博弈论的发展历史和基本内容
- 格式:pdf
- 大小:81.27 KB
- 文档页数:2
博弈论方法博弈论是一门多学科交叉学科,将数学、经济学、心理学、社会学、政治学等视野结合起来,研究智能体之间的决策行为,从而获得更有效的结果。
一、定义:博弈论主要是根据博弈的模型,对研究对象的博弈行为进行建模分析,利用数学技术找出一种最佳策略,从而达到解决大型复杂博弈决策问题。
二、历史发展:1. 早期发展:早期博弈论由英国数学家凯恩斯(John C.H.Keynes)所提出,他将博弈论用于了经济学,对二人博弈的构造展开过研究;2. 现代发展:20世纪50-60年代,美国数学家约翰·哈德曼(John von Neumann)与奥地利数学家普林斯顿(Oskar Morgenstern)共同编写的著作《博弈论理论》,奠定博弈论现代发展的坚实基础。
三、理论基础:1. 互相博弈:智能体彼此之间进行决策对抗,考虑彼此策略以及环境变量等;2. 博弈模型:针对某一特定问题,整理分析有限信息,建立博弈模型,以助于解决决策问题;3. 决策理论:主要研究决策者为得到最优解而所采取的收益最大化和风险最小化的策略;4. 决策树:是一种类型的博弈模型,用来建模智能体之间可能发生的决定步骤,有助于确定最优解。
四、应用:1. 经济学和金融学:博弈论模型在经济学和金融学中应用广泛,可用于垄断定价和资源分配;2. 游戏论:引入了许多人工智能技术,在策略行为方面有众多研究成果;3. 决策-支持系统:主要服务于决策支持,利用博弈论及其衍生的技术来求解决策方案;4. 武器决策:根据双边或多边博弈模型,来评估武器的有效性。
五、总结:博弈论由于其充分结合各种科学视角建模决策,因此受到越来越多的重视,广泛应用于经济学、金融学、游戏论、决策支持系统等诸多领域,对提高决策效率具有重要意义和作用。
未来,随着科技和数学等方面的发展,博弈论也将会得到更全面、更有效的应用,从而发挥更大作用。
博弈论与管理学现代管理的核心职能是激发人最大限度地皮挥主观能动性,创造性地开展工作,这其中自然包含了管理者和被管理者之间的博查。
本文从博弃论的基本概念出发,结合管理学基本理论,对博弈对管理学的作用做了简要阐述。
标签:博弈;管理;均衡;经济一、博弈论简介(一)博弈的起源和发展博弈论是-人在平等的对局中各白利用对方的策略变换自己的对抗策略,达到取胜的月的博弈论思想古已有之,中国古代的《孙子兵法》等蓍作就不仅是一部车事著作,而H算是最早的一部博弈著作。
博弈论最初主要研究家棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展:博弈仑考虑游戏中的个休的预测行为和实际行为,并研究它们的优化策略。
近代对博弈论的研究,开始F策梅洛(Zermclo),波菜尔(Borel)及冯。
诺依曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·若依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将人博弈推广到n人博弈结构并将博弈论系统地应州于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯纳什(Jchn Forbes Nash Jr)利用不动点定理证明I均衡点的存在,为博弈论的一-般化奠定I坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,莱因哈德·泽尔腾、约翰海萨尼的研究也对博来论发展起到推动作用。
今天博弈论已发展成--门较完善的学科。
二、博弈例证(一)囚徒困境两人医盗窃被捕,警方怀疑其有抢劫行为但木获得确出证据可以判他们犯了抢劫罪,除非有一人供认或两人都供认。
即使两人都不供认,也可以判他们犯盗窃物品的轻罪。
囚徒被分离审查,不允许他们之间或通信息,并交代政策如下:如果两人都供认,每个人都将因抢劫罪加盗窃罪被判3年监禁;如果两人都拒供,则两人都将因盗窃罪被判半年监禁;如果人供认而另个拒供,则供认这被认为有功而免受处罚,拒供者将因抢劫罪、盗窃罪以及拒供重判5年。
博弈论的发展历程虽然早在18世纪初以前便开始了对具有策略依存特点的决策问题的零星研究,但博弈论真正的发展还是在20世纪。
20世纪初期是博弈论的萌芽阶段,其研究对象主要是从竞赛与游戏中引申出来的严格竞争博弈,即二人零和博弈.这类博弈中不存在合作或联合行为,对弈两方的利益严格对立,一方所得必意味着存在另一方的等量损失。
这符合下棋等二人室内游戏的情形,但应用在经济与政治上,则大多数情况并不合适。
此时,关于二人零和博弈理论有丰硕的研究成果,尤其是提出了博弈扩展型策略、混合策略等重要概念,为日后研究对象范围的拓展与研究的深化奠定了基础。
这一阶段最重要的成就是泽梅罗定理(1913)与冯·诺伊曼的最小最大定理(1928),后者为二人零和博弈提供了解法,同时对博弈论的发展产生了重大影响,例如非合作几人博弈中的基本概念——纳什均衡就是最小最大定理的延伸与推广。
1944年,美国数学家冯·诺伊曼(Von Neumann)和摩根斯坦(Morgensien)合著的《博弈论与经济行为》一书的出版,标志着系统的博弈理论的初步形成.该巨著汇集了当时博弈论的研究成果,将其框架首次完整而清晰地表述出来,使其作为一门学科获得了应有的地位。
同时身为经济学家的摩根斯顿首先清楚而全面地确认,经济行为者在决策时应考虑到经济学上的利益冲突性质.该书详尽地讨论了二人零和博弈,并对合作博弈作了深入探讨,开辟了一些新的研究领域.更重要的是将博弈论加以空前广泛的应用,尤其是在经济学上,由于博弈论数学上的严整性与经济学应用上的广泛性,一些经济学家将该巨著的出版视为数理经济学确立的里程碑。
接下来的一段时期对合作博弈的研究有了长足进步。
按豪尔绍尼(1966)的观点,如果一博弈中意愿表示--协议、承诺、威胁——具有完全的约束力并可强制执行,则该博弈是合作的。
如意愿表示不可强制执行,则为非合作博弈.非合作博弈随后发展起来,纳什、泽尔滕和豪尔绍尼因此而获奖,但当时注意力主要集中在合作博弈上。
博弈论百度百科博弈论是一门研究决策制定和决策结果的学科,它是应用数学的一个分支,通过运用数学和逻辑工具,探讨参与者在互动决策中的最佳策略选择。
在博弈论中,参与者被称为玩家,他们根据自身利益和目标来做出决策。
博弈论适用于各种不同领域的情境,包括经济学、政治学、生物学等。
一、概述博弈论的研究对象是策略性互动。
在一个博弈中,每个玩家都会依据一定的策略选择进行行动,而这个选择可能会受到其他玩家的影响。
博弈论试图理解和分析在这种互动中,参与者如何做出决策,并找到最优的解决方案。
博弈论的核心概念是博弈,一个博弈可以用一个四元组表示:(N, A, U, F),其中:- N表示参与博弈的玩家集合;- A表示每个玩家可选的行动集合;- U表示每个玩家的效用函数,用于衡量不同结果对该玩家的好坏程度;- F表示每个玩家的信息集合。
信息集合是指每个玩家在博弈过程中所了解的信息。
二、博弈论的重要概念1. 纳什均衡纳什均衡是博弈论中最重要的概念之一,指的是在一个博弈中,所有玩家选择的策略组合,使得任何玩家都没有动机单方面改变自己的策略。
纳什均衡是一个稳定状态,玩家之间不再有改变策略的动机。
2. 零和博弈与非零和博弈博弈可以分为零和博弈和非零和博弈。
零和博弈是指参与博弈的玩家的收益之和为零,即一方获利必然导致另一方的损失。
非零和博弈是指参与博弈的玩家的收益之和不为零,即可以存在多方共同受益的情况。
3. 微观博弈与宏观博弈微观博弈是指研究个体玩家之间的策略性互动,关注的是个体决策的结果。
宏观博弈是指研究整体群体之间的策略性互动,关注的是全局结果。
三、应用领域博弈论的研究在众多领域中都具有广泛的应用。
以下是博弈论在一些领域的应用举例:1. 经济学博弈论在经济学领域中有着广泛的应用。
它可以用来研究市场竞争、合作与冲突、价格形成等经济问题。
例如,博弈论可以用来分析竞争市场中的价格战和垄断市场中的价格定价策略。
2. 政治学博弈论在政治学领域中也有着重要的应用。
博弈论概要1.研究背景及意义在现实生活中,人们的利益冲突与一致具有普遍性,因此,几乎所有的决策问题都可以认为是博弈。
博弈论在政治学、经济学等许多领域都有着广泛的应用。
在经济学中博弈论作为一种重要的分析方法已渗透到几乎所有的领域,每一领域的最新进展都应用了博弈论,博弈论已经成为主流经济学的一部分,对经济学理论与方法正产生越来越重要的影响。
虽然博弈论是数学的一个分支,但其应用范围十分广泛,在经济学、管理学、社会学、政治学、法律学、军事学等领域都有许多成功运用博弈论的案例。
早在1994年,提出博弈均衡理论的纳什博士与他的伙伴哈尔萨尼教授、泽尔滕教授就共同分享了当年的诺贝尔经济学奖和93万美元的奖金。
2005年,瑞典皇家科学院再次把诺贝尔经济学奖颁给了有着以色列、美国双重国籍的罗伯特·奥曼和美国人托马斯·谢林,以表彰他们在博弈论领域作出的贡献。
纳什的贡献是在1944年与奥斯卡·摩根斯特恩合著了《博弈论与经济行为》一书,标志着现代系统博弈理论的的初步形成。
而谢林和奥曼两位博弈论先驱在政治理论、社会学甚至生物学等方面成功运用到了博弈学理论。
奥曼用数学分析为博弈论列出了精确的公式,谢林则是想通过实践来展示博弈论在社会各个领域的实际意义。
他们两位利用博弈论对商业谈判、种族隔离、武器控制等领域进行了实际分析,谢林教授认为博弈论运用的重要领域应该包括核威慑和武器控制,同时还可以研究种族关系、有组织犯罪、雇员关系乃至自我管理等方面。
2.博弈论相关概念与发展史综述2.1博弈论的概念2.1.1博弈论的定义博弈论(Game Theory,又称对策论)研究决策主体的行为在发生直接的相互作用时,人们如何进行决策以及这种决策的均衡问题。
博弈论是研究理性的决策者之间冲突与合作的理论。
在博弈论分析中,一定场合中的每个对弈者在决定采取何种行动时都策略地、有目的地行事,他考虑到他的决策行为对其他人的可能影响,以及其他人的行为对他的可能影响,通过选择最佳行动计划,来寻求收益或效用的最大化。
博弈论的发展历程博弈论的发展历程(下)(ZZ)信息问题上的突破。
古典经济模型几乎无一例外地假设,个人(或厂商)的资源与偏好情况不仅为自己,也为他们的竞争对手所知,即完全信息假设。
这显然不符合实际。
不过,这并非模型建立者本身所希望的,而只是因为缺乏解决不完全信息问题的工具而不得不做出的简化。
博弈论的发展也遇到同样问题。
由于对不完全信息问题一度苦无良策,博弈论曾受到严厉批评。
因为局中人事实上不可能清楚关于对手决策的所有信息。
由此导致博弈理论建模的应用范围也受到了限制。
豪尔绍尼对这一问题的解决方法是将不完全信息建模为自然完成的一种抽彩。
这种抽彩决定局中人的特征。
而这些特征是局中人偏好与经验的总和,其中,每个局中人清楚自己的特征,但不知道别人的真实特征。
即他对整个博弈局势只有不完全信息。
据其特征,局中人可分为一些类型。
每个局中人知道自己的类型,不知道别人的类型,但知道类型上的联合分布,从而能对其它局人的类型作出先验分布判断。
不完全信息的这种博弈局势把实际中千变万化的不完全信息都№归结为局中人对他人的主观判断。
这种方法成功地将不易建模的不完全信息转化为数学上可处理的不完善信息:即局中人根据经验与知识对对手的类型得出关于可能性大小的主观判断,即数学上的一种先验分布。
不完全信息博弈的解是由纳什均衡概念推广而来的。
其均衡点(贝叶斯均衡点)是一个n重策略,每个局中人每种类型的个人策略均是对其它局中人的(n-1)重策略的那种类型的最佳应对。
以类型为基础的不完全信息博弈是豪尔绍尼(1967~1968年)提出的。
他运用这种方法来克服将局中人的信息与偏好以及他对其它局中人信息与偏好的了解进行建模时所遇到的复杂性。
这一思路极富创造性,使不完全信息博弈成为解决经济问题的一个有力工具。
其次是关于混合战略的解释。
混合战略概念的传统解释是,局中人应用一种随机方法来决定所选择的纯战略。
这种解释在理论与实际上均不能令人满意。
豪尔绍尼对此提出杰出的解释方法。
博弈论发展史及主要著作博弈论发展史及主要著作纳什(JohnNash)、泽尔腾(ReinhardSelten)和海萨尼(JohnHarsany)三位博弈理论家和经济学家。
第一阶段:1944年以前,早期思想和基本概念的形成。
1838年,法国经济学家奥古斯汀古诺(AugustinCournot)在分析生产者竞争时,就利用均衡概念研究了寡头市场的情况,并使用了解的概念,该概念实际上是后来的纳什均衡的一种严格说法。
1881年英国经济学家埃奇沃斯(FrancisY.Edgworth)提出了"契约曲线(ContractCurve)"作为决定个体之间交易结果题目的一个解。
1913年,博弈论中第一个定理--泽梅罗定理(ZermeloTheorm)断言,国际象棋是严格确定的,尽管泽梅罗定理的适用范围是具有完全信息的两人零和博弈,但它的影响是巨大的,在五六十年代曾引起很多博弈论专家和经济学家的广泛深进研究。
1921― 1927年间,波莱尔(EmileBorel)发表了四篇关于策略博弈的文章,第一次给出了一个混合策略的现代形式,并找到了有3个或多个可能策略的二人博弈的最小最大解。
1928年,冯诺伊曼(JohnvonNeumann)证实了最小最大定理,该定理被以为是博弈论的精华,博弈论中的很多概念都与该定理相联系。
1930年泽尤森(F.Zeuthen)的著作《垄断题目与经济竞争》出版,在书中他提出了一个关于讨价还价题目的解,该解后来被海萨尼证实与纳什的讨价还价解是等价的。
此外,这一阶段还提出了博弈的扩展形式、纯策略、策略形式、混合策略、个体理性等重要概念。
第二阶段:1944~1959年,现代博弈论的建立与理论体系的基本形成。
1944年,美国普林斯顿大学的著名数学家冯诺伊曼和经济学家摩根斯坦(OskarMorg enstern)合著的《博弈论与经济行为》一书出版。
该书在详述两人零和博弈理论的同时,在博弈论的诸多方面做出了开创性研究,如合作博弈、可转移效用、同盟形式以及冯诺伊曼--摩根斯坦稳定集等,该书还说明了导致后来在经济学中广泛应用的公理化效用理论。
博弈论的发展历程一、博弈论起源博弈论(Game Theory)起源于上世纪初的数学领域,最初是作为数学的一个分支被研究的。
它主要研究在策略性决策场景中,参与者的最优行为及其相互影响。
这一理论的诞生,可以追溯到1913年,Borel在一般集合论的基础上定义了对策论的基本概念。
二、经典博弈理论在博弈论的发展历程中,经典博弈理论在上世纪中叶占据主导地位。
这一阶段的主要代表人物包括John von Neumann和Oskar Morgenstern。
他们于1944年合作发表了《博弈论与经济行为》一书,提出了著名的“冯·诺依曼-摩根斯坦博弈模型”,为现代博弈论的发展奠定了基础。
三、非合作博弈理论非合作博弈理论(Non-cooperative Game Theory)是上世纪50年代后期发展起来的,代表人物包括Gerard Debreu和John Harsanyi。
他们提出了非合作博弈的纳什均衡概念,成为现代博弈论中的重要基石。
非合作博弈理论主要研究在信息不完全或不确定的情况下,参与者如何选择自己的最优策略。
四、合作博弈理论与非合作博弈理论相对,合作博弈理论强调参与者之间的合作可能性和最优策略的均衡。
这一理论在上世纪60年代逐渐发展起来,代表人物包括R.B. Myerson和Roger Wollenstein。
合作博弈理论主要研究如何通过合作实现各方的利益最大化,以及如何分配这些利益。
五、演化博弈理论演化博弈理论(Evolutionary Game Theory)是在上世纪70年代发展起来的,其代表人物包括John Maynard Smith和George R. Price。
这一理论从生物进化论的角度出发,研究参与者如何通过学习和适应环境,实现最优策略的选择。
演化博弈理论在经济学、生物学和心理学等领域得到了广泛应用。
六、动态博弈理论动态博弈理论(Dynamic Game Theory)是在上世纪80年代开始发展的,其代表人物包括Arrow Kenneth J.和Leslie Richard Stallings。