现代信号处理-课后思考题(2016)
- 格式:pdf
- 大小:160.84 KB
- 文档页数:9
现代数字信号处理课后习题解答习题二1、求证:,()(,)x i j x i j xi xj R t t C t t m m =+。
证明:(,)(,)(,,,)xi j i j i jijijijR t t E x x x x p x x t t dx dx==(,)[(),()](),()(,,,)()(,,,)(,)(,)i j i j j i i j i j j i i j i jx i j i x j x i x j x i j i j i ji j i x j x x x i j i j i j x i j x x x x x x x i j x x C t t E x m x m x m x m p x x t t dx dx x x x m x m m m p x x t t dx dx R t t m m m m m m R t t m m =--=--=--+=--+=- 2、令()x n 和()y n 不是相关的随机信号,试证:若()()()w n x n y n =+,则w x ym m m =+和222w x y σσσ=+。
证明:(1)[()][()()][()][()]x ym E n E x n y n E x n E y n m m ωω==+=+=+ (2)2222222222[(())]{[()()()]}[(())(())][(())][(())]2[(())(())]2[]x y x y x y x y x y x y x y x y x y x yE n m E x n y n m m E x n m y n m E x n m E y n m E x n m y n m m m m m m m m m ωωσωσσσσ=-=+-+=-+-=-+-+--=++--+=+即222x y ωσσσ=+3、试证明平稳随机信号自相关函数的极限性质,即证明:①当0τ=时,2(0),(0)x x x x R D C σ==;②当τ=∞时,2(),()0x x x R m C ∞=∞=。
现代信号处理思考题(含答案)第一章绪论1、试举例说明信号与信息这两个概念的区别与联系。
信息反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。
信号是传载信息的物理量是信息的表现形式,如文字、语言、图像等。
如人们常用qq 聊天,即是用文字形式的信号将所要表达的信息传递给别人。
2、什么是信号的正交分解?如何理解正交分解在机械故障诊断中的重要价值?P9 正交函数的定义信号的正交分解如傅里叶变换、小波分解等,即将信号分解成多个独立的相互正交的信号的叠加。
从而将信号独立的分解到不同空间中去,通常指滤波器频域内正交以便于故障分析和故障特征的提取。
傅里叶变换将信号分解成各个正交的傅里叶级数,将信号从时域转换到频域从而得到信号中的各个信号的频率。
正交小波变换能够将任意信号(平稳或非平稳)分解到各自独立的频带中;正交性保证了这些独立频带中状态信息无冗余、无疏漏,排除了干扰,浓缩了了动态分析与监测诊断的信息。
3、为什么要从内积变换的角度来认识常见的几种信号处理方法?如何选择合适的信号处理方法?在信号处理各种运算中内积变换发挥了重要作用。
内积变换可视为信号与基函数关系紧密程度或相似性的一种度量。
对于平稳信号,是利用傅里叶变换将信号从时域变为频域函数实现的方式是信号函数 x( t)与基函数 e i t通过内积运算。
匹配出信号x( t )中圆频率为 w 的正弦波 .而非平稳信号一般会用快速傅里叶变换、离散小波变换、连续小波变换等这些小波变换的内积变换内积运算旨在探求信号x(t )中包含与小波基函数最相关或最相似的分量。
“特征波形基函数信号分解”旨在灵活运用小波基函数a, b (t)去更好地处理信号、提取故障特征。
用特定的基函数分解信号是为了获得具有不同物理意义的分类信息。
不同类型的机械故障会在动态信号中反应出不同的特征波形,如旋转机械失衡振动的波形与正弦波形有关,内燃机爆燃振动波形是具有钟形包络的高频波;齿轮轴承等机械零部件出现剥落。
数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。
○1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nTt s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
第1章 离散时间信号与系统1、 傅里叶分析和Z 变换的区别、缺陷、特点关系:点数为N 的有限长序列x(n)的Z 变换为X(z),而其离散傅里叶变换为X(k),两者均表示了同一有限长序列x(n)的变换,它们之间的关系是:对z 变换在单位圆上取样可得DFT 。
而DFT 的内插就是变换。
傅里叶变换优缺点(1) 傅里叶变换缺乏时间和频率的定位功能 (2) 傅里叶变换对于非平稳信号的局限性(3) 傅里叶变换在时间和频率分辨率上的局限性傅立叶变换是最基本得变换,由傅里叶级数推导出。
傅立叶级数只适用于周期信号,把非周期信号看成周期T 趋于无穷的周期信号,就推导出傅里叶变换,能很好的处理非周期信号的频谱。
但是傅立叶变换的弱点是必须原信号必须绝对可积,因此适用范围不广。
Z 变换的本质是离散时间傅里叶变换(DTFT ),如果说拉普拉斯变换专门分析模拟信号,那Z 变换就是专门分析数字信号,Z 变换可以把离散卷积变成多项式乘法,对离散数字系统能发挥很好的作用。
Z 变换看系统频率响应,就是令Z 在复频域的单位圆上跑一圈,即Z=e^(j2πf),即可得到频率响应。
2、系统的记忆性、因果性、可逆性(1)记忆性如果系统在任意时刻n0的响应仅与该时刻的输入f(n0)有关,而与其它时刻的输入无关,则称该系统为非记忆系统(或系统无记忆性),否则称为记忆系统。
系统的记忆性有时也被称为动态特性。
该特性强调系统的响应是否仅与当前时刻的输入有关。
对于无记忆LTI 系统,其系统冲激响应为,其中()()h n K n δ=,K 为一常数。
由于系统频率响应是冲激响应的傅氏变换、系统函数为系统冲激响应的z 变换,因此,无记忆LTI 系统的系统频率响应和系统函数分别为H(ω)=K ,H(z)=K 。
(2) 因果性如果系统任意时刻的响应与以后的输入无关,则该系统称为因果系统(或系统具有因果性),否则为非因果系统。
该特性强调的是,系统的响应是否与未来的输入有关。
第三章答案3.1解: (1):由题设:h (n) =)()(10n h n hy (n)=)1()(-n yn y 则u (n) =h (n) y (n)所以可得最陡下降法解:h (n=1) =h *+(I-2μR )2h (0)- h *其中R =)0()1()1()0(yy yy yy yy R R R = 3223(2):h *= R1-P =3 =1-(3):由于R =5225 则可得λ1=1,λ2=5;所以μ的取值范围为:0<μ<51当μ=61时迭代公式收敛。
(4):μ=61时h (n) = 14- + 100132× h (0) - 14-=14- +32--(0) - 14-3.2解:(1)空(2)e (n) = x (n)-y (n)[2μe (n-1)y (n-1)+h (n-1)] = x (n)-u (n)[2μe (n-1)y (n-1)+h (n-1)] 对e (n)进行z 变换: e (Z) = x (z) - 2μZ1-e (Z) - Z1-h (Z)由h (n)=2μe (n-1)u (n-1)+h (n-1) 得 h (Z)=2μZ1-e (Z) + Z1-h (Z)h (Z)=1-11)(Z 2--ZZ e μ 所以:e (Z) = x (Z)-2μZ1-e (Z)- Z1-1-11)(z 2--zz e μH (Z) = 11)1(211---+-ZZ μ 所以零点在单位园上,极点在Z = 1-2μ园上。
(3):要使H(Z)稳定,则极点在单位园内即: 0121><-μμ且3.3(1)性能曲面函数:[][][]⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---+=-+=+-=-==+-=-=-=-====-==⎥⎦⎤⎢⎣⎡---==-+=1022202222010222)1([)]()1([)]1()([)([102)]([)()55(2125)]1()([0)]()([10)]([85585)]()1([)]1()([25)]1([25)]([)2cos(2)()2sin()()()()()1()()()()]()([)1([)]()1([)]1()([)([)]()([2)]([)(W W n x E n x n x E n x n x E n x E W W WP RW W n d E n n x n d E n x n d E n d E n x n x E n x n x E n x E n x E n N n d n N n x n W n W n W n x n d n x n d E n X n d E P n x E n x n x E n x n x E n x E n X n X E R WP RW W n d E n T T TTT T ξππξ[]⎥⎦⎤⎢⎣⎡--10)1()()()(2W W n x n d n x n d[]⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+=10202585585]855852510W W W W⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+--10)55(212502W W1211020)55(21525)45545(2510w w w w w ++++-++=(2)误差性能曲面matlab 程序: (3)[][][][][])1(*)(*2)1(**2)(*)1(**2)(*)(*2)(*)1(**2)(**2 210112001---+-=∂∂-+-+=∂∂⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂=∇n x n d n x E w n x n X E w w n x n d n x n X E w n X E w w w w w Tξξξξξ (4)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎥⎦⎤⎢⎢⎣⎡==---* 2.1029-0.6498 7553.40 0.4422 0.1367-0.1367- 0.4422 7553.402.5 0.77250.7725 2.5 )1()()()(1)-(n x 1)-x)n *x(n)1)-x(n *n) x( )( *11221n x n d n x n d n x pR w(5)[][]91-10 1029.2698.04.7553- 0-10 *)(2min ==⎥⎦⎤⎢⎣⎡-=-=*w p n d E T ξ 3.4[][]2725.3*2*27275.1*2*20.70717071.0 0.7071- 7071.02725.3 7275.1 2.5 .0.77250.7725 2.5 1)-(n x 1)-x(n *x(n)1)-x(n * x(n) )(1120102111021w2==∂∂==∂∂====⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=λλξλλξV V V V n x E R TT[][][][]4216142)2( 8722242 8722112 )]([ 2)]([)(15..3101021201010101010101022+--++=+-⎥⎦⎤⎢⎣⎡+++=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=-+=ωωωωωωωωωωωωωωωωωωωωωωωεn d E P R n d E n T )解:([][][][]()()()[]6222)5(30014'300113122112'21124 )4(438423287)]([)]([ )3(323296872112872112 210'1''1'0min 2min 2110min 2*2min *1*03131*1*011*2'122'02====⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=Λ+=⎥⎦⎤⎢⎣⎡=Λ∴--=--=⎥⎦⎤⎢⎣⎡--=-Λ+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=+==-=⎥⎦⎤⎢⎣⎡-=-==⇒⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⇒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==∂∂∂∂--λλεελλλλλλεεεεωεωωωωωεεv v T T TTv v v v v v R E v v v v v v Rv v n d E P n d E P R )、(3.6 解:(1)[][]()()[][][][][][][][][]NN N NN NN N N N N N T NN NN N N N N n N N N TT TT T T T n d E n n E n d E E n E n n E n n E n r n x n d n r n x n d E n X n d E P R n n n n x n E n r n x E n x n x E n r n x n r n x E n r n x E n nr E n r E n E n r n E n r n x E n r n x n r n x E n r n x n r n x E E n X n X E R n n n X n d E n n X n X E n n n y n d E n e E n ππππππππππππππππππππππππωωωωωϕωωωωϕϕωωεϕϕϕφωωωωωωεπ212021*********221221211022222242222212212212122124221222212cos -122222222210222sin 2cos ))(5.0(2sin 02cos cos )]([)(2]cos 4[)]([sin 0][sin ][sin )]1(sin )1([cos sin cos 2[)]1()1()(())()()(([)]()([cos cos cos ))]cos((cos E[ )]1(sin sin E[1)]-E[x(n)x(n 1)]-E[r(n)r(n )]1()[()]1()([)]1()([))]1()1())(()([(]))1()1([(E )(sin 2)(sin ))((sin ]r(n))E[(x(n)]))1()1([())]()())(1()1([())]1()1())(()([(]r(n))E[(x(n) ]1)-r(n 1)-x(n r(n)x(n)1)-r(n 1)-x(n r(n)x(n)[])()([1)-r(n 1)-x(n r(n)x(n)X(n) )()()]()([2)(])()([)()](E[d ]))()([()]([)(N 4+++++=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+++=∴====--=-+-+==⎥⎦⎤⎢⎣⎡++=∴=--=-==+-+-+-=-+-+-+-=+=+⎥⎦⎤⎢⎣⎡=++=+=+⎥⎦⎤⎢⎣⎡-+-+-+--+-++=++++==++==-+=-==[]05.0][1044/1T 14.54/1(4)T )21/(1u 0 : ][021][)cos(2/11/2 0 ]cos cos [R -E ]cos cos [)3())cos()21/(()sin()21(2))cos()21/(()sin()cos(20)sin(2)cos(2)5.0(0)cos(2)5.0( )2(2mse21mse112122122122121212212212122221*222220*2201210101======+<<∴<<+=+=+==------=++=⎪⎩⎪⎨⎧-++-=-+=⇒⎪⎩⎪⎨⎧=+++==++===∇-+=∂∂∂∂∂∂∂∂∂∂R ut M u u u R t u R t R r r r N N NN N N N N N N N N N T λλϕϕλλϕλϕλϕλλϕϕϕϕωϕωωωϕωωϕππππππππππππωεπωεωεωεωε值范围为系统收敛的3.11答案:11)(4)(4.0)()]()([2))(()()]([)(min))(()()()()()()1(22222+-=-+===-=n h n h n h n y n x E n y E n h n x E n n e E n n y n h n x n e ξξ5)(04)(8.0)()(==-=n h n h n dh n d ξ (2)μμμξ4)()2.31())(8.04()())(()()1(48.0)(+-=-+=-∇+=+-=∂∂=∇n h n h u n h n n h n h h hn 数迭代计算公式为:最陡下降法推导加权系(3)求加权系数表达式]10)0([)8.01(10])0([)2()(**--+=--+=h h h R I h n h nn μμ要求1max 0-<<λμ5.204.010<<<<∴μμ即3.12答案:2102][][0)1(1011<<==<<∑=--μλμμ即满足为保证收敛应使k k R tr R tr器的收敛速度相同。
题1:(1) 错误!未找到引用源。
是随错误!未找到引用源。
变化的随机信号,因此错误!未找到引用源。
=错误!未找到引用源。
.所以谐波信号)(tx的均值为错误!未找到引用源。
=错误!未找到引用源。
由于谐波信号)(tx的均值等于零,故其方差等于二阶矩,既有错误!未找到引用源。
错误!未找到引用源。
所以x(t)的方差为错误!未找到引用源。
谐波信号)(tx的自相关函数错误!未找到引用源。
又错误!未找到引用源。
所以错误!未找到引用源。
由于x(t)的均值为0,故所以错误!未找到引用源。
(2) y(t)是随B变化的随机信号,因此错误!未找到引用源。
B是标准高斯随机变量,所以错误!未找到引用源。
,所以错误!未找到引用源。
. 由于错误!未找到引用源。
统计独立,故有错误!未找到引用源。
而x(t)和y(t)的均值均为0,所以错误!未找到引用源。
题2:令错误!未找到引用源。
,由于错误!未找到引用源。
是零均值、方差为错误!未找到引用源。
的高斯随机过程,错误!未找到引用源。
和错误!未找到引用源。
是确定的过程,所以x(n)也是一高斯随机过程,其均值错误!未找到引用源。
是时间的函数.所以x(n)的概率密度函数是∏=---=NnBnAnxxf1222}])([21ex p{21);(σπσθ=}])([21ex p{)2(12122/2BnAnxNnN---∑=σπσ在多个未知参数的情况下,Cramer-Rao不等式变为矩阵不等式:∑-≥)(1θJ其中错误!未找到引用源。
无偏估计子错误!未找到引用源。
的协方差矩阵,而错误!未找到引用源。
是Fisher信息矩阵J的逆矩阵,而信息矩阵错误!未找到引用源。
的构成元素为错误!未找到引用源。
本题中,计算得错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
现代信号处理第一章习题答案: 习题1) 证明1:可通过特征函数证明(证明略) 证明2:设X ,Y 为量个独立的随机变量,概率密度分别为()X f x ,()Y f y 。
那么随即变量Z=X+Y 的分布函数为 {}()()()Z X Y x y zF z P Z z f x f y dxdy +≤=≤=⎰⎰。
将该式化成累次积分,得到()()()z y Z X Y F z f x f y dx dy ∞--∞-∞⎡⎤=⎢⎥⎣⎦⎰⎰,令x=t-y ,得到()()()()z y zX Y X Y f x f y dx f t y f y dt --∞-∞=-⎰⎰ 那么()()()()()z z Z X Y X Y F z f t y f y dt dy f t y f y dy dt ∞∞-∞-∞-∞-∞⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ 所以 ()()()Z X Y X Y f z f z y f y dy f f ∞-∞=-=*⎰。
证毕。
2) 根据题意,有22(),x X f x x -=-∞<<∞,22(),y Y f y y -=-∞<<∞根据习题1,Z=X+Y 的概率密度为 22()221()()()2z y y Z X Y X Y f z f f f z y f y dy eedy π---∞∞-∞-∞=*=-=⎰⎰=22()4212z z y eedy π---∞-∞⎰通过换元,得到 2241()2z t z f z ee dt π-∞--∞=⎰,222t t e dt e dt ∞∞---∞=⎰⎰,其中2t e dt ∞-⎰为Poisson积分,2t e dt ∞-=⎰所以24()z z f z -,所以~(0,2)Z N 。
3) 由相关系数的定义12Z Z ρ=,1211221212(,){[()][()]}()()()Cov Z Z E Z E Z Z E Z E Z Z E Z E Z =--=-由题意得2()(),()()E X E Y D X D Y μσ====,22222()()[()]()E X D X E X E Y σμ=+=+=根据均值和方差的性质:1()()()()()E Z E X Y E X E Y αβαβαβμ=+=+=+222221()()()()()D Z D X Y D X D Y αβαβαβσ=+=+=+,2()()()()()E Z E X Y E X E Y αβαβαβμ=-=-=-!!根据方差的定义展开222222()()()()()D Z D X Y D X D Y αβαβαβσ=-=+=+222212()[()()]()(E Z Z E X Y X Y E X Y αβαβαβαβμσ=+-=-=2222-)(+)2222222222121212(,)()()()()()()()Cov Z Z E Z Z E Z E Z αβμσαβμαβσ=-=-+--=-1222222222222221()()()()()()Z Z D Z αβσαβσαβραβσαβ---====++4) 根据题意通过全概率的公式,定义事件A 为不合格事件 条件概率P(A/甲厂)=0.01, P(A/乙厂)=0.02 先验概率 P(甲厂) = 0.4, P(乙厂) = 0.6P(A)= P(A/甲厂) P(甲厂) + P(A/乙厂) P(乙厂)=0.016。