应强度B 成正比D .它的运动周期与速度的大小无关 答案 D解析 粒子在匀强磁场中做匀速圆周运动时洛伦兹力提供向心力,沦伦兹力的大小不变,方向始终指向圆心,不断改变,所以A 错.速度的大小不变,方向不断改变,所以B 错.由于粒子进入磁场后洛伦兹力不做功,因此粒子的速度大小不改变,粒子速度大小始终等于其进入磁场时的值,与磁感应强度B 无关,所以C 错.由运动周期公式T =2πmBq ,可知T 与速度v 的大小无关.即D 正确.6.两个粒子,带电量相等,在同一匀强磁场中只受洛伦兹力而做匀速圆周运动( ) A .若速率相等,则半径必相等 B .若质量相等,则周期必相等 C .若动能相等,则周期必相等 D .若质量相等,则半径必相等 答案 B解析 根据粒子在磁场中的运动轨道半径r =m v qB 和周期T =2πmBq 公式可知,在q 、B 一定的情况下,轨道半径r 与v 和m 的大小有关,而周期T 只与m 有关.【概念规律练】知识点一 带电粒子在匀强磁场中的圆周运动1.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又垂直进入另一磁感应强度是原来的磁感应强度2倍的匀强磁场,则( )A .粒子的速率加倍,周期减半B .粒子的速率不变,轨道半径减半C .粒子的速率减半,轨道半径为原来的四分之一D .粒子的速率不变,周期减半 答案 BD解析 洛伦兹力不改变带电粒子的速率,A 、C 错.由r =m v qB ,T =2πmqB 知:磁感应强度加倍时,轨道半径减半、周期减半,故B 、D 正确.2.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α,则下列选项正确的是( )A .R p ∶R α=1∶2 T p ∶T α=1∶2B .R p ∶R α=1∶1 T p ∶T α=1∶1C .R p ∶R α=1∶1 T p ∶T α=1∶2D .R p ∶R α=1∶2 T p ∶T α=1∶1 答案 A解析 质子(11H)和α粒子(42He)带电荷量之比q p ∶q α=1∶2,质量之比m p ∶m α=1∶4.由带电粒子在匀强磁场中做匀速圆周运动规律,R =m v qB ,T =2πmqB,粒子速率相同,代入q 、m 可得R p ∶R α=1∶2,T p ∶T α=1∶2,故选项A 正确.知识点二 带电粒子在有界磁场中的圆周运动3. 如图3所示,一束电子的电荷量为e ,以速度v 垂直射入磁感应强度为B 、宽度为d 的有界匀强磁场中,穿过磁场时的速度方向与原来电子的入射方向的夹角是30°,则电子的质量是多少?电子穿过磁场的时间又是多少?图3答案2deB v πd3v解析 电子在磁场中运动时,只受洛伦兹力作用,故其轨道是圆弧的一部分.又因洛伦兹力与速度v 垂直,故圆心应在电子穿入和穿出时洛伦兹力延长线的交点上.从图中可以看出,AB 弧所对的圆心角θ=30°=π6,OB 即为半径r ,由几何关系可得:r =d sin θ=2d.由半径公式 r =m v Bq 得:m =qBr v =2deB v. 带电粒子通过AB 弧所用的时间,即穿过磁场的时间为: t =θ2πT =112×T =112×2πm Be =πm 6Be =πd 3v. 点评 作出辅助线,构成直角三角形,利用几何知识求解半径.求时间有两种方法:一种是利用公式t =θ2πT ,另一种是利用公式t =Rθv求解.4. 一磁场宽度为L ,磁感应强度为B ,如图4所示,一电荷质量为m 、带电荷量为-q ,不计重力,以某一速度(方向如图)射入磁场.若不使其从右边界飞出,则电荷的速度应为多大?图4答案 v ≤BqLm (1+cos θ)解析 若要粒子不从右边界飞出,当达最大速度时运动轨迹如图,由几何知识可求得半径r ,即r +rcos θ=L ,r =L1+cos θ,又Bq v =m v 2r ,所以v =Bqr m =BqLm (1+cos θ).知识点三 质谱仪5. 质谱仪原理如图5所示,a 为粒子加速器,电压为U 1;b 为速度选择器,磁场与电场正交,磁感应强度为B 1,板间距离为d ;c 为偏转分离器,磁感应强度为B 2.今有一质量为m 、电荷量为e 的正粒子(不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动.求:图5(1)粒子的速度v 为多少?(2)速度选择器的电压U 2为多少?(3)粒子在B 2磁场中做匀速圆周运动的半径R 为多大?答案 (1) 2eU 1m (2)B 1d 2eU 1m (3)1B 2 2U 1me解析 根据动能定理可求出速度v ,据电场力和洛伦兹力相等可得到v 2,再据粒子在磁场中做匀速圆周运动的知识可求得半径.(1)在a 中,e 被加速电场U 1加速,由动能定理有eU 1=12m v 2得v = 2eU 1m.(2)在b 中,e 受的电场力和洛伦兹力大小相等,即e U 2d=e v B 1,代入v 值得U 2=B 1d2eU 1m. (3)在c 中,e 受洛伦兹力作用而做圆周运动,回转半径R =m v B 2e ,代入v 值解得R =1B 2 2U 1m e.点评 分析带电粒子在场中的受力,依据其运动特点,选择物理规律进行求解分析. 知识点四 回旋加速器 6.在回旋加速器中( )A .电场用来加速带电粒子,磁场则使带电粒子回旋B .电场和磁场同时用来加速带电粒子C .在交流电压一定的条件下,回旋加速器的半径越大,则带电粒子获得的动能越大D .同一带电粒子获得的最大动能只与交流电压的大小有关,而与交流电压的频率无关. 答案 AC解析 电场的作用是使粒子加速,磁场的作用是使粒子回旋,故A 选项正确;粒子获得的动能E k =(qBR )22m ,对同一粒子,回旋加速器的半径越大,粒子获得的动能越大,故C选项正确.7.有一回旋加速器,它的高频电源的频率为1.2×107 Hz ,D 形盒的半径为0.532 m ,求加速氘核时所需的磁感应强度为多大?氘核所能达到的最大动能为多少?(氘核的质量为3.3×10-27 kg ,氘核的电荷量为1.6×10-19C)答案 1.55 T 2.64×10-12 J解析 氘核在磁场中做圆周运动,由洛伦兹力提供向心力,据牛顿第二定律q v B =m v 2R,周期T =2πR v,解得圆周运动的周期T =2πmqB .要使氘核每次经过电场均被加速,则其在磁场中做圆周运动的周期等于交变电压的周期,即T =1f.所以B =2πfm q =2×3.14×1.2×107×3.3×10-271.6×10-19T=1.55 T.设氘核的最大速度为v ,对应的圆周运动的半径恰好等于D 形盒的半径,所以v =qBRm .故氘核所能达到的最大动能E max =12m v 2=12m·(qBR m )2=q 2B 2R 22m=(1.6×10-19)2×1.552×0.53222×3.3×10-27J =2.64×10-12 J.【方法技巧练】一、带电粒子在磁场中运动时间的确定方法8. 如图6所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x 轴成60°角从原点射入磁场,则正、负电子在磁场中运动时间之比为( )图6A .1∶2B .2∶1C .1∶ 3D .1∶1 答案 B9. 如图7所示,半径为r 的圆形空间内,存在着垂直于纸面向外的匀强磁场,一个带电粒子(不计重力),从A 点沿半径方向以速度v 0垂直于磁场方向射入磁场中,并由B 点射出,且∠AOB =120°,则该粒子在磁场中运动的时间为( )图7A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 0 答案 D 解析由图中的几何关系可知,圆弧AB 所对的轨迹圆心角为60°,O 、O ′的连线为该圆心角的角平分线,由此可得带电粒子圆轨迹半径为R =rcot 30°=3r.故带电粒子在磁场中运动的周期为 T =2πR v 0=23πr v 0.带电粒子在磁场区域中运动的时间t =60°360°T =16T =3πr 3v 0.方法总结 粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:t =α360°T 或t =α2πT.1.运动电荷进入磁场后(无其他力作用)可能做( ) A .匀速圆周运动 B .匀速直线运动 C .匀加速直线运动 D .平抛运动 答案 AB解析 若运动电荷垂直于磁场方向进入匀强磁场,则做匀速圆周运动;若运动方向和匀强磁场方向平行,则做匀速直线运动,故A 、B 正确,由于洛伦兹力不做功,故电荷的动能和速度不变,C 错误.由于洛伦兹力是变力,故D 错误.2.有三束粒子,分别是质子(p)、氚核(31H)和α粒子(42He)束,如果它们以相同的速度沿垂直于磁场方向射入匀强磁场(磁场方向垂直纸面向里),在下面所示的四个图中,能正确表示出这三束粒子运动轨迹的是( )答案 C3.带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹.如图8所示是在有匀强磁场的云室中观察到的粒子的轨迹,a 和b 是轨迹上的两点,匀强磁场B 垂直于纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少,下列说法正确的是( )图8A .粒子先经过a 点,再经过b 点B .粒子先经过b 点,再经过a 点C .粒子带负电D .粒子带正电答案 AC解析 由于粒子的速度减小,所以轨道半径不断减小,所以A 对,B 错;由左手定则得粒子应带负电,C 对,D 错.4.质子(11H)和α粒子(42He)在同一匀强磁场中做半径相同的圆周运动.由此可知质子的动能E 1和α粒子的动能E 2之比E 1∶E 2等于( )A .4∶1B .1∶1C .1∶2D .2∶1 答案 B解析 由r =m v qB ,E =12m v 2得E =r 2B 2q 22m,所以E 1∶E 2=q 21m 1∶q 22m 2=1∶1. 5. 长为l 的水平极板间有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为l ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >BqlmD .使粒子的速度Bql 4m <v <5Bql4m答案 AB 解析如右图所示,带电粒子刚好打在极板右边缘时,有r 21=(r 1-l 2)2+l 2又r 1=m v 1Bq ,所以v 1=5Bql4m粒子刚好打在极板左边缘时,有r 2=l 4=m v 2Bq,v 2=Bql 4m综合上述分析可知,选项A 、B 正确.6.如图9所示,在边界PQ 上方有垂直纸面向里的匀强磁场,一对正、负电子同时从边界上的O 点沿与PQ 成θ角的方向以相同的速度v 射入磁场中,则关于正、负电子,下列说法不正确的是( )图9A.在磁场中的运动时间相同B.在磁场中运动的轨道半径相同C.出边界时两者的速度相同D.出边界点到O点处的距离相等答案 A7. 如图10所示,ab是一弯管,其中心线是半径为R的一段圆弧,将它置于一给定的匀强磁场中,磁场方向垂直于圆弧所在平面,并且指向纸外.有一束粒子对准a端射入弯管,粒子有不同的质量、不同的速度,但都是一价正离子()图10A.只有速度v大小一定的粒子可以沿中心线通过弯管B.只有质量m大小一定的粒子可以沿中心线通过弯管C.只有m、v的乘积大小一定的粒子可以沿中心线通过弯管D.只有动能E k大小一定的粒子可以沿中心线通过弯管答案 C解析因为粒子能通过弯管要有一定的半径,其半径r=R.所以r=R=m vqB,由q和B相同,则只有当m v一定时,粒子才能通过弯管.8. 如图11所示,一带负电的质点在固定的正的点电荷作用下绕该正电荷做匀速圆周运动,周期为T0,轨道平面位于纸面内,质点的速度方向如图中箭头所示.现加一垂直于轨道平面的匀强磁场,已知轨道半径并不因此而改变,则()图11A.若磁场方向指向纸里,质点运动的周期将大于T0B.若磁场方向指向纸里,质点运动的周期将小于T0C.若磁场方向指向纸外,质点运动的周期将大于T0D.若磁场方向指向纸外,质点运动的周期将小于T0答案AD解析不加磁场时:F E=mR(2πT0)2,若磁场方向向里,则有F E-F B=mR(2πT1)2,若磁场方向向外,则有F E+F B=mR(2πT2)2,比较知:T1>T0,T2<T0,选项A、D正确.9.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底面的匀强磁场中,如图12所示,要增大带电粒子射出时的动能,下列说法中正确的是()图12A.增大匀强电场间的加速电压B.增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径 答案 BD解析 当带电粒子的速度最大时,其运动半径也最大,由牛顿第二定律q v B =m v 2r,得v =qBr m.若D 形盒的半径为R ,则r =R 时,带电粒子的最终动能E km =12m v 2=q 2B 2R 22m ,所以要提高加速粒子射出时的动能,应尽可能增大磁感应强度B 和加速器的半径R.10. 质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图13所示,离子源S 产生一个质量为m ,电荷量为q 的正离子,离子产生出来时的速度很小,可以看作是静止的,离子产生出来后经过电压U 加速,进入磁感应强度为B 的匀强磁场,沿着半圆运动而达到记录它的照相底片P 上,测得它在P 上的位置到入口处S 1的距离为x ,则下列说法正确的是( )图13A .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明离子的质量一定变大B .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明加速电压U 一定变大C .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明磁感应强度B 一定变大D .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明离子所带电荷量q 可能变小答案 D解析 由qU =12m v 2,得v =2qU m ,x =2R ,所以R =x 2=m vqB ,x =2m v qB =2m qB 2qU m=8mUqB 2,可以看出,x 变大,可能是因为m 变大,U 变大,q 变小,B 变小,故只有D 对.11.回旋加速器D 形盒中央为质子流,D 形盒的交流电压为U ,静止质子经电场加速后,进入D 形盒,其最大轨道半径为R ,磁场的磁感应强度为B ,质子质量为m.求:(1)质子最初进入D 形盒的动能多大;(2)质子经回旋加速器最后得到的动能多大; (3)交流电源的频率是多少.答案 (1)eU (2)e 2B 2R 22m (3)eB2πm解析 (1)粒子在电场中加速,由动能定理得: eU =E k -0,解得E k =eU.(2)粒子在回旋加速器的磁场中绕行的最大半径为R ,由牛顿第二定律得:e v B =m v 2R①质子的最大动能:E km =12m v 2②解①②式得:E km =e 2B 2R 22m(3)f =1T =eB 2πm12. 如图14所示,在x 轴上方有磁感应强度大小为B ,方向垂直纸面向里的匀强磁场.x 轴下方有磁感应强度大小为B/2,方向垂直纸面向外的匀强磁场.一质量为m 、电荷量为-q 的带电粒子(不计重力),从x 轴上O 点以速度v 0垂直x 轴向上射出.求:图14(1)射出之后经多长时间粒子第二次到达x 轴? (2)粒子第二次到达x 轴时离O 点的距离.答案 (1)3πmqB (2)6m v 0qB解析 粒子射出后受洛伦兹力做匀速圆周运动,运动半个圆周后第一次到达x 轴,以向下的速度v 0进入x 轴下方磁场,又运动半个圆周后第二次到达x 轴.如下图所示.(1)由牛顿第二定律q v 0B =m v 20r①T =2πr v 0②得T 1=2πm qB ,T 2=4πmqB ,粒子第二次到达x 轴需时间 t =12T 1+12T 2=3πm qB. (2)由①式可知r 1=m v 0qB ,r 2=2m v 0qB ,粒子第二次到达x 轴时离O 点的距离 x =2r 1+2r 2=6m v 0qB.。
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
第81讲 带电粒子在电磁场中运动的应用实例(多选)1.(2022•乙卷)一种可用于卫星上的带电粒子探测装置,由两个同轴的半圆柱形带电导体极板(半径分别为R 和R+d )和探测器组成,其横截面如图(a )所示,点O 为圆心。
在截面内,极板间各点的电场强度大小与其到O 点的距离成反比,方向指向O 点。
4个带正电的同种粒子从极板间通过,到达探测器。
不计重力。
粒子1、2做圆周运动,圆的圆心为O 、半径分别为r 1、r 2(R <r 1<r 2<R+d );粒子3从距O 点r 2的位置入射并从距O 点r 1的位置出射;粒子4从距O 点r 1的位置入射并从距O 点r 2的位置出射,轨迹如图(b )中虚线所示。
则( )A .粒子3入射时的动能比它出射时的大B .粒子4入射时的动能比它出射时的大C .粒子1入射时的动能小于粒子2入射时的动能D .粒子1入射时的动能大于粒子3入射时的动能【解答】解:在截面内,极板间各点的电场强度大小与其到O 点的距离成反比,可设为 E =kr ,即Er =kA .粒子3从距O 点r 2的位置入射并从距O 点r 1的位置出射,做向心运动,电场力做正功,则动能增大,粒子3入射时的动能比它出射时的小,故A 错误;B .粒子4从距O 点r 1的位置入射并从距O 点r 2的位置出射,做离心运动,电场力做负功,则动能减小,粒子4入射时的动能比它出射时的大,故B 正确;C .带正电的同种粒子1、2在均匀辐向电场中做匀速圆周运动,则有 qE 1=m v 12r 1 qE 2=mv 22r 2可得:12m v 12=qE 1r 12=qE 2r 22即粒子1入射时的动能等于粒子2入射时的动能,故C 错误; D .粒子3做向心运动,则有 qE 2>mv 32r 2可得:12m v 32<qE 2r 22=12m v 12粒子1入射时的动能大于粒子3入射时的动能,故D 正确; 故选:BD 。
2.(2021•河北)如图,距离为d 的两平行金属板P 、Q 之间有一匀强磁场,磁感应强度大小为B 1,一束速度大小为v 的等离子体垂直于磁场喷入板间。
物理专题三 带电粒子在复合场(电场磁场)中的运动解决这类问题时一定要重视画示意图的重要作用。
⑴带电粒子在匀强电场中做类平抛运动。
这类题的解题关键是画出示意图,要点是末速度的反向延长线跟初速度延长线的交点在水平位移的中点。
⑵带电粒子在匀强磁场中做匀速圆周运动。
这类题的解题关键是画好示意图,画示意图的要点是找圆心、找半径和用对称。
例1 右图是示波管内部构造示意图。
竖直偏转电极的板长为l =4cm ,板间距离为d =1cm ,板右端到荧光屏L =18cm ,(本题不研究水平偏转)。
电子沿中心轴线进入偏转电极时的速度为v 0=1.6×107m/s ,电子电荷e =1.6×10-19C ,质量为0.91×10-30kg 。
为了使电子束不会打在偏转电极的极板上,加在偏转电极上的电压不能超过多少?电子打在荧光屏上的点偏离中心点O 的最大距离是多少?[解:设电子刚好打在偏转极板右端时对应的电压为U ,根据侧移公式不难求出U (当时对应的侧移恰好为d /2):2212⎪⎭⎫ ⎝⎛⋅=v l dm Ue d ,得U =91V ;然后由图中相似形对应边成比例可以求得最大偏离量h =5cm 。
]例2 如图甲所示,在真空中,足够大的平行金属板M 、N 相距为d ,水平放置。
它们的中心有小孔A 、B ,A 、B 及O 在同一条竖直线上,两板的左端连有如图所示的电路,交流电源的内阻忽略不计,电动势为U ,U 的方向如图甲所示,U 随时间变化如图乙所示,它的峰值为ε。
今将S 接b 一段足够长时间后又断开,并在A 孔正上方距A 为h (已知d h <)的O 点释放一个带电微粒P ,P 在AB 之间刚好做匀速运动,再将S 接到a 后让P 从O 点自由下落,在t=0时刻刚好进入A 孔,为了使P 一直向下运动,求h 与T 的关系式?[解析:当S 接b 一段足够长的时间后又断开,而带电微粒进入A 孔后刚好做匀速运动,说明它受到的重力与电场力相等,有d q mg ε= 若将S 接a 后,刚从t=0开始,M 、N 两板间的电压为,2ε,故带电粒子进入电场后,所受到的电场力为mg d q F 22==ε,也就是以大小为g 、方向向上的加速度作减速运动。
带电粒子的运动及其在生活中的应用带电粒子是一种特殊的粒子,它们带有电荷,可以通过外加电场或磁场的作用下进行运动。
这种带电粒子的运动过程具有很大的应用价值,在人类的生活中得到了广泛的应用。
一、带电粒子的运动带电粒子在外加电场或磁场的作用下,会受到电荷的作用力,从而进行运动。
具体来说,带电粒子在电场中的受力大小与所带电荷数量、电场强度、电场中的介质性质以及粒子尺寸等相关。
而在磁场中运动时,带电粒子受到的作用力与磁场强度及粒子带电荷量和粒子的速度有关。
这些都是影响带电粒子运动的因素。
带电粒子在电场或磁场中的运动情况也可以用数学公式进行描述。
例如,在电场中平行板电容器中,电子的运动方程可以用F=qE=ma 表示。
在磁场中,磁感线垂直于带电粒子的轨迹时,粒子将沿着磁感线通过磁场。
此时,带电粒子的运动方程为F=qvB=ma。
二、生活中的应用带电粒子的运动具有很多应用价值,在生活中也得到了广泛的应用。
以下是其中几个例子:1. 微电子学微电子学是一种应用电子学的科学,它主要用于制造微型电子元件。
在这个领域中,带电粒子的运动被广泛应用。
例如,在固体中,电子的运动过程将对材料的电导率和电阻率产生影响,从而用于制造半导体器件和电路板等微型电子元件。
2. 医疗领域的应用带电粒子的运动还可以应用于医疗领域。
例如,在放射性医学中,带电粒子的辐照可以用于治疗癌症等疾病。
此外,带电粒子在放射性医学中还可以用于诊断和监测治疗进展。
3. 动力学和能源领域的应用在动力学和能源领域中,带电粒子的运动也具有重要的应用价值。
例如,在航空工业中,气体分子和离子的运动过程将影响飞机发动机中的燃料燃烧,从而影响飞机的性能。
在原子能领域中,带电粒子的运动还可以用于核融合和核裂变过程的研究和应用。
小结带电粒子的运动具有很大的应用价值,在人类的生活中得到了广泛的应用。
它的应用覆盖了微电子学、医疗领域、动力学和能源领域等多个领域,在这些领域中取得了重要的成果。
匀强磁场中带电粒子的运动
带电粒子在匀强磁场中的运动是如下。
匀速直线运动:当v∥B时,带电粒子以速度v做匀速直线运动。
匀速圆周运动:当v⊥B时,带电粒子在垂直于磁感线的平面内以入射速度做匀速圆周运动。
带电粒子的运动问题
1、电场中的加速问题
带电粒子在电场中只受电场力作用的问题。
如果在匀强电场中问题可以根据牛顿运动定律结合运动学公式或动能定理进行处理。
但对于非匀强电场中的问题只能根据动能定理来解决了。
2、电场中的偏转问题
带电粒子以一定的速度和电场成一定角度进入电场,这样带电粒子的受力方向与速度方向不在同一直线上,粒子将做曲线运动。
常见的是带电粒子垂直电场方向射入电场,这类问题的分析方法和平抛运动问题的分析方法一样,把粒子的运动分解成沿受力方向的匀加速运动和沿初速度方向的匀速运动。
主要解决的问题是带电粒子的末速度、偏转距离、偏转角度。
3、磁场中的偏转问题
射入磁场的带电粒子,只要它的速度方向与磁场成一定的角度。
它就受到磁场对它的洛伦兹力作用。
如果垂直射入匀强磁场的带电粒子,它的初速度方向和所受洛伦兹力的方向都在跟磁场方向垂直的平面内,没有作用使粒子离开这个平面,所以粒子只能在这个平面运动。
4、复合场中的运动问题
所谓复合场中的运动,就是在两个或两个以上的场中运动的问题。
带电粒子在复合场中要受到两个或两个以上的力的作用,运动情况一般比较复杂,高中阶段很难解决。
但可设计出粒子匀速运动或匀速圆周运动的问题。
解题方法是分析出受力情况,根据粒子的运动特点来判断未知量。