初一数学下册期末考试试卷及答案
- 格式:docx
- 大小:89.63 KB
- 文档页数:8
2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。
()2. 一个数既是偶数又是奇数。
()3. 任何两个数的和都是正数。
()4. 任何两个数的差都是负数。
()5. 任何两个数的积都是正数。
()三、填空题(每题1分,共5分)1. 5的平方根是______。
2. 下列数中,最大的是______(2,3,0,5)。
3. 两个相邻的自然数之和是______。
4. 下列数中,最小的数是______(3,4,2,1)。
5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。
四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。
2. 请简述什么是绝对值。
3. 请简述什么是分数。
4. 请简述什么是比例。
5. 请简述什么是方程。
五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。
2. 若一个数的三分之一是4,求这个数。
3. 若一个数的二分之一是5,求这个数。
4. 若一个数的四分之一是3,求这个数。
5. 若一个数的五分之一是2,求这个数。
六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。
2. 请分析什么是反比例函数,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。
2. 请用尺规作一个半径为3cm的圆。
八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。
七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。
学号。
班级:一、选择题(共10小题,每小题3分,共30分)1.若m。
-1,则下列各式中错误的是()A。
6m。
-6B。
-5m < -5C。
m+1.0D。
1-m < 22.下列各式中,正确的是()A。
16=±4B。
±16=4C。
3-27=-3D。
(-4)^2=163.已知a。
b。
0,那么下列不等式组中无解的是()A。
{x-a。
x>-b}B。
{x>a。
x<-a。
x<-b}C。
{x>a。
xb}D。
{x-a。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°B。
先右转50°,后左转40°C。
先右转50°,后左转130°D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1}B。
{x-y=1.3x+y=5}C。
{x-y=3.3x+y=-5}D。
{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°B。
110°C。
115°D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4B。
3C。
2D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
5B。
6C。
7D。
89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。
人教版七年级数学下册期末考试测试卷(含答案)班级:姓名:得分:时间:120分钟满分:120分一、选择题(共10小题,每题3分,共30分)1.在实数5、227、0、2π、36、-1.414中,有理数有( )A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3B.m>3C.m<-1D.m>-13.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()(A)(4,3)(B)(-2,-1)(C)(4,-1)(D)(-2,3)4.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其两边平行的纸条如图所中正确的个数为()A.1 B.2 C.3 D.45.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( )A.30° B.45° C.60° D.75°6.如果a3x b y与﹣a2y b x+1是同类项,则()A 、23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩7.林老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( ).组别A 型B 型 AB 型 O 型 频率 0.40.350.10.15A.16人B.14人C.4人D.6人8.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==21y x9.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种 B.5种 C.4种 D.3种10.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A . 1≥aB . 1>aC .1-≤aD . 1-<a 二、填空题(共10小题,每题3分,共30分) 11.点P (-5,1),到x 轴距离为__________.12.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是 。
七年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. √ 2的相反数是( )A. 2B. 0C. √ 2D. −√ 22. 下列说法中,错误的是( )A. 4的算术平方根是2B. √ 81的平方根是±3C. 121的平方根是±11D. −1的平方根是±13. 估计√ 10的值( )A. 在3到4之间B. 在4到5之间C. 在5到6之间D. 在6到7之间4. 下列图形中,∠1和∠2是内错角的是( )A. B.C. D.5. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为( )A. 45° B. 55°C. 65°D. 75°6. 在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是( )A. (−1,1)B. (5,1)C. (2,4)D. (2,−2)7. 用加减法解方程组{2a+2b=3,①3a+b=4,②最简单的方法是( )A. ①×3−②×2B. ①×3+②×2C. ①+②×2D. ①−②×28. 不等式组{x−4≤2(x−1),12(x+3)>x+1中两个不等式的解集在数轴上表示正确的是( )A. B. C. D.9. 如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′等于( )A. 70°B. 65°C. 50°D. 25°10. 小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( )A. 31元B. 30元C. 25元D. 19元二、填空题(本大题共6小题,共18.0分)11. 如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为_________.12. 若√ x−1+(y+2)2=0,则(x+y)2021等于.13. 若m<n,则3m−23n−2.14. 如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_____________.15. 3−√ 11的相反数是,绝对值是.16. 在平面直角坐标系中,某机器人从原点O出发,按向右,向上,向右,向下的方向每次移动1个单位长度,行走路线如图所示,第1次移动到A1(1,0)第2次移动到A2(1,1),第3次移动到A3(2,1),第4次移动到A4(2,0)…则第2022次移动至点A2022的坐标是.三、解答题(本大题共7小题,共52.0分。
七年级下学期期末考试数学试卷(附答案解析)一、选择题(本大题10小题,每小题3分共30分)1.数4的算术平方根是()A.2 B.﹣2 C.±2 D.2.下列图形中,∠1与∠2互为邻补角的是()A.B.C.D.3.下列各数中是无理数的是()A.B.C.D.3.144.在下列调查中,适宜采用全面调查的是()A.了解某省中学生的视力情况B.了解某班学生的身高情况C.检测一批电灯泡的使用寿命D.调查一批汽车的抗撞击能力5.在乡村振兴活动中,某村通过铺设水管将河水引到村庄C处,为节省材料,他们过点C向河岸l作垂线,垂足为点D,于是确定沿CD铺设水管,这样做的数学道理是()A.两点之间,线段最短B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两条直线相交有且只有一个交点6.第三象限内的点P到x轴的距离是5,到y轴的距离是6,那么点P的坐标是()A.(5,6)B.(﹣5,﹣6)C.(6,5)D.(﹣6,﹣5)7.李老师设计了一个关于实数运算的程序:输入一个数,乘以后再减去,输出结果.若小刚按程序输入2,则输出的结果应为()A.2 B.C.﹣D.38.下列语句中,是真命题的是()A.如果|a|=|b|,那么a=bB.一个正数的平方大于这个正数C.内错角相等,两直线平行D.如果a>b,那么ac>bc9.若a﹣b<0,则下列不等式正确的是()A.3a>3b B.﹣2a>﹣2b C.a﹣1>b﹣1 D.3﹣a<3﹣b10.已知关于x,y的二元一次方程组,下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣1;②当x为正数,y为非负数时,﹣<a≤;③无论a取何值,x+2y的值始终不变.A.①②B.②③C.①③D.①②③二、填空题(本大题7小题,每小题4分,共28分)11.(4分)计算:|﹣|=.12.(4分)在平面直角坐标系中,将点A(3,m﹣2)在x轴上,则m=.13.(4分)根据如表数据回答259.21的平方根是.x16 16.1 16.2 16.3x2256 259.21 262.44 265.6914.(4分)已知二元一次方程2x﹣3y﹣5=0的一组解为,则2a﹣3b+3=.15.(4分)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明想得分不少于90分,他至少要答对题.16.(4分)如图,将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F.若∠EFC=70°,则∠ACF=°.17.(4分)为组织研学活动,王老师把班级里50名学生计划分成若干小组,若每组只能是4人或5人,则有种分组方案.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)在等式y=kx+b中,当x=3时,y=3;当x=﹣1时,y=1.求k,b的值.19.(6分)解不等式组,并将不等式组的解集在数轴上表示出来.20.(6分)在平面直角坐标系中,点P(﹣5,2)和点Q(m+1,3m﹣1),当线段PQ与x轴平行时,求线段PQ的长.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为了解学生的体育锻炼情况,围绕“你最喜欢的一项体育活动”进行随机抽样调查,从而得到一组数据,如图是根据这组数据绘制的两个统计图.请结合统计图,解答下列问题:(1)该校对名学生进行了抽样调查:在扇形统计图中,“羽毛球”所对应的圆心角的度数为度;(2)补全条形统计图;(3)若该校共有2400名学生,请你估计全校学生中最喜欢跳绳活动的人数约为多少人.22.(8分)如图,DE⊥AC,FG⊥AC,∠1=∠2,∠B=∠3+50°,∠CAB=60°.(1)求证:BC∥AG;(2)求∠C的度数.23.(8分)为鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分技第二阶梯电价收费,如图是涛涛家2021年4月和5月所交电费的收据(度数均取整数).(1)该市规定的第一阶梯电费和第二阶梯电费单价分别为多少?(2)涛涛家6月份家庭支出计划中电费不超过120元,她家最大用电量为多少度?五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)小明同学在数学活动中,将一副三角板按如图1所示的方式放置,其中点B在线段EC上,点D在线段AC上,AB与DE相交于点F,∠C=90°,∠A=30°,∠E=45°.(1)求∠BFD的度数;(2)如图2,当小明将三角板DCE绕点C转动到ED⊥AB时,求∠BCE的度数;(3)小明思考:在转动三角板DCE的过程中,当0°<∠BCE<180°,且点E在直线BC的上方时,是否存在DE与三角板ABC的一条边互相平行?若存在,请你帮小明直接写出∠BCE 所有可能的值;若不存在,请说明理由.25.(10分)如图,在平面直角坐标系中,正方形ABCO的边长为1,边AO,CO分别在坐标轴的正半轴上,连接OB,以点O为圆心,对角线OB为半径画弧交x轴的正半轴于点D.(1)填空:线段OB的长为,点D的坐标为;(2)将线段AD向左平移到A′D′位置,当OA'=AD′时,求点D′的坐标;(3)在(2)的条件下,求点D′到直线OB的距离.参考答案与解析一、选择题1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.【解答】解:A.两个角不存在公共边,故不是邻补角,故A不符合题意;B、两个角不存在公共边,故不是邻补角,故B不符合题意;C、两个角不存在公共边,故不是邻补角,故C不符合题意;D、两个角是邻补角,故D符合题意.故选:D.3.【解答】解:A.是分数,属于有理数,故本选项不合题意;B.是无理数,故本选项符合题意;C.,是整数,属于有理数,故本选项不合题意;D.3.14是有限小数,属于有理数,故本选项不合题意;故选:B.4.【解答】解:A.了解某省中学生的视力情况,适合抽样调查,不符合题意;B.了解某班学生的身高情况,适合采用全面调查,符合题意;C.检测一批节能灯的使用寿命,具有破坏性,适合抽样调查,不符合题意;D.调查一批汽车的抗撞击能力,具有破坏性,适合抽样调查,不符合题意;故选:B.5.【解答】解:因为CD⊥l于点D,根据垂线段最短,所以CD为C点到河岸l的最短路径.故选:C.6.【解答】解:∵第三象限的点P到x轴的距离是5,到y轴的距离是6,∴点P的横坐标是﹣6,纵坐标是﹣5,∴点P的坐标为(﹣6,﹣5).故选:D.7.【解答】解:2﹣=.故选:B.8.【解答】解:A、如果|a|=|b|,那么a=b或a=﹣b,原命题是假命题;B、一个正数的平方不一定大于这个正数,如0.1,原命题是假命题;C、内错角相等,两直线平行,是真命题;D、如果a>b,c<0时那么ac<bc,原命题是假命题;故选:C.9.【解答】解:由a﹣b<0可得a<b,A.∵a<b,∴3a<3b,故本选项不合题意;B.∵a<b,∴﹣2a>﹣2b,故本选项符合题意;C.∵a<b,∴a﹣1<b﹣1,故本选项不合题意;D.∵a<b,∴﹣a>﹣b,∴3﹣a>3﹣b,故本选项不合题意;故选:B.10.【解答】解:解方程组得:,①∵x、y互为相反数,∴x+y=0,∴+=0,解得:a=﹣1,故①正确;②∵x为正数,y为非负数,∴,解得:﹣<a≤,故②正确;③∵x=,y=,∴x+2y=+2×==,即x+2y的值始终不变,故③正确;故选:D.二、填空题11.【解答】解:|﹣|=.故答案为:.12.【解答】解:∵点A(3,m﹣2)在x轴上,∴m﹣2=0,解得:m=2.故答案为:2.13.【解答】解:由表中数据可得:259.21的平方根是:±16.1.故答案为:±16.1.14.【解答】解:∵二元一次方程2x﹣3y﹣5=0的一组解为,∴2a﹣3b﹣5=0,∴2a﹣3b=5,∴2a﹣3b+3=5+3=8,故答案为:815.【解答】解:设应答对x道,则:10x﹣5(20﹣x)>90,解得:x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.故答案为:13.16.【解答】解:∵将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,∴∠E=∠B=90°,∠CAB=∠CAE,∵AB∥CD,∠EFC=70°,∴∠BAE=∠EFC=70°,∠CAB=∠ACF,∴∠CAB=∠BAE=35°,∴∠ACF=∠CAB=35°.故答案为:35.17.【解答】解:设4人小组有x组,5人小组有y组,由题意可得:4x+5y=50,∵x,y为自然数,∴,,,∴有3种分组方案,故答案为:3.三、解答题(一)18.【解答】解:根据题意,得,①﹣②,得4k=2,解得:k=,把k=代入②,得﹣+b=1,解得:b=.19.【解答】解:由2x≥x﹣1,得:x≥﹣1,由x+2>4x﹣1,得:x<1,则不等式组的解集为﹣1≤x<1,将不等式组的解集表示在数轴上如下:20.【解答】解:当线段PQ与x轴平行时,3m﹣1=2,解得:m=1,∴Q点坐标为(2,2),∴PQ=2﹣(﹣5)=2+5=7,即线段PQ的长为7.四、解答题(二)21.【解答】解:(1)因为抽样中喜欢足球的学生有12名,占30%,所以共抽样调查的学生数为:12÷30%=40(名).喜欢羽毛球的2名,占抽样的:2÷40=5%.其对应的圆心角为:360°×5%=18°.故答案为:40,18.(2)∵喜欢篮球的占40%,所以喜欢篮球的学生共有:40×40%=16(名).补全的条形图:(3)∵样本中有5名喜欢跳绳,占抽样的5÷40=12.5%,所以该校喜欢跳绳的学生有2400×12.5%=300(名).答:全校学生中最喜欢跳绳活动的人数约为300名.22.【解答】(1)证明:∵DE⊥AC,FG⊥AC,∴DE∥FG,∴∠2=∠AGF,∵∠1=∠2,∴∠1=∠AGF,∴BC∥AG;(2)解:由(1)得,BC∥AG,∴∠B+∠BAC=180°,即∠B+∠3+∠CAB=180°,∵∠B=∠3+50°,∠CAB=60°,∴∠B+(∠B﹣50°)+60°=180°,∴∠B=85°,∴∠C=180°﹣∠B﹣∠CAB=180°﹣85°﹣60°=35°.23.【解答】解:(1)设该市规定的第一阶梯电费单价为x元,第二阶梯电费单价为y元,依题意,得:,解得:.答:该市规定的第一阶梯电费单价为0.5元,第二阶梯电费单价为0.6元.(2)设涛涛家6月份的用电量为m度,依题意,得:200×0.5+0.6(m﹣200)≤120,解得:m≤233,∵m为正整数,∴m的最大值为233.答:涛涛家6月份最大用电量为233度.五、解答题(三)24.【解答】解:(1)如图1中,∵∠A=30°,∠CDE=45°,∴∠ADF=180°﹣45°=135°,∴∠AFD=180°﹣∠A﹣∠ADF=180°﹣30°﹣135°=15°,∴∠BFD=180°﹣∠AFD=180°﹣15°=165°.(2)如图2中,设AB交CE于J.∵DE⊥AB,∴∠EFJ=90°,∵∠E=45°,∴∠EJF=90°﹣45°=45°,∴∠BJC=∠EJF=45°,∵∠B=60°,∴∠ECB=180°﹣∠B﹣∠BJC=180°﹣60°﹣45°=75°.(3)如图3﹣1中,当DE∥BC时,∠BCE=∠E=45°.如图3﹣2中,当DE∥AC时,∠ACE=∠E=45°,∴∠BCE=∠ACB+∠ACE=90°+45°=135°.如图3﹣3中,当DE∥AB时,延长BC交DE于J.∴∠CJD=∠ABC=60°,∵∠CJD=∠E+∠ECJ,∠E=45°,∴∠ECJ=15°,∴∠BCE=180°﹣∠ECJ=180°﹣15°=165°,综上所述,满足条件的∠BCE的值为45°或135°或165°.25.【解答】解:(1)∵四边形OABC是正方形,且边长为1,∴OA=AB=1,根据勾股定理得,OB=,∴OD=,∴D(,0),故答案为:,(,0);(2)∵线段AD向左平移到A′D′,∴AD=A′D′,∵OA'=AD′,∴OD′=OA'+A′D′=(OA'+A′D′+AD′+AD)=OD=,∴D(,0),(3)设点D′到直线OB的距离为h,则S△OBD′=OB•h=OD′•BA,即h=×1,∴点D′到直线OB的距离为h=.。
2024北京昌平初一(下)期末数 学2024.06本试卷共9页,共100分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后将答题卡交回.一、选择题(本题共8道小题,每小题2分,共16分)1. 2024北京月季文化节正式开启,11个展区共展示超3000个品种的月季.传统月季花粉为单粒花粉,呈长球形或超长球形,大小为~~⨯m μm 17.0225.33μ37.5951.95.其中=m 0.003759cm μ37.59,把0.003759用科学记数法表示为( )A. ⨯−0.3759102B. ⨯0.3759102C. ⨯−3.759103D. ⨯3.759103 2. 不等式x 3x 21的解集在数轴上可以表示为( ) A. B. C. D. 3. 在今年的“五一”假期中,昌平消费市场“花样翻新”,多景区客流“爆棚”,客流量与文旅消费均呈现上升趋势.为了解中学生的假期出游情况,从全校2000名学生记录的假期出游时间(单位:小时)中随机抽取了200名学生的假期出游时间(单位:小时)进行统计,以下说法正确的是( )A. 2000名学生是总体B. 样本容量是2000C. 200名学生的假期出游时间是样本D. 此调查为全面调查 4. 下列计算正确的是( )A. ⋅=a a a 236B. −=a a ()326C. +=a a a 224D. ÷=a a a 824 5. 如果>a b ,那么下列不等关系一定成立的是( )A. a b +<+11B. −>−a b 22C. >ac bcD. >a b 556. 如图,一条街道有两个拐角∠ABC 和∠BCD ,已知∥AB CD ,若∠=︒ABC 150,则∠BCD 的度数是( )A. ︒30B. ︒120C. ︒130D. ︒1507. 若⎩=⎨⎧=y x 12是关于x ,y 的二元一次方程−=ax y 3的一个解,则a 的值为( ) A. −1 B. 1 C. −2 D. 28. 已知a ,b 为有理数,则下列说法正确的是( )①+≥a b ()02;②+≥a b ab 222;③+=−+a b a b ab ()()222A. ①B. ①②C. ①③D. ①②③二、填空题(本题共8道小题,每小题2分,共16分)9. 因式分解:−+=x x 3632______.10. 如果一个角等于︒70,那么这个角的补角是_________°.11. 计算:(6x 2+4x )÷2x =_____.12. 已知命题“同位角相等”,这个命题是_________命题.(填“真”或“假”)13. 计算:(2x +1)(x ﹣2)=_____.14. 若=x 24,=y 216,则+=x y ___________.15. 4月23日为世界读书日,小萱从图书馆借来一本共266页的书,计划在10天内读完(包括第10天).如果前4天每天只读15页,若从第5天起平均每天读x 页才能按计划完成,则根据题意可列不等式为____.16. 如图1的长为a ,宽为b >a b )(的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足的数量关系为_________.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 计算:−−+−−−π32(5)31201. 18. 解不等式:+<−x x 2113.19. 解方程组:⎩−=⎨⎧+=x y x y 34127 20. 解不等式组:⎩≤+⎨⎧+≤x x x 25623并把它的解集在数轴上表示出来.21. 已知−=x x 12,求代数式−+−+x x x (1)(3)(3)2的值.22. 补全解答过程:如图,∠1+∠2=180°,∠3=∠A .求证:∠B =∠C .证明:∵∠1+∠2=180°,∴(同旁内角互补,两直线平行).∴∠3=∠D().又∵∠3=∠A,∴.∴AB∥CD().∴∠B=∠C().23. 某校开展数学节活动,活动成果是学生形成对于数学探索的海报,活动以“集市”形式展览个人的作品,并面向同学和老师讲解自己的作品,“小创客”创意市集作品的评价涉及四个维度:创意的真实性、创意的新颖性、创意的科学性和表达的严谨性,并以四个维度总分记为最后得分,满分100分,小明经过抽样调查部分得分数据,具体得分分布在以下四组内:A B C D7580808585909095,并把得分情况绘制成如下统计图:C组得分:87,,,,86,88,86,86,89“小创客”创意市集作品得分条形统计图“小创客”创意市集作品得分扇形统计图(1)本次调查了______名学生,B组扇形统计图的圆心角度数为_______°(2)C组得分的平均数是_______,众数是_________,中位数是__________.(3)若某校有500人参加此次“小创客”创意市集作品展示,请你估计得分超过86分的有多少人?24. 端午节前夕,小明和小华相约一起去超市购买粽子.小明购买A品牌和B品牌的粽子各1袋,共花费55元;小华购买A品牌粽子3袋和B品牌粽子2袋,共花费135元.(1)求A、B两种品牌粽子每袋各是多少元;(2)端午假期,小明一家回老家探亲,小明妈妈想要再买一些粽子送给亲戚,于是拿出500元交给小明,让他去超市购买A、B两种品牌粽子共18袋,且想要尽量多购入B品牌粽子,请问小明最多购买B品牌粽子多少袋?25. 观察个位上的数字是5的两位数的平方(任意一个个位数字为5的两位数n 5可用代数式+n 105来表示,其中≤≤n 19,n 为正整数),会发现一些有趣的规律.请你仔细观察,探索其规律.第1个等式:=⨯⨯+1512100252)(; 第2个等式:=⨯⨯+2523100252)(; 第3个等式:=⨯⨯+3534100252)(; …(1)写出第4个等式:_______;(2)用含n 的等式表示你的猜想并证明;(3)计算:−⨯⨯+11589100252)( =_______. 26. 小明为了方便探究关于x ,y 的二元一次方程+=ax by 9(≠≠a b 0,0)解的规律,把x 和y 的部分值分别填入如下表,(x 的值从左到右依次增大).(1)p 的值为__________(填正确的序号).①17;②3;③−1(2)下列方程中,与+=ax by 9组成方程组,在−<<x 78范围内有解的是__________(填正确的序号).①+=−x y 25;②+=−x y 24;③−=x y 31,(3)已知关于x ,y 的二元一次方程+=cx dy 1(≠≠c d 0,0)的部分解如下表所示:则方程组⎩+=⎨⎧cx dy 1的解为__________(填正确的序号) ①⎩=⎨⎧=−y x 69;②⎩=⎨⎧=−y x 118;③⎩=⎨⎧=−y x 41;④⎩=−⎨⎧=y x 47 27. 已知∠=︒<<︒ααAOB 090)(,点C 是射线OB 上一点,过点C 作OA 的垂线交射线OA 于点P ,过点P 作∥MN OB ,点D 是射线OA 上一点,过点D 作CD 的垂线分别交直线MN ,OB 于点E ,F .(1)如图1,CD 平分∠OCP 时,①根据题意补全图形;②求∠ODF 的度数(用含α式子表示);(2)如图2,当CD 平分∠PCB 时,直接写出∠ODF 的度数(用含α式子表示).28. 已知,x x 12是不等式组解集中的解,若存在一个a ,使+=x x a 212,我们把这样的,x x 12称为该不等式组的“关联解”,a 叫做“关联系数”.(1)当=a 0时,下列不等式组存在“关联解”的是_________.A .⎩>+⎨⎧+>x x x 2412B .⎩⎪>−⎨⎪⎧−+<x x x 21112 C .⎩<−⎨⎧<+x x x x 22321 (2)不等式组⎩+≤++⎪⎨⎪−≥−⎧x a x a x x 22522231的解集上存在“关联解”,若=−x 21,“关联系数a ”的取值范围为_________.(3)不等式组⎩≤+⎨⎧≥−−x x a x a 3221的解集存在关联解,x a 81,若++=a b c 12,且++a b c 1621010是整数,直接写出“关联系数a ”的值_________.参考答案一、选择题(本题共8道小题,每小题2分,共16分)1. 【答案】C【分析】本题考查科学记数法,绝对值小于1的负数也可以利用科学记数法表示,一般形式为⨯−a n 10,其中≤<a 110,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,根据科学记数法的方法进行计算即可.【详解】解:=⨯−0.003759 3.759103,故选:C .2. 【答案】D【分析】本题考查了解一元一次不等式及不等式解集的表示,解题的关键是掌握解一元一次不等式的方法及不等式解集的表示方法.依次移项、合并同类项可得不等式的解集,从而得出答案.【详解】解:移项,得:−<−x x 321,合并同类项,得:<−x 1,把不等式的解集表示在数轴上:故选:D .3. 【答案】C【分析】本题考查了全面调查与抽样调查,总体、个体、样本、样本容量,熟练掌握这些数学概念是解题的关键.根据全面调查与抽样调查,总体、个体、样本、样本容量的意义,逐一判断即可解答.【详解】解:A .2000名学生的假期出游时间是总体,故选项A 不符合题意;B .样本容量是200,故选项B 不符合题意;C .200名学生的假期出游时间是样本,故选项C 符合题意;D .此调查为抽样调查,故选项D 不符合题意;故选:C .4. 【答案】B【分析】本题主要考查了合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,根据合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,逐项判断即可求解.【详解】解:A :⋅=a a a 235,故选项A 错误;B :−=a a ()326,故选项B 正确;C :+=a a a 2222,故选项C 错误;D :÷=a a a 826,故选项D 错误;故选:B .5. 【答案】D【分析】本题考查不等式的基本性质,解答关键是熟知不等式的基本性质①不等式基本性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式基本性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变; ③不等式基本性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.利用不等式的基本性质逐项判断即可解答.【详解】解:∵>a b ,∴+>+a b 11,故选项A 不符合题意;∵>a b ,∴−<−a b 22,故选项B 不符合题意;∵>a b ,当>c 0,>ac bc ,当<c 0,<ac bc ,故选项C 不符合题意;∵>a b , ∴>a b 55, 故选项D 符合题意;故选:D .6. 【答案】D 【分析】本题考查了平行线的性质:两直线平行,内错角相等,由AB CD ,根据两直线平行,内错角相等,可得∠BCD 的度数,解题的关键是将实际问题转化为数学问题求解. 【详解】∵,∠=︒AB CD ABC 150∴∠=∠=︒BCD ABC 150(两直线平行,内错角相等).故选:D .7. 【答案】D【分析】将这组值代入二元一次方程即可得出答案.【详解】解:将⎩=⎨⎧=y x 12代入−=ax y 3得:a −=213, 解得:=a 2,故D 正确.故选:D .【点睛】本题考查二元一次方程的解,正确理解方程的解是解题的关键.8. 【答案】B【分析】本题考查整式的乘法-公式法,关键是熟练掌握完全平方公式,根据完全平分公式逐一进行检验即可.【详解】解:∵+≥a b ()02,故①正确;∵−=−+≥a b a ab b 20222)(,∴+≥a b ab 222,故②正确;∵+=++=−++=−+a b a ab b a ab b ab a b ab ()2244222222)(,故③不正确;故选:B 二、填空题(本题共8道小题,每小题2分,共16分)9. 【答案】−x 312)(##−x 312)(【分析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 原式提取公因式3,再利用完全平方公式分解即可.【详解】解:−+=x x 3632−+=−x x x 3213122)()(, 故答案为:−x 312)(.10. 【答案】110【分析】本题主要考查了补角,解题的关键在于熟知如果两个角的度数之和为︒180,那么这两个角互补,根据补角的定义求解即可.【详解】解:∵一个角等于︒70,∴这个角的补角是︒−︒=︒18070110,故答案为:110.11.【答案】3x +2【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:原式=6x 2÷2x +4x ÷2x=3x +2.故答案为:3x +2.【点睛】本题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.12. 【答案】假【分析】本题主要考查了平行线的性质及真假命题的判断.正确的命题叫真命题,错误的命题叫假命题.要说明一个命题是真命题,必须一步一步有根有据的证明;要说明一个命题是假命题,只需要举一个反例即可.掌握判断真假命题的方法是解题的关键,根据平行线的性质判断即可.【详解】解:两直线平行时,同位角相等;两直线不平行时,同位角不相等.因此命题“同位角相等”不一定成立,是假命题.故答案为:假.13. 【答案】2x 2﹣3x ﹣2.【分析】根据多项式乘多项式的运算法则进行解答即可得出答案.【详解】(2x +1)(x ﹣2)=2x 2﹣4x +x ﹣2=2x 2﹣3x ﹣2;故答案为:2x 2﹣3x ﹣2.【点睛】此题主要考查多项式乘多项式运算,熟练掌握,即可解题.14. 【答案】6【分析】本题主要考查了有理数的乘方运算,将原式变形求出x 和y 的值即可得到答案.【详解】解:∵=x 24,∴=x 222,∴=x 2,∵=y 224,∴=y 4,∴+=x y 6,故答案为:615. 【答案】+≥x 606266【分析】本题考查列不等式,先计算出前4天读的页数,再列出后6天读的页数的表达式,根据读的页数的总和必须大于或等于书的总页数建立不等式即可.【详解】解:根据题意得,前4天读的页数为⨯=41560页,后6天读的页数为:x 6,根据题意得读的页数的总和需要大于或等于266页,故+≥x 606266,故答案为:+≥x 606266.16. 【答案】=a b 3【分析】本题主要考查了整式的混合运算的应用,表示出左上角与右下角部分的面积,求出之差,根据差与BC 无关即可求出a 与b 的关系式,弄清题意是解本题的关键.【详解】如图,左上角阴影部分的长为AE ,宽为=AF b 3,右下角阴影部分的长为PC ,宽为a ,∵=AD BC ,即+=+AE ED AE a ,=+=+BC BP PC b PC 3,∴+=+AE a b PC 3,即−=−AE PC b a 3,∴阴影部分面积之差=⋅−⋅S AE AF PC PH=−b AE a PC ·3?=+−−b PC b a a PC 33?)(=−+−b a PC b ab 3932)(,∵S 始终保持不变,∴−=b a 30,即=a b 3,故答案为=a b 3.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 【答案】3【分析】此题主要考查实数的混合运算,根据零次幂、负整数指数幂定义及实数的性质进行化简,即可求解. 【详解】解:−−+−−−π32(5)31201 =−+−334111 =3.18. 【答案】<x 4【分析】本题主要考查了解一元一次不等式,按照移项,合并同类项,系数化为1的步骤解不等式即可.【详解】解:+<−x x 2113移项得:+<−x x 2131,合并同类项得:<x 312,系数化为1得:<x 4.19. 【答案】⎩=⎨⎧=y x 23 【分析】本题考查了解二元一次方程组,利用加减消元法进行计算即可.【详解】解:②①⎩−=⎨⎧+=x y x y 34127 解:将②①⨯+2得=x 515,解得=x 3,将=x 3代入①得+=y 327,解得=y 2,∴方程组的解为:⎩=⎨⎧=y x 23. 20. 【答案】−≤≤x 21,见解析【分析】本题主要考查了解一元一次不等式组,在数轴上表示不等式组的解集,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集,进而在数轴上表示出不等式组的解集即可.【详解】解:②①⎩≤+⎨⎧+≤x x x 25623 解不等式①得:≤x 1,解不等式②得:≥−x 2,∴不等式组的解集为−≤≤x 21,数轴表示如下:21. 【答案】−6【分析】本题考查了整式的混合运算-化简求值,首先通过完全平方公式和平方差公式进行整式的乘法运算,再把−=x x 12代入,即可求解.【详解】解:∵−=x x 12,∴−+−+x x x (1)(3)(3)2=−++−x x x 21922=−−x x 2282=−−x x 282)(=⨯−218=−6.22. 【答案】AD ∥EF ;两直线平行,同位角相等;∠A =∠D ;内错角相等,两直线平行;两直线平行,内错角相等.【分析】依据平行线的判定,即可得到AD ∥EF ,得出∠3=∠D ,进而得出∠A =∠D ,再根据平行线的判定,即可得到AB ∥CD ,最后根据平行线的性质得出结论.【详解】∵∠1+∠2=180°,∴AD ∥EF (同旁内角互补,两直线平行).∴∠3=∠D (两直线平行,同位角相等).又∵∠3=∠A ,∴∠A =∠D .∴AB ∥CD (内错角相等,两直线平行).∴∠B =∠C (两直线平行,内错角相等).故答案为:AD ∥EF ;两直线平行,同位角相等;∠A =∠D ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】此题主要考查平行线的判定与性质,熟练掌握,即可解题.23. 【答案】(1)30,108(2)87分,86分,86.5分(3)估计得分超过86分的有100人【分析】此题考查的是条形统计图和扇形统计图、平均数、众数、中位数,用样本估计总体;(1)根据A 组的人数除以占比求出学生数,根据B 组的人数的占比乘以︒360即可求解;(2)根据平均数众数中位数定义计算即可求解;(3)用得分超过86分的学生人数的占比乘以500,即可求解.【小问1详解】 解:1240%30人,∴本次调查了30名学生,360140%10%20%108,∴B 组扇形统计图的圆心角度数为︒108;【小问2详解】因为C 组得分按从小到大排列为:86,86, 86,87,88, 89,∴C 组得分的平均数是6878688868689871分, 众数是86分, 中位数是=+286.58687分; 【小问3详解】3050010033人, 则估计得分超过86分的有100人.24. 【答案】(1)A 品牌粽子每袋是25元,B 品牌粽子每袋是30元(2)小明最多购买B 品牌粽子10袋【分析】此题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是理解题意,正确列出方程组和不等式.(1)设A 品牌粽子每袋是x 元,B 品牌粽子每袋是y 元,根据题意建立方程组,解方程组即可得到答案; (2)设购买B 品牌粽子m 袋,则购买A 品牌的粽子为−m 18袋,根据总费用小于等于500建立不等式,解不等式即可得到答案;【小问1详解】解:设A 品牌粽子每袋是x 元,B 品牌粽子每袋是y 元,根据题意得⎩+=⎨⎧+=x y x y 3213555,解方程组得⎩=⎨⎧=y x 3025, 答:A 品牌粽子每袋是25元,B 品牌粽子每袋是30元;【小问2详解】解:设购买B 品牌粽子m 袋,则购买A 品牌的粽子为−m 18袋,总费用为n 元,根据题意得=−+n m m 251830)(,整理得=+n m 5450,∵+≤m 5450500,∴≤m 10,∴小明最多购买B 品牌粽子10袋.25. 【答案】(1)=⨯⨯+4545100252)( (2)+=++n n n 1051001252)()(,证明见解析(3)6000【分析】(1)通过观察可得第4个式子;(2)通过观察可得第n 个式子,根据完全平分公式进行换算即可证明答案;(3)利用规律逆向计算,再利用平方差公式进行计算即可.【小问1详解】解:第4个等式为:=⨯⨯+4545100252)(, 故答案为:=⨯⨯+4545100252)(; 【小问2详解】解:猜想用含n 的等式表示为:+=++n n n 1051001252)()(,证明:+n 1052)( =++n n 100100252=++n n 100252)(=++n n 100125)(,故用含n 的等式表示为:+=++n n n 1051001252)()(;【小问3详解】解:−⨯⨯+11589100252)( =−1158522=+−1158511585)()(=⨯20030=6000,故答案为:6000.【点睛】本题考查数字的变化规律,通过观察所给的式子,找到式子规律是解题的关键.26. 【答案】(1)② (2)③(3)③【分析】本题考查二元一次方程的解和解二元一次方程组,解题的关键是掌握加减消元法和代入消元法. (1)先根据表格中的值,建立关于a 、b 的二元一次方程组,解方程组得到a 、b 的值,即可求出二元一次方程,再将=x 0代入方程即可求得答案;(2)依次将三个选项与原方程组件方程组,求出方程组的解进行判断即可;(3)根据表格的数据,建立关于c 、d 的二元一次方程组,解方程组得到c 、d 的值,即可得到原方程组,再解方程组即可得到答案.【小问1详解】解:当=−x 4,=y 7时,−+=a b 479,当=x 2,=y 1时,+=a b 29,∴⎩+=⎨⎧−+=a b a b 29479 解方程组得⎩=⎨⎧=b a 33, ∴二元一次方程为:+=x y 339,即+=x y 3,当=x 0时,=y 3,故=p 3,故答案为:②;【小问2详解】解:∵+=ax by 9方程为:+=x y 3,∴①当方程为+=−x y 25时,方程组为:⎩+=−⎨⎧+=x y x y 253, 解方程组得:⎩=⎨⎧=−y x 118, ∵=−x 8不在−<<x 78范围内,故①不符合题意;③当方程为−=x y 31时,方程组为:⎩−=⎨⎧+=x y x y 313,解方程组得:⎩=⎨⎧=y x 21, ∵=x 1在−<<x 78范围内,故③符合题意;故答案为:③;【小问3详解】解:二元一次方程+=cx dy 1中,当,=−=−x y 72时,方程为−−=c d 721;当,==x y 813,方程为+=c d 8131;∴⎩+=⎨⎧−−=c d c d 8131721, 解方程组得⎩⎪=⎪⎨⎪⎪=−⎧d c 5151, 则方程+=cx dy 1为−+=x y 55111,即−+=x y 5, ∴方程组⎩+=⎨⎧+=cx dy ax by 19为:⎩−+=⎨⎧+=x y x y 53, 解方程组得⎩=⎨⎧=−y x 41, 故答案为:③.27. 【答案】(1)①见详解;②︒−α290 (2)︒−α2135【分析】本题考查三角形角平分线的性质,三角形的外角等知识点,解题的关键是三角形外角的计算. (1)①根据题意作图;②根据题意可知∠=∠PCD OCD ,进而得到∠=∠=∠ODF EDP DCP ,从而求解;(2)根据题意可得∠=︒+αPCF 90,∠=︒−=︒−︒+ααPDC 22904590,即可得到∠ODF 的度数. 【小问1详解】①根据题意作图如下: ;②∠=αPOC ,∴∠=︒−αPCO 90,∵CD 平分∠OCP ,∴∠=∠=︒−αPCD OCD 290, ⊥EF CD ,⊥CP OP ,∴∠+∠=∠+∠=︒EDP PDC PCD PDC 90,∴∠=∠=∠ODF EDP DCP ,∴∠=∠=︒−αODF PCD 290; 【小问2详解】根据题意画图可得:∠=αAOB ,⊥CP OP ,∴∠=︒+αPCF 90,∵CD 平分∠PCB ,∴∠=∠=︒+αPCD FCD 290, ∴∠=︒−=︒−︒+ααPDC 22904590, ⎝⎭ ⎪∴∠=︒+︒−=︒−⎛⎫ααODF 229045135. 28. 【答案】(1)B (2)a 2.53 (3)3,5,7【分析】本题考查了解一元一次不等式组,理解不等式组的“关联解”定义以及熟练掌握一元一次不等式组的解法是解此题的关键.(1)先求出每个不等式组的解集, 再根据不等式组的“关联解”定义判断即可;(2)先求出不等式组的解集是x a 35,求出x a 222,根据题意得出不等式组并求出即可. (3)先求出不等式组的解集是a x a 12,根据“关联解”定义得出⎩−−≤−≤⎨⎧−−≤−≤a a a a a a 1382182解出a 的范围,结合++a b c 1621010是整数即可求出结论.解:A .②①⎩>+⎨⎧+>x x x 2412, 解不等式①得:>x 1, 解不等式②得:x >4, 当=a 0时,不存在x x a 2012,B .②①⎩⎪>−⎨⎪⎧−+<x x x 21112, 解不等式①得:>−x 1, 解不等式②得:<x 2, 当=a 0,,=-x x 221112时,存在x x a 2012,C .②①⎩<−⎨⎧<+x x x x 22321 解不等式①得:<x 1, 解不等式②得:−x <2, 当存在x x a 2012, 当=a 0时,不存在x x a 2012,故选:B ;【小问2详解】 ②①⎩+≤++⎪⎨⎪−≥−⎧x a x a x x 22522231, 解不等式①得:≥−x 3, 解不等式②得:x a ≤+5, ∴不等式组的解集是x a 35, 若=−x 21,且+=x x a 212, x a 222,x a 352,a a 3225 a a 523, a 2.53,故答案为:−≤≤a 2.53;②①⎩≤+⎨⎧≥−−x x a x a 3221, 解不等式①得:≥−−x a 1, 解不等式②得:≤x a 2, ∴不等式组的解集是a x a 12, 若x a 81,且+=x x a 212,x a 382, ⎩−−≤≤⎨∴⎧−−≤≤a x a a x a 121221, ⎩−−≤−≤⎨∴⎧−−≤−≤a a aa a a 1382182, 解得:a 388,++=a b c 12,b c a 12,∴==++−+−a b c a a a 16162210101521012)(, a b c 1621010是整数,a 388,a 3,5,7. 故答案为:3,5,7.。
七年级下学期期末考试数学试卷(附答案)一、选择题(本大题共10小题,每小题4分,满分40分,)1、下列选项中能由如图平移得到的是()A.B.C.D.2、计算m6÷m2的结果是()A.m3B.m4C.m8D.m123、如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交4、若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm5、计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y26、若a<b,则下列结论中,不正确的是()A.a+2<b+2 B.a﹣2>b﹣2 C.2a<2b D.﹣2a>﹣2b7、学校计划用200元钱购买A、B两种奖品(两种都要买),A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种8、图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b29、将一个长为2a,宽为2b的长方形纸片(a>b),用剪刀沿图1中的虛线剪开,分成四块形状和大小都一样的小长方形纸片,然后按图2的方式拼成一个正方形,则中间小正方形的面积为( )A. a2+b2B. a2-b2C. (a+b)2D. (a-b)210、如图,已知AD∥EF∥BC,BD∥GF,且BD平分∠ADC,则图中与∠1相等的角(∠1除外)共有( )A. 4个B. 5个 C. 6个 D. 7个二、填空题(本大题共4小题,每小题5分,满分20分)11.8的立方根是________.12.因式分解:x3y2-x=________13.若分式方程mx−1+31−x=2的解为正数,则m的取值范围是________14.已知:AB∥CD,点C在点D的右侧,BE平分∠ABC,DE平分∠ADC,BE,DE所在直线交于点E,∠ADC=70°。
(3)在第30分钟时,汽车的速度是 90千米/时;(4)第40分钟时,汽车停下来了.
A 1个
B 、2个
C 、3个
、填空题(每空3分,共27 分)
2013七年级下学期期末试卷数学
1、下列运算正确的是(
4
1 B 、丄
15
3
1纳米相当于1根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径
)A 6 万纳米 B 、6X 104纳米 C 、3X 10一6米
D 、3X 10「5米
5、下列条件中,能判定两个直角三角形全等的是(
)
6、如图,下图是汽车行驶速度(千米/时)
和时间(分)的关系图,下列说法其中正确的个
数为(
)
(1)汽车行驶时间为 40分钟;(2) AB 表示汽车匀速行驶;
A 、一锐角对应相等
B 、两锐角对应相等
C 、一条边对应相等
D
、两条直角边对应相等
、选择题(每题3分,共
18 分)
A a 5
a 5 a 10 a 6 a 4 a 24 C 、 a 0 a 1 D 、 a 4 a 4 a 0
2、给出下列图形名称:
(1) 线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方
形,在这五种图形中是轴对称图形的有( A 1个 B 、2个 C
3、一只小狗在如图的方砖上走来走去, 最终停在阴影方砖上的概率是
2 15
4、
小明同学平时不用功学习,某次数学测验做选择题时,他有
题不会做,于是随意选了一个答案 (每小题
4个项),他选对的概率是 12、若 a 2 2ka 9是-
一个完全平方式,则 k 等于
13、
2m 3 (
)=4m 2 9
14、 已知: 如图, 矩形 ABCD 勺长和宽分别
为
2和1,以D 为圆心,AD 为半径作AE 弧,再以 AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 ____________
7、 单项式
-xy 3的次数是
3
一个三角形的三个内角的度数之比为
2: 3: 4,则该三角形按角分应为
三角形.
9、 在十届全国人大四次会议上谈到解决“三农” 问题时说,
2006 年
中央财政用于“三农”的支出将达到万元, 这个数据用科学记数法
可表示为
万元.
10、如图 AOB=125, AO OC B0 0D 则
COD=
11、 & F B
15、观察下列运算并填空:
2
1X 2X 3X 4+仁25=5 ; 2
2X 3X 4X 5+1=121=11 : 2 3X 4X 5X 6+ 仁36仁19 ;
17、化简求值:(8分)
2 2
1 (x 2y)
2 (x y)(3x y) 5y 2,其中 x 2, y -
2
证:OB=OC.
20、(10分)在班上组织的“元旦迎新晚会”中,小丽和小芳都想当节目主持人,但现在只有 一个名额.小芳想出了一个用游戏来选人的办法,
她将一个转盘(均质的)平均分成6份,如
图所示•游戏规定:随意转动转盘,若指针指到偶数,则小丽去;反之,则小芳去•你认为
根据以上结果,猜想析研究 三、计算题(15分)
(n+1)( n+2)( n+3)( n+4)+1 =
16、(7分)计算: 23 1
-(2005 3)0
19、(10分)已知:如图,
ABC 中,AB=AC BD 和 CE 为 ABC 的高,BD 和CE 相交于点Q 求
2
这个游戏公平吗为什么如果不公平,请你修改转盘中的数字,使这个游戏变得公平.
他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中
持有的钱数y元(含备用零钱)的关系如图所示,结合图像回答下列问题:
(1) 农民自带的零钱是多少
(2) 降价前他每千克西瓜出售的价格是多少
(3) 随后他按每千克下降元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,
问他一共批发了多少千克的西瓜
(4) 请问这个水果贩子一共赚了多少钱
附加题:
22、(10分)如图,AP// BC PAB的平分线与CBA的平分线相交于E, CE的延长线交AP于
求证:(1)AB=AD+BC; (2)若BE=3, AE=4,求四边形ABCD勺面积
A B
10
参考答案
2 - - 2 o 2 2 2
16.计算:
23 1
(2005 3)
(1) 2
3
1 9
3 162 解:原式
=8 — 17 1 =
3
3
3
17.化简求值:
(x 2y)2 (x
y)(3x y) 5y 2,其中 x
2, y
解:原式=x 2
2 2 2 2
= x 4xy 4y 3x 2xy y 5y
2 =2x 2xy
1
当x 2, y丄时
2
2 1
原式:=2 ( 2)22(2) —
2
10
Q BD CE 分别为 ABC 的高
BEC= BDC=90 0
在 BEC 和 CDB 中
BC=BC
BEC 1= 2 OB=OC
20.解:Q P 小丽
P 小芳
又
Q1
•••此游戏不公平
修改如下:将转盘中的奇数任改一个为偶数即可
21.解: (1) 农民自带的零钱为 50元.
(2) (330
50) - 80
=280- 80
答:略
80+40 = 120
19 证明:QAB=AB ABC= ACB
⑶(450
330)-
=120 - 3 = 40
BEC=
BDC=90 0
ABC= ACB
CDB
⑷
=234
1 2
S
四边形ABCD
=12
22 .延长AE 交BC 延长线于 M
Q AE 平分 PAB , BE 平分 CBA
1= 2 ,
3= 4 Q AD//BC
1= M= 2,
1+ 2+ 3+ 4=180°
BM=BA ,
3
2=90°
BE AM
AE=ME
Q 在ADE 和MCE 中
1= M AE=ME 5= 6
ADE MCE
AD=CM AB=BM=BC+AD
②由①知:
ADE
MCE
S 四边形ABCD =S ABM
又 Q AE=ME=4 , BE=3
S
ABM
8 3=12。