测控技术与仪器专业概论
- 格式:doc
- 大小:35.00 KB
- 文档页数:8
测控技术与仪器专业导论报告测控和技术与仪器专业认识一、专业学习(研究)对象测控技术与仪器专业是一个电子与信息高新技术的交叉学科专业,学习(研究)对象包括电子电路、信息处理、传感与控制、软硬件设计、网络与通信、现代仪器系统集成等。
二、专业核心,特色课程课程设置分为学科平台基础课和专业课,其中学科平台基础课主要有工程图学、机械工程基础、电路、模拟电子技术、数字电子技术、传感器技术、自动控制原理、计算机控制技术、微机原理与接口技术、数据库应用基础、仪器可靠性。
专业课主要有检测技术与系统、测控技术与仪器专业导论、控制仪表与电器、网络与通信、误差理论与数据处理、单片机原理及应用、虚拟仪器、计算机测控系统、船用仪器仪表、自动测试系统、FPGA系统设计、数字信号处理等三、专业培养目标培养具有社会责任感和良好的科学、工程、人文素养,较好地掌握自然科学基础、工程基础、测控技术与仪器方面的基础知识和基本技能,具有测控系统与仪器设计、实现和应用能力,具有自主学习能力、创新意识和团队合作精神,能够在相关领域从事科学研究、技术开发与管理、工程应用、生产制造、运行维护等工作的专业技术人才。
四、需要本专业人才进行处理的现实问题信息化时代里,测控技术与仪器在各方面都起到了非常重要的作用。
从生活中常用电子产品等里面的感知器件和嵌入式芯片,到高精尖科技所需的设备,都属于我们专业的范畴。
在科学研究领域,科学家获取数据所需要的精密仪器也是专业所涉及的领域。
目前新兴应用的如物联网,机器人和无人驾驶等方面,主要是使用特殊传感设备,相应信息处理芯片,以及智能化感知、通信和控制部分等技术,都是未来科技发展的重要组成部分。
五、就业主要面向的行业本专业培养的本科生有30%以上选择进一步深造,其余主要去往IT高薪技术企业;硕士生中有80%以上进入到国内电子信息及仪器行业一流公司,并承担科研工业,20%的学生选择进一步深造;博士生中有50%进入全国重点高校与重点科研机构从事科研教学工作,50%进入国内外行业一流公司。
测控技术与仪器专业导论
测控技术与仪器专业导论是参加大学专业学习的重要入门课程,也是测控专业本科生必须掌握初步理论知识的基础课程。
它旨在系统地介绍和讲授测控技术与仪器专业发展的基本知识,包括测控管理,测控原理,仪器设计,统计控制等。
该课程将教学课程内容与当代学科发展相结合,使学生掌握测控技术与仪器相关的基本知识,以达到让学生拥有良好的仪器基本知识基础的目的。
同时,在本专业的实践中,也会着重教授学生如何通过不同类型的实验来调试仪器,以便能够实现测控技术专业的目标。
此外,课程还将引导学生学习如何设计和使用测控系统中的元件,以及测控原理的综合应用等内容。
通过学习测控技术与仪器专业导论这门课程,学生将掌握具有工程技能的基础理论知识,为今后的测控技术和仪器专业学习奠定良好的基础。
课程论文首页论测控技术与仪器在当今时代的影响与作用中文摘要:21世纪,测控技术与仪器这个专业开展迅速,俨然成为国内各大高校的热门专业,其中的关系与国家的经济技术开展密不可分。
让我们来看看该专业对于当今时代的影响与作用。
关键词:测控仪器就业未来开展在了解测控技术与仪器专业之前,先把这个词拆开,弄清楚这几个概念。
所谓测控,其中的“测〞就是测量,指采取各种方法获得反映客观事物的对象的运动属性的各种数据,并对数据进展记录和必要的处理。
“控〞指控制,是采取各种方式支配或约束某一客观事物或对象的运动过程以到达一定的目的。
测量控制,简称测控,是人类认识世界和改造世界的两项工作任务。
技术那么是指人类根据生产实践经历和自然科学原理改变或控制其环境的手段和活动。
仪器指为某一特定用途所准备的一套器具或装置,是对物资世界的信息进展测量与控制的根底手段和设备。
所以,测控技术与仪器是将自动化系统上的信号加以采集、整理、处理、而后进展显示或者发出控制信号的过程。
英文名称:Measuring and Control Technology and Instrumentations。
该专业是电子、光学、精细机械、计算机、电力及自动控制技术等多学科互相渗透而形成的一门高新技术密集型综合学科。
专为社会培养信息技术人才。
在21世纪中,测控技术与仪器的开展速度是空前的,这得益于我国经济实力不断增强,特别是信息产业、先进制造业、效劳业的飞速开展,社会对复合型人才培养的需求旺盛;得益于仪器仪表行业关心支持专业教育改革,营造了良好的社会环境,仪器科学与技术学科正在得到社会认可;得益于各高校依托各自优势致力于本专业的教学改革,积累的丰富经历,取得了不菲的成绩;得益于全体教师改变教育观念,顺应信息技术蓬勃开展的潮流,主动面向社会需求,为学科和专业教育开展做出了积极奉献。
正因为它的迅猛开展以及在高新技术中的所占有的地位,所以它可分为两个方向:方向一,以集电子技术、先进控制理论、计算机控制技术、自动检测技术、光电技术以及网络技术于一体为特色,以生产过程的机电装备运行状态及其信息为研究对象。
测控技术与仪器专业概论一、专业简介测控技术与仪器专业是指根据工程技术的需要,从事测量、控制、检测、测试、仪器仪表研究开发、设计制造、应用与管理的学科与专业。
本专业主要培养具有工程测控技术理论基础、测控系统设计、仪器仪表设计、测控系统集成与应用、项目管理、自动化控制等方面的基本知识与技能的高级应用型、技术技能型人才。
测控技术与仪器专业旨在培养学生具备测控技术与仪器制造的基本理论和专业知识,能够在测控技术与仪器领域从事科学研究、技术开发、工程设计与技术管理工作或进行专业的测控仪器设备的研制、生产和维护工作的高级创新型专门人才。
二、专业方向测控技术与仪器专业主要包括以下方向:测量与检测技术、自动化控制技术、仪器仪表与传感器、信息采集与处理技术、测试仪器的设计与生产等。
学生在专业学习过程中将主要学习测控技术与仪器专业所需的基本理论和专业知识,同时注重培养学生的工程实践能力,使其能够胜任测控技术与仪器领域科学研究、技术开发、工程设计与技术管理工作。
三、专业课程1. 信号与系统2. 传感器技术3. 测控技术基础4. 仪器仪表基础5. 自动控制原理6. 电路原理7. 数据采集与处理8. 仪器仪表原理与设计9. 模拟电子技术10. 数字电子技术11. 自动控制系统设计12. 仪器自动检测技术13. 传感器网络技术14. 仪器及测试系统综合设计以上是测控技术与仪器专业的一些基本课程,这些课程将为学生提供测控技术与仪器专业的理论基础和实践技能。
四、就业方向测控技术与仪器专业的学生可在科研院所、高等院校、大型企业、政府部门等单位从事科学研究、技术开发、工程设计与技术管理工作,也可在仪器仪表、自动控制、传感器技术、测试仪器的设计与生产等领域从事仪器设备的研制、生产和维护工作。
测控技术与仪器专业是一个需求广泛且发展迅速的工程技术领域,培养该专业的学生将具备很好的就业前景和发展空间。
随着科技的不断进步与发展,测控技术与仪器专业的人才需求将不断增加,因此选择该专业将为学生未来的发展奠定坚实的基础。
测控技术与仪器专业导论这一学期我们上了专业导论,有3个老师分别就很多领域和方面给我们介绍了关于测控的很多东西,也让我们从多方面来更加了解测控技术与仪器这个专业,也更加认识到测控这个专业今后的从业方向和存在意义,也更加奠定了要学好这门专业的决心。
测控技术与仪器专业是信息科学技术的源头,是研究信息的获取和处理,以及对相关要素进行控制的理论与技术,是电子、光学、精密机械、计算机、信息与控制技术多学科互相渗透而形成的一门高新技术密集型综合学科。
它的专业面广,小到制造车间的检测,大到卫星火箭发射的监控都归于测控技术与仪器专业,所以这个专业以后的发展还是很有前景的。
测控技术自古以来就是人类生活和生产的重要组成部分。
最初的测控尝试都是来自于生产生活的需要,对时间的测控要求使人类有了日晷这一原始的时钟,对空间的测控要求使人类有了点线面的认识。
现代社会对测控的要求当然不会停留在这些初级阶段,随着科技的发展,测控技术进入了全新的时代。
随着科学技术的飞速发展,光机电一体化系统的开发研制与应用越来越受到重视。
但是由于传统观念的影响,很多考生对本专业存在一个明显的认识误区,以为测控技术就是用三角板、直尺之类的仪器进行吃力劳苦的测量,其实这只是很浅显的认识,也是很浅薄的错误。
我们可以听听清华大学测控技术与仪器专业一位同学的话,他说:“进入大学以前,我认为我将来的工作就是拿着大三角板,到处量量,呵呵,谁知开始上专业课了,才知道原来我们的专业是多么尖端,什么激光啦,纳米啊,都是我们测试的手段。
现有的电脑硬件和软件,可以让我轻松地模拟实地环境,不仅学起来轻松省事,更提出了各式各样的问题,可以发挥自己的想像,设计更复杂完备的系统。
”可见,一个真正的测控专业学生,需要掌握更多电学方面的知识,他们要掌握基本的电路知识,具有新颖设计思路,并且能运用多种新技术、手段进行工作。
中国工业以前很长时间里在国际市场上没有地位,一个重要的原因是大路货太多,质量太差,没有高质量的产品,无法与其他工业强国相争,这又与我国测控专业人才非常缺乏有关。
《测控专业概论》教学大纲测控专业概论课程旨在为测控专业的学生提供一个全面了解测控专业的课程,为学生的后续学习和职业发展打下坚实的基础。
本课程将介绍测控的基本概念、原理和常用方法,同时还将介绍测控技术在各个领域的应用。
一、课程概述本课程主要包括以下几个方面的内容:1.测控专业的基本概念和发展历程;2.测量和仪器的基本原理;3.测控系统的结构和基本原理;4.常用的测控技术和方法;5.测控技术在各个领域的应用。
二、课程目标通过本课程的学习,学生应能够:1.了解测控专业的基本概念和发展历程;2.掌握测量和仪器的基本原理;3.了解测控系统的结构和基本原理;4.了解常用的测控技术和方法;5.了解测控技术在各个领域的应用。
三、教学内容和教学方法1.测控专业的基本概念和发展历程(4学时)-测控专业的定义和范围;-测控专业的发展历程;-测控专业的研究内容和学科交叉性。
2.测量和仪器的基本原理(12学时)-测量的基本概念和分类;-测量误差及其分类;-测量仪器的基本原理;-常用的测量仪器和传感器。
3.测控系统的结构和基本原理(16学时)-测控系统的基本概念和分类;-测控系统的结构和功能;-传感器和信号调理技术;-数据采集和信号处理技术。
4.常用的测控技术和方法(16学时)-模拟信号和数字信号处理技术;-自动控制技术;-网络与通信技术;-人机交互技术。
5.测控技术在各个领域的应用(12学时)-工业自动化;-航天航空;-能源与环境;-医疗与生物工程。
教学方法:本课程采用多种教学方法相结合,包括理论讲授、案例分析、实验操作、小组讨论等。
通过理论与实践相结合的教学方式,激发学生的学习兴趣,提高学生的实际应用能力。
四、考核要求课程考核包括平时成绩和期末考试成绩两部分。
平时成绩占总评50%,主要包括课堂表现、作业完成和小组讨论等。
期末考试成绩占总评50%,主要考核学生对课程内容的掌握程度。
五、参考教材1.《测控技术导论》,张斌著,机械工业出版社;2.《测控仪器与传感器原理与应用》,雍华涛著,电子工业出版社;3.《自动控制原理与实践》,吴木川著,高等教育出版社。
测控技术与仪器专业概论班级:测控学号:姓名:摘要:本文介绍了测控技术与仪器专业(Measuring and Control Technology and Instrumentations)的概况、应用与其发展历程,描述了测控技术的基本概念、重要理论及应用,介绍了仪器技术的相关知识,还叙述了新型传感器技术与虚拟仪器技术等。
1.测控技术与仪器专业概况1.1.测控技术与仪器专业的专业定位测控技术与仪器专业,是一门研究信息的获取和处理,以及对相关要素进行控制的理论与技术。
“测控技术与仪器”是指对信息进行采集、测量、存储、传输、处理和控制的手段与设备,包含测量技术、控制技术和实现这些技术的仪器仪表及系统。
测控技术与仪器专业属于工程技术专业,是建立在精密机械、电子技术、光学、自动控制和计算机技术的基础上,以工为主、多学科综合的专业,它主要研究各种精密测试和控制技术的新原理、、新方法和新工艺。
近年来,计算机技术在测控技术的应用研究中呈现出越来越重要的地位。
测控技术是直接应用于生产生活的应用技术,它的应用涵盖了“农轻重、海陆空、吃穿用”等社会生活各个领域。
仪器仪表技术是国民经济的“倍增器”,科学研究的“先行官”,军事上的“战斗力”以及法制法规中的“物化法官”。
计算机化的测试与控制技术以及智能化得精密测控仪器与系统是现代化工农业生产、科学技术研究、管理检测监控等领域的重要标志和手段,发挥着越来越重要的作用。
1.2测控技术与仪器专业的学科定位测控技术与仪器专业涉及仪器学、电子学、光学、精密机械、计算机、信息与控制技术等多项技术,这些技术涉及多个学科领域。
测控技术与仪器专业属于仪器仪表类的本科教育层次,属于工学范畴中的仪器仪表类专业。
测控技术与仪器专业的主干学科是:仪器科学与技术学科、电子信息工程学科、光学工程学科、机械工程学科、计算机科学与技术学科。
测控技术专业的相关学科是:控制科学与工程学科、信息与通信工程学科。
测控技术与仪器是多学科技术交叉融合的典型之一。
信息论、控制论、系统论是测控专业的理论基础,信息技术、控制技术、系统网络技术是测控专业的基本技术,多学科交叉及多系统集成是测控专业的显著特点。
当今世界已进入信息时代,测控技术、计算机技术和通信技术并称信息科学技术的三大支柱,而测控技术是信息技术的源头,是信息流中的重要一环,为信息技术的发展发挥着不可替代的作用。
仪器仪表是多学科交叉的综合性、边缘性学科,以信息的获取为主要任务,并综合有信息的传输、处理和控制等基础知识及应用,“仪器仪表是信息产业的重要组成部分,是信息工业的源头。
”1.3测控技术与仪器专业的应用测控技术是一门应用性技术,广泛用于工业、农业、交通、航海、航空、军事、电力和民用生活各个领域。
随着生产技术的发展需要,测控技术从最初的控制单个及其、设备,到控制整个过程,乃至系统,特别是在当今现代科技领域的尖端技术中,测控技术起着至关重要的作用。
冶金工业中,测控技术的应用有:炼铁过程的热风炉控制、装料控制与高炉控制,轧钢过程的压力控制、轧机速度控制、卷曲控制等及其中使用的多种检测仪表等。
电力工业中,测控技术的应用有锅炉的燃烧控制系统、汽轮机的自动监控、自动保护、自动调节与自动程序控制系统与发动机的电力输入输出控制系统等。
煤炭工业中,测控技术的应用有:采煤过程的煤层气测井仪器、矿井空气成分检测仪器、矿井瓦斯检测仪、井下安全保障监控系统等,煤精炼过程的熄焦过程控制、煤气回收控制、精炼过程控制、生产机械传动控制等。
石油工业中,测控技术的应用有:采油过程的磁性定位仪、含水仪、压力计等支撑测井技术的各种测量仪表,炼油过程的供电系统、供水系统、供蒸汽系统、供气系统、储运系统和三废处理系统与其连续生产过程中大量参数的检测仪表等。
化学工业中,测控技术的应用有:温度测量、流量测量、液位测量、浓度、酸度、湿度、密度、浊度、热值及各种混合气体组分等参数测量需要的测量仪表与按照预定规律控制被控参数的控制仪表等。
机械工业中,测控技术的应用有:精密数字控制机床、自动生产线、工业机器人等。
航空航天工业中,测控技术的应用有:飞行器的飞行高度、飞行速度、飞行状态与方向、加速度、过载以及发动机状态等参数的测量,航天技术的航天运载器技术、航天器技术、航天测控技术等。
军事装备中,测控技术的应用有:精确制导武器、智能型弹药、军队自动化指挥系统(C4IRS系统)、外层空间军事装备(如各种军用侦察、通信、预警、导航卫星等等)。
1.4测控技术与仪器的发展历史1.4.1测控技术的早期实践某种意义上,人类在地球上诞生的第一天起,就为了自身的生存发展需要,为了对大自然及其规律的观察、探索、和利用,不断地发明各种人事世界和改造世界的相应工具,并产生了相应的科学研究和科学技术。
但受知识积累和工艺条件所限,在很长的历史时期内大多属于定向、计时或度量衡用的简单仪器。
早期的测量仪器有:计时仪器——水钟、漏壶;定向仪器——指南针、司南;天文仪器——浑天仪;地震测量仪器——地动仪等等。
1.4.2测控技术的形成与发展科学技术发展史实人类认识自然、改造自然的历史、也是人类文明史的重要组成部分。
科学技术的发展首先取决于测量技术的发展。
近代自然科学是从真正意义上的测量开始的。
许多杰出的科学家梦都是科学仪器的发明家和测量方法的创立者。
测量技术的进步直接带动着科学技术的进步。
·第一次科技革命时期17~18世纪,测控技术初见端倪,欧洲的一些物理学家开始利用电流与磁场作用力制成简单的检流计,利用光学透镜制成望远镜,从而奠定了电学和光学仪器的基础。
18世纪60年代,第一次科技革命开始于英国,直到19世纪,第一次科技革命扩展到欧美、日本,其间,一些简单的测量器具,如测量长度、温度、压力等的器具已经用于生活当中,创造了巨大的生产力。
·第二次科技革命时期19世纪初电磁领域的一系列发展,引发了第二次科技革命。
由于发明了测量电流的仪表,才使电磁学迅速走上正轨,获得了一个又一个长大的发现。
电磁学领域的许多发明,如电报、电话、发电机等,促进了电气时代的到来。
同时,其他各种用于测量和观察的仪器也不断涌现,如使用于1891年以前的用于高程测量的精密一等经纬仪等。
·第三次科技革命时期二战后,各国对高科技的迫切需要,推动了生产技术有一般的机械化带电气化、自动化转变,科学理论研究取得一系列重大突破。
在此期间,以机电产品为典型代表的制造业开始产业化发展,产品大批量生产的特点是循环作业和流水作业,要让这些自动起来,就要求加工生产的灭个阶段自动检测工件的位置、尺寸、形状、姿态或性能等。
为此,需要大量的测控装置。
另一方面,以石油为原料的化工工业兴起,就需要大量的测控仪表。
自动化仪表开始标准化生产,按需构成自动控制系统。
同时,此期间还诞生了数控机床和机器人技术,测控技术与仪器在其中都有重要的应用。
·随着科学技术的发展,仪器仪表从只能进行简单的测量、观察开始,已成为测量、控制和实现自动化必不可少的技术工具。
为了满足各方面的需求,仪器仪表已从传统的应用领域扩展到了生物医学、生态环境、生物工程等非传统应用领域。
21世纪以来,一大批当代最新的技术成果,如纳米级的精密机械研究成果、分子层次的现代化学研究成果、基因层次的生物学研究成果,以及高精密超性能特张功能材料研究成果和全球网络技术推广应用成果等相继问世,是仪器仪表领域发生了根本性的变革,促进了高科技化、智能花的新型仪器仪表时代的来临。
2.测量技术人类对自然界的一切认识与改造离不开对自然界信息的获取,因此获取信息的活动是人类最基本的活动之一,测量就是获取信息的一种活动。
2.1测量的基本概念2.1.1测量的定义测量时人们对客观事物取得数量概念的一种认识过程,是借助专门的技术和一起装置,采用一定的方法获取某一客观事物定量数据资料的认识过程。
也就是说,测量时将被测量与标准量(单位)进行比较,从而确定被测量对标准量的倍数,并用数字表达这一结果。
实现测量的工具一般称为测量仪器、仪表、计或器,一般体积大、功能多、精度高的称为仪器。
1.检测传统的测量是被测量与标准量值的直接比对(如对长度等的直接测量)。
随着测量领域的不断扩大,测量方法也逐渐复杂多样。
不只是简单的比对就能得到结果,也不是直接读数就可以表达出结果,需要测量信号的输出。
这样,测量过程就需要经过多次转换处理,将信号变成易于显示和传输的物理量(如,对温度的测量,需要将温度信号转换成易于读出的长度信号等)。
有时,我们还要对输出结果进行分析、判断(如进行血压的定性测量)。
因此,检测是将测量信号经过多次转换、处理,最后变成易于显示和传输的物理量进行显示和输出。
一般的电子、光电、机电测量仪器都可称为检测仪器。
2.测试测试通常被认为是具有实验性质的测量,是测量与实验的综合,属于信息科学的范畴。
测量是为了确定被测信号的量值而进行的操作过程,实验是对未知事物探索性的检验过程。
测试可以说是更加复杂的测量,需要外加激励信号,把未知的被测参数转化为可以观察的信号,并获取有用的信息。
2.1.2测量技术的分类测量技术按其测量结果的产生方式可分为直接、间接与联立测量三种。
1.直接测量将被测量与标准量直接对比就能得到测量结果,或经检测转换后就能得到检测结果的测量方式称为直接测量。
优点是测量过程简单且迅速,是生产生活中最常用的测量方法。
2.间接测量对被测参数有确定的函数关系的其他参数进行测量,然后将测量值代入函数关系式,经过计算的到所需结果,这种测量方式称为间接测量。
间接测量环节较多,但有时可以通过多种测量途径的到较高的测量精度3.联立测量在间接测量师,若被测参数必须经过求解联系方程才能得到最后结果,则称这样的测量为联立测量。
联立测量的测试过程较复杂,是一种特殊的精密测量方法,多用于科学实验或工艺试验。
2.1.3测量系统的构成一般测量系统有传感器、中间变换器和显示记录仪组成。
传感器将被测量检出并转换成已与测量的物理量,中间变换器对传感器的输出量进行分析、处理、转换成后级仪表能接受的信号,输出给其他系统,或由显示记录仪对测量结果进行显示、记录。
2.2传感器的基本概念传感器是测量系统的第一的环节,对于控制系统来说,如果把计算机比作大脑,那么传感器就相当于五官,直接影响到系统的控制精度。
2.2.1传感器的定义传感器在我国国家标准中的定义是:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
由于传感器基本上都是与电子仪器详解,因此可以狭义地说,传感器是根据自身对某种参数敏感的特点,利用各种物理效应、化学效应及生物效应把被测的非电量转换成点亮的器件或装置。
2.2.2传感器的组成传感器一般由敏感元件、转换文件、转换电路组成。