高等数学同济七版第四章电子教案
- 格式:doc
- 大小:971.00 KB
- 文档页数:16
授课教案课程名称:高等数学授课专业:总学时:开课单位:制定人:审核人:制定时间:教案注:1.每2学时至少制定一个教案。
2.课型包括新授课、练习课、复习课、讲评课、实验课等。
3.上新课和新上课的教师要求写详案。
4.要求教师上课必带教案。
5.“备注”填写历年更新的内容(手写)。
6.教案可带附件(课程内容补充材料)。
教案C+⎰++dxx x 1022+3+5)5+C 注:1.每2学时至少制定一个教案。
2.课型包括新授课、练习课、复习课、讲评课、实验课等。
3.上新课和新上课的教师要求写详案。
4.要求教师每学期上交教案。
教案注:1.每2学时至少制定一个教案。
2.课型包括新授课、练习课、复习课、讲评课、实验课等。
3.上新课和新上课的教师要求写详案。
4.要求教师每学期上交教案。
教案注:1.每2学时至少制定一个教案。
2.课型包括新授课、练习课、复习课、讲评课、实验课等。
3.上新课和新上课的教师要求写详案。
4.要求教师上课必带教案。
5.“备注”填写历年更新的内容(手写)。
6.教案可带附件(课程内容补充材料)。
教案例1求⎰xdx x ln解:⎰⎰=2ln 21ln xdx xdx x [][]C x x x C x x x xdx x x x d x x x +-=+⎥⎦⎤⎢⎣⎡-=-=-=⎰⎰222222241ln 2121ln 21ln 21ln ln 21例2 求dx x ⎰arccos解 把x arccos 作为u ,dx 作为dvC x x x dx x x x x dx x +--=---=∴⎰⎰221arccos )11(arccos arccos例3 求⎰xdx x arctan解:⎰⎰=2arctan 21arctan xdx xdx x[][]C x x x x dx x x x dx x x x x x d x x x ++-=⎥⎦⎤⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡+-=-=⎰⎰⎰arctan arctan 21)111(arctan 211arctan 21arctan arctan 2122222222例4 求⎰xdx x ln 2解 C x x x dx x x x x x xd xdx x +-=-==⎰⎰⎰9ln 3]1ln [31)(ln 31ln 333332⎰dx xx2ln练习设计 课后习题1教学反思与学生一起做练习,边讲边练注:1.每2学时至少制定一个教案。
高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的一个元素。
函数的性质:单调性、连续性、奇偶性、周期性等。
1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个值L,称f(x)当x趋近于a时的极限为L,记作lim(x→a)f(x)=L。
极限的性质:保号性、保不等式性、夹逼定理等。
1.3 极限的计算极限的基本计算方法:代入法、因式分解法、有理化法等。
无穷小与无穷大的概念:无穷小是指绝对值趋近于0的量,无穷大是指绝对值趋近于无穷的量。
1.4 极限的应用函数的连续性:如果函数在某一点的极限值等于该点的函数值,称该函数在这一点连续。
导数的概念:函数在某一点的导数表示函数在该点的切线斜率。
第二章:微积分基本定理2.1 导数的定义与计算导数的定义:函数在某一点的导数表示函数在该点的切线斜率,记作f'(x)。
导数的计算:基本导数公式、导数的四则运算法则等。
2.2 微分的概念与计算微分的定义:微分表示函数在某一点的切线与x轴的交点横坐标的差值,记作df(x)。
微分的计算:微分的基本公式、微分的四则运算法则等。
2.3 积分的概念与计算积分的定义:积分表示函数图像与x轴之间区域的面积,记作∫f(x)dx。
积分的计算:基本积分公式、积分的换元法、分部积分法等。
2.4 微积分基本定理微积分基本定理的定义:微积分基本定理是微分与积分之间的关系,即导数的不定积分是原函数,积分的反函数是原函数的导数。
第三章:微分方程3.1 微分方程的定义与分类微分方程的定义:微分方程是含有未知函数及其导数的等式。
微分方程的分类:常微分方程、偏微分方程等。
3.2 常微分方程的解法常微分方程的解法:分离变量法、积分因子法、变量替换法等。
3.3 微分方程的应用微分方程在物理、工程等领域的应用,例如描述物体运动、电路方程等。
第四章:级数4.1 级数的概念与性质级数的定义:级数是由无穷多个数按照一定的规律相加的序列,记作∑an。
福建警察学院《高等数学一》课程教学大纲课程名称:高等数学一课程编号:学分:4适用对象:一、课程的地位、教学目标和基本要求(一)课程地位高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。
高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。
(二)教学目标通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。
(三)基本要求1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。
2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。
二、教学内容与要求第一章函数与极限【教学目的】通过本章学习1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分解,掌握基本初等函数的性质及其图形,理解初等函数的概念。
2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。
3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与左、右极限之间的关系,了解函数极限的性质。
4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。
5、掌握极限运算法则。
6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
授课教案
课程名称:高等数学
授课专业:
总学时:
开课单位:
制定人:
审核人:
制定时间:
教案
新课和新上课的教师要求写详案。
4.要求教师上课必带教案。
5.“备注”填写历年更新的内容(手写)。
6.教案可带附件(课程内容补充材料)。
教案
C
+
3
+5)5
C
+
新课和新上课的教师要求写详案。
4.要求教师每学期上交教案。
教案
新课和新上课的教师要求写详案。
4.要求教师每学期上交教案。
教案
新课和新上课的教师要求写详案。
4.要求教师上课必带教案。
5.“备注”填写历年更新的内容(手写)。
6.教案可带附件(课程内容补充材料)。
教案
新课和新上课的教师要求写详案。
4.要求教师上课必带教案。
5.“备注”填写历年更新的内容(手写)。
6.教案可带附件(课程内容补充材料)。
《高等数学教案》word版第一章:函数与极限1.1 函数的概念与性质定义函数的概念讨论函数的性质(单调性、奇偶性、周期性等)1.2 极限的概念与性质引入极限的概念探讨极限的性质与运算1.3 无穷小与无穷大定义无穷小与无穷大的概念比较无穷小与无穷大的大小关系1.4 极限的运算法则极限的加减乘除法则极限的复合函数法则第二章:导数与微分2.1 导数的概念与性质引入导数的概念探讨导数的性质(单调性、极值等)2.2 导数的计算法则基本导数公式和、差、积、商的导数法则2.3 微分的方法与应用微分的概念与方法微分在近似计算与优化问题中的应用第三章:泰勒公式与微分中值定理3.1 泰勒公式的概念与性质引入泰勒公式的概念探讨泰勒公式的性质与应用3.2 微分中值定理的概念与证明罗尔定理、拉格朗日中值定理、柯西中值定理微分中值定理的应用(导数与函数的极值关系等)第四章:积分与微分方程4.1 积分的基本概念与方法引入积分的概念探讨积分的方法(牛顿-莱布尼茨公式、换元积分、分部积分等)4.2 微分方程的基本概念与方法引入微分方程的概念探讨微分方程的解法(常微分方程、线性微分方程等)第五章:线性代数基础5.1 向量的概念与运算定义向量的概念探讨向量的运算(加减、数乘、点积、叉积等)5.2 矩阵的概念与运算定义矩阵的概念探讨矩阵的运算(加减、数乘、转置、逆矩阵等)5.3 线性方程组的概念与解法引入线性方程组的概念探讨线性方程组的解法(高斯消元法、矩阵求逆法等)5.4 行列式的概念与性质定义行列式的概念探讨行列式的性质与计算方法第六章:概率论基础6.1 随机事件与概率定义随机事件与概率的概念探讨概率的计算(古典概率、条件概率、独立事件等)6.2 随机变量及其分布引入随机变量的概念探讨离散型随机变量与连续型随机变量的分布律6.3 期望与方差定义期望与方差的概念探讨期望与方差的计算及其性质第七章:线性代数进阶7.1 特征值与特征向量定义特征值与特征向量的概念探讨特征值与特征向量的计算及其应用7.2 二次型定义二次型的概念探讨二次型的标准型与判定定理7.3 线性空间与线性变换引入线性空间与线性变换的概念探讨线性变换的性质与计算第八章:常微分方程与应用8.1 常微分方程的基本概念定义常微分方程的概念探讨常微分方程的解法(分离变量法、积分因子法等)8.2 常微分方程的应用探讨常微分方程在物理、生物学等领域的应用8.3 线性微分方程组引入线性微分方程组的概念探讨线性微分方程组的解法与应用第九章:复变函数基础9.1 复数的基本概念与运算定义复数的概念探讨复数的运算(加减、乘除、共轭等)9.2 复变函数的概念与性质引入复变函数的概念探讨复变函数的性质(解析性、奇偶性等)9.3 复变函数的积分与级数探讨复变函数的积分(柯西积分定理、柯西积分公式等)探讨复变函数的级数(泰勒级数、洛朗级数等)第十章:实变函数与泛函分析初步10.1 实函数的基本概念与性质定义实函数的概念探讨实函数的性质(单调性、有界性等)10.2 泛函分析的基本概念引入泛函分析的概念探讨赋范线性空间与希尔伯特空间的基本概念10.3 赋范线性空间的基本定理探讨赋范线性空间中的基本定理(闭区间上的有界线性算子等)重点解析第一章:函数与极限重点:函数的概念与性质、极限的概念与性质、无穷小与无穷大、极限的运算法则。
第四章常微分方程§4.1 基本概念和一阶微分方程甲内容要点一.基本概念1.常微分方程含有自变量、未知函数和未知函数的导数(或微分)的方程称为微分方程,若未知函数是一元函数则称为常微分方程,而未知函数是多元函数则称为偏微分方程,我们只讨论常微分方程,故简称为微分方程,有时还简称为方程。
2.微分方程的阶微分方程中未知函数的导数的最高阶数称为该微分方程的阶3.微分方程的解、通解和特解满足微分方程的函数称为微分方程的解;通解就是含有独立常数的个数与方程的阶数相同的解;通解有时也称为一般解但不一定是全部解;不含有任意常数或任意常数确定后的解称为特解。
4.微分方程的初始条件要求自变量取某定值时,对应函数与各阶导数取指定的值,这种条件称为初始条件,满足初始条件的解称为满足该初始条件的特解。
5.积分曲线和积分曲线族微分方程的特解在几何上是一条曲线称为该方程的一条积分曲线;而通解在几何上是一族曲线就称为该方程的积分曲线族。
6.线性微分方程如果未知函数和它的各阶导数都是一次项,而且它们的系数只是自变量的函数或常数,则称这种微分方程为线性微分方程。
不含未知函数和它的导数的项称为自由项,自由项为零的线性方程称为线性齐次方程;自由项不为零的方程为线性非齐次方程。
二.变量可分离方程及其推广1.变量可分离的方程(1)方程形式:()()()()0≠=y Q y Q x P dxdy通解()()⎰⎰+=C dx x P y Q dy(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()()C dy y N y N dx x M x M =+⎰⎰1221 ()()()0,012≠≠y N x M2.变量可分离方程的推广形式(1)齐次方程⎪⎭⎫ ⎝⎛=x y f dxdy 令u x y=, 则()u f dxdu x u dx dy =+=()c x c x dxu u f du +=+=-⎰⎰||ln(2)()()0,0≠≠++=b a c by ax f dxdy令u c by ax =++, 则()u bf a dxdu+=()c x dx u bf a du+==+⎰⎰(3)⎪⎪⎭⎫ ⎝⎛++++=222111c y b x a c y b x a f dxdy①当02211≠=∆b a b a 情形,先求出⎩⎨⎧=++=++0222111c y b x a c y b x a 的解()βα,令α-=x u ,β-=y v则⎪⎪⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛++=u v b a u v b a f v b u a v b u a f du dv 22112211属于齐次方程情形 ②当02211==∆b a b a 情形,令λ==1212b b a a 则()⎪⎪⎭⎫ ⎝⎛++++=211111c y b x a c y b x a f dxdy λ令y b x a u 11+=, 则⎪⎪⎭⎫ ⎝⎛+++=+=211111c u c u f b a dx dyb a dx du λ 属于变量可分离方程情形。
《高等数学》课程教案一、教学目标1. 知识与技能:使学生掌握高等数学的基本概念、理论和方法,培养学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:激发学生对高等数学的兴趣,培养学生的逻辑思维和抽象思维能力,引导学生认识高等数学在自然科学和社会科学中的重要地位。
二、教学内容1. 第一章:极限与连续教学重点:极限的定义、性质,函数的连续性,无穷小比较,洛必达法则。
2. 第二章:导数与微分教学重点:导数的定义,求导法则,高阶导数,隐函数求导,微分方程。
3. 第三章:积分与面积教学重点:不定积分,定积分,积分计算方法,面积计算,弧长与曲线长度。
4. 第四章:级数教学重点:数项级数的概念,收敛性判断,功率级数,泰勒级数,傅里叶级数。
5. 第五章:常微分方程教学重点:微分方程的基本概念,一阶线性微分方程,可分离变量的微分方程,齐次方程,线性微分方程组。
三、教学方法1. 采用讲授法,系统地讲解高等数学的基本概念、理论和方法。
2. 运用示例法,通过典型例题展示解题思路和技巧。
3. 组织练习法,让学生在课堂上和课后进行数学练习,巩固所学知识。
四、教学评价1. 过程性评价:关注学生在课堂上的参与程度、思维品质和问题解决能力。
2. 终结性评价:通过课后作业、单元测试、期中考试等方式,检验学生掌握高等数学知识的情况。
五、教学资源1. 教材:《高等数学》及相关辅助教材。
2. 课件:制作精美、清晰的课件,辅助课堂教学。
3. 习题库:提供丰富的习题,供学生课后练习。
4. 网络资源:利用网络平台,提供相关的高等数学学习资料和在线答疑。
5. 辅导资料:为学生提供补充讲解和拓展知识点的辅导资料。
六、第六章:多元函数微分学教学重点:多元函数的极限与连续,偏导数,全微分,高阶偏导数,方向导数,雅可比矩阵与行列式。
七、第七章:重积分教学重点:二重积分,三重积分,线积分,面积分,体积积分,重积分的计算方法,对称性原理。
八、第八章:常微分方程的应用教学重点:常微分方程在物理、生物学、经济学等领域的应用,求解方法,数值解法,稳定性分析。
《高等数学》标准教案第一章:函数与极限1.1 函数的概念与性质教学目标:了解函数的定义,掌握函数的性质及常见函数类型。
教学内容:函数的定义,函数的单调性、奇偶性、周期性。
教学方法:通过实例讲解,引导学生理解函数的概念,运用性质进行分析。
1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质及求解方法。
教学内容:极限的定义,极限的性质,无穷小与无穷大,极限的求解方法。
教学方法:通过具体例子,引导学生理解极限的概念,运用性质及方法求解极限。
第二章:微积分基本概念2.1 导数与微分教学目标:理解导数的定义,掌握基本导数公式及微分方法。
教学内容:导数的定义,基本导数公式,微分的方法及应用。
教学方法:通过实际例子,引导学生理解导数的概念,运用公式及方法进行微分。
2.2 积分与微分方程教学目标:理解积分的概念,掌握基本积分公式及解微分方程的方法。
教学内容:积分的定义,基本积分公式,微分方程的解法。
教学方法:通过具体例子,引导学生理解积分的概念,运用公式及方法解微分方程。
第三章:多元函数微分学3.1 多元函数的概念与性质教学目标:了解多元函数的定义,掌握多元函数的性质及常见类型。
教学内容:多元函数的定义,多元函数的性质,常见多元函数类型。
教学方法:通过实例讲解,引导学生理解多元函数的概念,运用性质进行分析。
3.2 多元函数的求导法则教学目标:理解多元函数求导法则,掌握多元函数的求导方法。
教学内容:多元函数的求导法则,多元函数的求导方法。
教学方法:通过具体例子,引导学生理解多元函数求导法则,运用方法进行求导。
第四章:重积分与曲线积分4.1 二重积分及其应用教学目标:理解二重积分的定义,掌握二重积分的计算方法及应用。
教学内容:二重积分的定义,二重积分的计算方法,二重积分在几何及物理中的应用。
教学方法:通过具体例子,引导学生理解二重积分的概念,运用计算方法进行计算。
4.2 曲线积分的概念与应用教学目标:理解曲线积分的定义,掌握曲线积分的计算方法及应用。
高等数学教学教案第1章函数、极限与连续授课序号01(是一个给定的非空数集.若对任意的授课序号02的左邻域有定义,如果自变量为当0x x →时函数授课序号032n n ++)(1,2,n x =授课序号04授课序号05授课序号06高等数学教学教案第2章导数与微分授课序号01授课序号02授课序号03授课序号04高等数学教学教案第3章微分中值定理与导数的应用授课序号01授课序号02授课序号03!n +!n +()()!n x n +!n +!n +[cos (x θ+=21)2!!x n α-++)(1(1)!n n αθ-++()nx R x +授课序号04(1)在生产实践和工程技术中,经常会遇到求在一定条件下,怎样才能使“成本最低”、“利润最高”、“原材料最省”等问题.这类问题在数学上可以归结为建立一个目标函数,求这个函数的最大值或最小值问题.(2)对于实际问题,往往根据问题的性质就可以断定函数()f x 在定义区间内部存在着最大值或最小值.理论上可以证明这样一个结论:在实际问题中,若函数()f x 的定义域是开区间,且在此开区间内只有一个驻点0x ,而最值又存在,则可以直接确定该驻点0x 就是最值点,0()f x 即为相应的最值. 四.例题讲解例1.讨论函数32()29123f x x x x =-+-的单调增减区间. 例2.判断函数3()=f x x 的单调性.例3.设3,0,()arctan ,0.x x f x x x x ⎧-<=⎨≥⎩确定()f x 的单调区间.例4.证明:当0x >时,e 1x x >+. 例5.求函数32()(1)f x x x =-的极值.例6.求函数22()ln f x x x =-的极值.例7.求函数233()2f x x x =+在区间1[8]8-,上的最大值与最小值.例8.水槽设计问题有一块宽为2a 的长方形铁皮如图3.8所示,将宽所在的两个边缘向上折起,做成一个开口水槽,其横截面为矩形,问横截面的高取何值时水槽的流量最大(流量与横截面积成正比). 图3.8例9.用料最省问题要做一圆柱形无盖铁桶,要求铁桶的容积V 是一定值,问怎样设计才能使制造铁桶的用料最省? 例10.面积最大问题将一长为2L 的铁丝折成一个长方形,问如何折才能使长方形的面积最大.授课序号05授课序号06教学基本指标教学课题第3章第6节弧微分与曲率课的类型新知识课教学方法讲授、课堂提问、讨论、启发、自学教学手段黑板多媒体结合教学重点曲率的计算公式教学难点曲率的计算参考教材同济七版《高等数学》上册作业布置课后习题大纲要求了解曲率和曲率半径的概念,会计算曲率和曲率半径。
高等数学电子教案(最新版)第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个非空数集A中的每一个元素在非空数集B中都有唯一确定的元素和它对应。
函数的性质:单调性、奇偶性、周期性等。
1.2 极限的概念极限的定义:当自变量x趋向于某一数值a时,函数f(x)趋向于某一数值L,我们称f(x)当x趋向于a时的极限为L,记作:lim(f(x),a)=L。
1.3 极限的运算极限的四则运算法则:1)lim(f(x)+g(x),a)=lim(f(x),a)+lim(g(x),a)2)lim(f(x)g(x),a)=lim(f(x),a)lim(g(x),a)3)lim(f(x)/g(x),a)=lim(f(x),a)/lim(g(x),a) (g(x)≠0)4)lim(cu(x),a)=lim(c,a)lim(u(x),a) (c为常数,u(x)可导)1.4 无穷小与无穷大无穷小的定义:当自变量x趋向于某一数值a时,如果存在一个正数M,使得对于任意给定的正数ε,总存在正数δ,使得当0<|x-a|<δ时,都有|f(x)|<M,则称f(x)为无穷小。
无穷大的定义:当自变量x趋向于某一数值a时,如果存在一个正数M,使得对于任意给定的正数ε,总存在正数δ,使得当0<|x-a|<δ时,都有|f(x)|>M,则称f(x)为无穷大。
第二章:导数与微分2.1 导数的定义导数的定义:函数f(x)在x处的导数定义为f'(x)=lim(f(x+Δx)-f(x),Δx)=lim(Δx,0)f'(x+Δx)。
2.2 导数的运算导数的四则运算法则:1)(f(x)+g(x))'=f'(x)+g'(x)2)(f(x)g(x))'=f(x)g'(x)+f'(x)g(x)3)(f(g(x)))'=f'(g(x))g'(x)4)(cu(x))'=c'u(x)+cu'(x) (c为常数,u(x)可导)2.3 微分微分的定义:函数f(x)在x处的微分定义为df(x)=f'(x)Δx。
高等数学教案第四章不定积分教学目的:第四章不定积分1、理解原函数概念、不定积分的概念。
2、掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。
3、会求有理函数、三角函数有理式和简单无理函数的积分。
教学重点:1、不定积分的概念;2、不定积分的性质及基本公式;3、换元积分法与分部积分法。
教学难点:1、换元积分法;2、分部积分法;3、三角函数有理式的积分。
§4. 1 不定积分的概念与性质一、原函数与不定积分的概念定义1 如果在区间I上, 可导函数F(x)的导函数为f(x), 即对任一x∈I, 都有F '(x)=f(x)或dF(x)=f(x)dx,那么函数F(x)就称为f(x)(或f(x)dx)在区间I上的原函数.例如因为(sin x)'=cos x , 所以sin x 是cos x 的原函数.又如当x ∈(1, +∞)时,因为(x)'=1, 所以x是1的原函数. 2x2x提问:cos x和1还有其它原函数吗? 2x原函数存在定理如果函数f(x)在区间I上连续, 那么在区间I上存在可导函数F(x), 使对任一x ∈I 都有F '(x)=f(x).简单地说就是: 连续函数一定有原函数.两点说明:第一, 如果函数f(x)在区间I上有原函数F(x), 那么f(x)就有无限多个原函数,F(x)+C都是f(x)的原函数, 其中C是任意常数.第二, f(x)的任意两个原函数之间只差一个常数, 即如果Φ(x)和F(x)都是f(x)的原函数, 则Φ(x)-F(x)=C (C为某个常数).高等数学课程建设组1高等数学教案第四章不定积分定义2 在区间I上, 函数f(x)的带有任意常数项的原函数称为f(x)(或f(x)dx )在区间I上的不定积分, 记作⎰f(x)dx.其中记号⎰称为积分号, f(x)称为被积函数, f(x)dx称为被积表达式, x 称为积分变量. 根据定义, 如果F(x)是f(x)在区间I上的一个原函数, 那么F(x)+C就是f(x)的不定积分, 即⎰f(x)dx=F(x)+C.因而不定积分⎰f(x)dx可以表示f(x)的任意一个原函数.例1. 因为sin x 是cos x 的原函数, 所以⎰cosxdx=sinx+C.因为x是1的原函数, 所以 2x例2. 求函数f(x)=1的不定积分. x解:当x>0时, (ln x)'=1, x⎰1dx=lnx+C(x>0); x当x<0时, [ln(-x)]'=1⋅(-1)=1, -xx⎰1dx=ln(-x)+C(x<0). x合并上面两式, 得到⎰1dx=ln|x|+C(x≠0). x例3 设曲线通过点(1, 2), 且其上任一点处的切线斜率等于这点横坐标的两倍, 求此曲线的方程.解设所求的曲线方程为y=f(x), 按题设, 曲线上任一点(x, y)处的切线斜率为y'=f'(x)=2x,,即f(x)是2x 的一个原函数.因为⎰2xdx=x2+C,高等数学课程建设组2 ⎰1dx=x+C. x高等数学教案第四章不定积分故必有某个常数C使f(x)=x 2+C, 即曲线方程为y=x 2+C.因所求曲线通过点(1, 2), 故2=1+C, C=1.于是所求曲线方程为y=x2+1.积分曲线: 函数f(x)的原函数的图形称为f(x)的积分曲线.从不定积分的定义, 即可知下述关系: d[⎰f(x)dx]=f(x), dx或 d[⎰f(x)dx]=f(x)dx;又由于F(x)是F '(x)的原函数, 所以⎰F'(x)dx=F(x)+C,或记作⎰dF(x)=F(x)+C.由此可见, 微分运算(以记号d表示)与求不定积分的运算(简称积分运算, 以记号⎰表示)是互逆的. 当记号⎰与d 连在一起时, 或者抵消, 或者抵消后差一个常数.二、基本积分表(1)⎰kdx=kx+C(k是常数), (2)⎰xμdx=1xμ+1+C, +1(3)⎰1dx=ln|x|+C, x(4)⎰exdx=ex+C, x(5)⎰axdx=a+C, lna(6)⎰cosxdx=sinx+C,(7)⎰sinxdx=-cosx+C, (8)⎰1dx=sec2xdx=tanx+C, ⎰cos2x(9)⎰12=⎰csc2xdx=-cotx+C, sinx高等数学课程建设组3高等数学教案第四章不定积分(10)⎰1=arctanx+C, 1+x(11)⎰1=arcsinx+C, -x2(12)⎰secxtanxdx=secx+C,(13)⎰cscxcotdx=-cscx+C,(14)⎰sh x dx=ch x+C,(15)⎰ch x dx=sh x+C.例4例5 ⎰xdx=⎰x-3dx=-3+1x-3+1+C=-2x+C.111⎰x2xdx=⎰5x2dx7+1122=x+C=x2+C=2x3+C. +17725例6 ⎰dx=⎰xx-4x3dx=-4+1x3-+13+C-1=-3x3+C=-3+C. 三、不定积分的性质性质1 函数的和的不定积分等各个函数的不定积分的和, 即⎰[f(x)+g(x)]dx=⎰f(x)dx+⎰g(x)dx.这是因为, [⎰f(x)dx+⎰g(x)dx]'=[⎰f(x)dx]'+[⎰g(x)dx]'=f(x)+g(x).性质2 求不定积分时, 被积函数中不为零的常数因子可以提到积分号外面来, 即⎰kf(x)dx=k⎰f(x)dx(k是常数, k ≠0).例7. ⎰x(x-5)dx=⎰5x2dx-725(x21-5x2)dx 5x2dx-51x2dx =⎰⎰15x2dx3=⎰⎰22 =x2-5⋅x2+C. 7332(x-1)3x-3x+3x-1=(x-3+3-1)dx 例8 ⎰dx=⎰⎰22xx2xx=⎰xdx-3⎰dx+3⎰1dx-⎰1=1x2-3x+3ln|x|+1+C. x2xx高等数学课程建设组4高等数学教案第四章不定积分例9 ⎰(ex-3cosx)dx=⎰exdx-3⎰cosxdx=ex-3sinx+C. 例10 ⎰2xexdx=⎰(2e)xdx=xx(2e)x+C=2e+C. ln(2e)1+ln22x+(1+x2)1+x+x 例11 ⎰=⎰=⎰(12+1)dx 22x(1+x)x(1+x)1+xx=⎰12dx+⎰1dx=arctanx+ln|x|+C. x1+x44(x2+1)(x2-1)+1xx-1+1 例12 ⎰=⎰=⎰dx 1+x21+x21+x2=⎰(x2-1+1dx=⎰x2dx-⎰dx+⎰11+x1+x=1x3-x+arctanx+C. 3例13 ⎰tan2xdx=⎰(sec2x-1)dx=⎰sec2xdx-⎰dx= tan x - x + C .例14 ⎰sin2x dx=⎰1-cosxdx=1⎰(1-cosx)dx 222=例15 1(x-sinx)+C. 2⎰1=4⎰12=-4cotx+C. sinxsin2cos222高等数学课程建设组5高等数学教案第四章不定积分 §4. 2 换元积分法一、第一类换元法设f(u)有原函数F(u), u=ϕ(x), 且ϕ(x)可微, 那么, 根据复合函数微分法, 有d F[ϕ(x) ]=d F(u)=F '(u)d u= F' [ϕ(x) ] dϕ(x)= F '[ϕ(x) ]ϕ'(x)d x ,所以 F '[ϕ(x)]ϕ'(x)dx= F '[ϕ(x)] dϕ(x)= F '(u)d u= d F(u)=d F[ϕ(x) ],因此⎰F'[ϕ(x)]ϕ'(x)dx=⎰F'[ϕ(x)]dϕ(x)=⎰F'(u)du=⎰dF(u)=⎰dF[ϕ(x)]=F[ϕ(x)]+C.即⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)=[⎰f(u)du]u=ϕ(x)=[F(u) +C] u = ϕ(x) = F[ϕ(x)]+C.定理1 设f(u)具有原函数, u=ϕ(x)可导, 则有换元公式⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)=⎰f(u)du=F(u)+C=F[ϕ(x)]+C .被积表达式中的dx 可当作变量x的微分来对待, 从而微分等式ϕ'(x)dx =du可以应用到被积表达式中.在求积分⎰g(x)dx时, 如果函数g(x)可以化为g(x)= f[ϕ(x)]ϕ'(x)的形式, 那么⎰g(x)dx=⎰f[ϕ(x)]ϕ'(x)dx=[⎰f(u)du]u=ϕ(x).例1. ⎰2cos2xdx=⎰cos2x⋅(2x)'dx=⎰cos2xd(2x)=⎰cosudu=sinu+C=sin 2x+C .例2. ⎰3+2x=2⎰3+2x(3+2x)'dx=2⎰3+2xd(3+2x) 11111=1⎰1dx=1ln|u|+C=1ln|3+2x|+C. 2u22例3. ⎰2xexdx=⎰ex(x2)'dx=⎰exd(x2)=⎰eudu=eu+C=ex+C.例4. ⎰x-x2dx=1⎰-x2(x2)'dx=1⎰-x2dx2 22=-1⎰-x2d(1-x2)=-1⎰u2du=-1u2+C 223=-1(1-x2)2+C. 3高等数学课程建设组6 3132222高等数学教案第四章不定积分例5. ⎰tanxdx=⎰sinxdx=-⎰1dcosx cosxcosx =-⎰1du=-ln|u|+C u=-ln|cos x|+C .=-ln|coxs|+C. 即⎰tanxdx类似地可得⎰cotxdx=ln|sinx|+C.熟练之后, 变量代换就不必再写出了.例6. ⎰a+xdx=a⎰111dx1+(2a=1⎰1x=1arctanx+C. a1+()2aaaa即 n+C. ⎰a2+x2=aarcta11x例7. ⎰chx=a⎰chxx=a shx+C. aaaa例8. 当a>0时,1=111xdx=⎰dx=arcs+C. ⎰aaaxxa2-x222-(-(aa⎰即⎰1=arcsx+C. 22a-x例9. ⎰x2-a2dx=2a⎰x-a-x+a)dx=2a[⎰x-adx-⎰x+adx] 1111111=1[⎰1d(x-a)-⎰1(x+a)] 2ax-ax+a=1[ln|x-a|-ln|x+a|]+C=1ln|x-a|+C. 2a2ax+a即⎰x-a=2aln|x+a|+C.⎰x(1+2lnx)=⎰1+2lnx=2⎰dxdlnx1d(1+2lnx) 1+2lnx11x-a 例10.=1ln|1+2lnx|+C. 2高等数学课程建设组7高等数学教案第四章不定积分例11. ⎰e=2⎰ed=2⎰e3xdx 3x=2e+C. 3含三角函数的积分:例12. ⎰sin3xdx=⎰sin2x⋅sinxdx=-⎰(1-cos2x)dcosx=-⎰dcosx+⎰cos2xdcosx=-cosx+1cos3x+C. 3例13. ⎰sin2xcos5xdx=⎰sin2xcos4xdsinx=⎰sin2x(1-sin2x)2dsinx=⎰(sin2x-2sin4x+sin6x)dsinx=1sin3x-2sin5x+1sin7x+C. 357例14. ⎰cos2xdx=⎰1+cos2xdx=1(⎰dx+⎰cos2xdx) 22=1⎰dx+1⎰cos2xd2x=1x+1sin2x+C. 2424例15. ⎰cos4xdx=⎰(cos2x)2dx=⎰[1(1+cos2x)]2dx 2=1⎰(1+2cos2x+cos22x)dx 4=1⎰3+2cos2x+1cos4x)dx 422=1(3x+sin2x+1sin4x)+C 428=3x+1sin2x+1sin4x+C. 8432例16. ⎰cos3xcos2xdx=1⎰(cosx+cos5x)dx 2=1sinx+1sin5x+C. 2101dx 例17. ⎰cscxdx=⎰1dx=⎰sinx2sincos22高等数学课程建设组8高等数学教案第四章不定积分dxdtanx=ln|tanx|+C=ln |csc x -cot x |+C . =⎰=⎰2tancos2tan222xdx 即⎰csc=ln |csc x -cot x |+C .例18. ⎰secxdx=⎰csc(x+πdx=ln|csc(x+ π)-cot(x+ π)|+C 222=ln |sec x + tan x | + C.xdx 即⎰sec=ln |sec x + tan x | + C.二、第二类换元法定理2 设x =ϕ(t)是单调的、可导的函数, 并且ϕ'(t)≠0. 又设f [ϕ(t)]ϕ'(t)具有原函数F(t), 则有换元公式⎰f(x)dx=⎰f[ϕ(t)]ϕ'(t)dt=F(t)=F[ϕ-1(x)]+C.其中t=ϕ-1(x)是x=ϕ(t)的反函数.这是因为{F[ϕ-1(x)]}'=F'(t)dt=f[ϕ(t)]ϕ'(t)1=f[ϕ(t)]=f(x). dxdt例19. 求⎰2-x2dx(a>0).解: 设x=a sin t , - π<t< π, 那么a2-x2=2-a2sin2t=acost, 22dx =a cos t d t , 于是⎰a2-x2dx=⎰acost⋅acostdt=a2⎰cos2tdt=a21t+1sin2t)+C. 24因为t=arcsin22x, sin2t=2sintcost=2x⋅a-x, 所以 aaa⎰2a11a-xdx=a(t+sin2t)+C=arcsinx+1xa2-x2+C. 2a224222解: 设x=a sin t , - π<t< π, 那么 22高等数学课程建设组9高等数学教案第四章不定积分⎰a2-x2dx=⎰acost⋅acostdt2 =a2⎰cos2tdt=a21t+1sin2t)+C=aarcsinx+1xa2-x2+C. 2a224提示:2-x2=a2-a2sin2t=acost, dx=acos tdt .22提示: t=arcsinx, sin2t=2sintcost=2x⋅-x. aaa例20. 求⎰dx(a>0). x2+a2解法一: 设x=a tan t, - π<t< π, 那么 22x2+a2=2+a2tan2t=a+tan2t=a sec t , dx=a sec 2t d t , 于是⎰2dxasect=sectdt= ln |sec t + tan t |+C . =⎰⎰asectx2+a222因为sect=x+a, tant=x, 所以 aa⎰dx= ln |sec t + tan t |+C=ln(x+x2+a2)+C=ln(x+x2+a2)+C, 1aax2+a2其中C 1=C-ln a .解法一: 设x=a tan t, - π<t< π, 那么 22⎰dx=asec2tdt=sectdt=ln|sect+tant|+C ⎰asect⎰x2+a222xx+a =+)+C=ln(x+x2+a2)+C1, aa其中C 1=C-ln a .提示:x2+a2=2+a2tan2t=asect , dx=a sec 2t dt ,22提示:sect=x+a, tant=x. aa解法二: 设x=a sh t , 那么高等数学课程建设组10高等数学教案第四章不定积分⎰dx=⎰ach t=⎰dt=t+C=arshx+C ach tax2+a2 ⎛⎫ =ln x+(x)2+1⎪+C=ln(x+x2+a2)+C1, a⎝a⎭其中C 1=C-ln a .提示: x2+a2=2sh2t+a2=a ch t , dx =a ch t d t .例23. 求⎰dx(a>0). x2-a2解: 当x>a 时, 设x=a sec t (0<t< π), 那么 2x2-a2=a2sec2t-a2=a2t-1=a tan t ,于是⎰dx=⎰asecttant=⎰sectdt= ln |sec t + tan t |+C . atantx2-a222因为tant=x-a, sect=x, 所以 aa⎰dx= ln |sec t + tan t |+C =ln|x+x2-a2|+C=ln(x+x2-a2)+C, 1aax2-a2其中C 1=C-ln a .当x<a 时, 令x=-u , 则u>a, 于是⎰dx=-⎰du=-ln(u+2-a2)+C x2-a22-a2=-ln(-x+x2-a2)+C=ln(-x-x2-a2)+C1,22-x-x-a=ln+C=ln(-x-x2-a2)+C1, a其中C 1=C-2ln a .综合起来有⎰dx=ln|x+x2-a2|+C. x2-a2解: 当x>a 时, 设x=a sec t (0<t< π), 那么 2高等数学课程建设组11高等数学教案第四章不定积分⎰dx =⎰asecttant=⎰sectdt22atantx-a22 =ln|sect+tatn|+C=lnx+x-a)+C aa(+x2-a2)+C, =lnx其中C 1=C-ln a .当x<-a 时, 令x=-u , 则u>a, 于是⎰dx=-⎰du=-ln(u+2-a2)+C x2-a22-a22222-x-x-a =-ln(-x+x-a)+C=ln+C a =ln(-x-x2-a2)+C1,其中C 1=C-2ln a .提示:x2-a2=2sec2t-a2=a2t-1=atant .22x-a提示:tant=, sect=x. aa综合起来有⎰dx=ln|x+x2-a2|+C. x2-a2补充公式:(16)⎰tanxdx=-ln|cosx|+C,(17)⎰cotxdx=ln|sinx|+C,(18)⎰secxdx=ln|secx+tanx|+C,(19)⎰cscxdx=ln|cscx-cotx|+C, (20)⎰(21)⎰(22)⎰(23)⎰1=1x+C, aaa+x221=1ln|x-a|+C,2ax+ax-a1=arcsinx+C, aa2-x2 dx=ln(x+x2+a2)+C, x2+a2高等数学课程建设组12高等数学教案第四章不定积分(24)⎰dx=ln|x+x2-a2|+C. x2-a2§4. 3 分部积分法设函数u=u(x)及v=v(x)具有连续导数. 那么, 两个函数乘积的导数公式为(uv)'=u'v+uv',移项得 uv'=(uv)'-u'v.对这个等式两边求不定积分, 得⎰uv'dx=uv-⎰u'vdx, 或⎰udv=uv-⎰vdu,这个公式称为分部积分公式.分部积分过程:⎰uv'dx=⎰udv=uv-⎰vdu=uv-⎰u'vdx= ⋅⋅⋅.例1 ⎰xcosxdx=⎰xdsinx=xsinx-⎰sinxdx=x sin x-cos x+C .例2 ⎰xexdx=⎰xdex=xex-⎰exdx=xex-ex+C.例3 ⎰x2exdx=⎰x2dex=x2ex-⎰exdx2=x2ex-2⎰xexdx=x2ex-2⎰xdex=x2ex-2xex+2⎰exdx=x2ex-2xex+2ex+C =ex(x2-2x+2 )+C.例4 ⎰xlnxdx=1⎰lnxdx2=1x2lnx-1⎰x2⋅1dx 222x=1x2lnx-1⎰xdx=1x2lnx-1x2+C. 2224例5 ⎰arccosxdx=xarccosx-⎰xdarccosx=xarccosx+⎰x1 -x21- =xarccosx-1⎰(1-x2)d(1-x2)=xarccosx--x2+C. 2例6 ⎰xarctanxdx=1⎰arctanxdx2=1x2arctanx-1⎰x2⋅1dx 2221+x=1x2arctanx-1⎰(1-1dx 221+x高等数学课程建设组13高等数学教案第四章不定积分 =1x2arctanx-1x+1arctanx+C. 222例7 求⎰exsinxdx.解因为⎰exsinxdx=⎰sinxdex=exsinx-⎰exdsinx=exsinx-⎰excosxdx=exsinx-⎰cosxdex=exsinx-excosx+⎰exdcosx=exsinx-excosx+⎰exdcosx=exsinx-excosx-⎰exsinxdx,所以⎰exsinxdx=1ex(sinx-cosx)+C. 2例8 求⎰sec3xdx.解因为⎰sec3xdx=⎰secx⋅sec2xdx=⎰secxdtanx=secxtanx-⎰secxtan2xdx=secxtanx-⎰secx(sec2x-1)dx=secxtanx-⎰sec3xdx+⎰secxdx=secxtanx+ln|secx+tanx|-⎰sec3xdx,cxdx=1(secxtanx+ln|secx+tanx|)+C. 所以⎰se32例9 求In=⎰dx, 其中n为正整数. (x+a) 解 I1=⎰2dx2=1x+C; ax+aa当n>1时,用分部积分法, 有2dxxx ⎰=+2(n-1)⎰ (x+a)(x+a)(x+a)高等数学课程建设组14高等数学教案第四章不定积分 =x1a2dx, +2(n-1)[-⎰(x+a)(x+a)(x+a)x+2(n-1)(In-1-a2In), 22n-1(x+a)即 In-1=于是 In=1[x+(2n-3)In-1]. 2a(n-1)(x+a)以此作为递推公式, 并由I1=例10 求⎰edx. 1xarctan+C即可得In. aa解令x =t 2 , 则 , dx=2tdt. 于⎰edx=2⎰tetdt=2et(t-1)+C=2e(x-1)+C.⎰edx=⎰ed(x)2=2⎰xed=2⎰xdex=2xex-2⎰exdx=2xe-2e+C=2e(x-1)+C.第一换元法与分部积分法的比较:共同点是第一步都是凑微分⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)令ϕ(x)=u⎰f(u)du,⎰u(x)v'(x)dx=⎰u(x)dv(x) =u(x)v(x)-⎰v(x)du(x).哪些积分可以用分部积分法?⎰xcosxdx, ⎰xexdx, ⎰x2exdx;⎰xlnxdx, ⎰arccosxdx, ⎰xarctanxdx;⎰exsinxdx, ⎰sec3xdx.⎰2xexdx=⎰exdx2=⎰eudu= ⋅⋅⋅ ,⎰x2exdx=⎰x2dex=x2ex-⎰exdx2= ⋅⋅⋅ .高等数学课程建设组15 22高等数学教案第四章不定积分 §4. 4 几种特殊类型函数的积分一、有理函数的积分有理函数的形式:有理函数是指由两个多项式的商所表示的函数, 即具有如下形式的函数:P(x)a0xn+a1xn-1+⋅⋅⋅+an-1x+an , =Q(x)b0xm+b1xm-1+⋅⋅⋅+bm-1x+bm其中m和n都是非负整数; a0, a1, a2, ⋅⋅⋅ , an及b0, b1, b2, ⋅⋅⋅ , bm都是实数, 并且a0≠0, b0≠0. 当n<m时, 称这有理函数是真分式; 而当n≥m时, 称这有理函数是假分式.假分式总可以化成一个多项式与一个真分式之和的形式. 例如x3+x+1=x(x2+1)+1=x+1. x2+1x2+1x2+1真分式的不定积分:求真分式的不定积分时, 如果分母可因式分解, 则先因式分解, 然后化成部分分式再积分. 例1 求⎰解 x+3dx. x2-5x+6x+3⎰x-5x+6dx=⎰(x-2)(x-3)dx=⎰(x-3-x-2)dx x+365=⎰6dx-⎰5dx=6ln|x-3|-5ln|x-2|+C. x-3x-2提示: (A+B)x+(-2A-3B)x+3, =A+B=(x-2)(x-3)x-3x-2(x-2)(x-3)A+B=1, -3A-2B=3, A=6, B=-5.分母是二次质因式的真分式的不定积分:例2 求⎰解 x-2dx. x+2x+32⎰x2+2x+3dx=⎰2x2+2x+3-3x2+2x+3)dx x-212x+21=1⎰22x+2-3⎰21 2x+2x+3x+2x+3d(x2+2x+3)d(x+1)1 =⎰2 -3⎰2x+2x+3(x+1)2+()2=1ln(x2+2x+3)-3arctanx+1+C. 21(2x+2)-3x-2=1⋅x-2-3⋅1=提示: .x+2x+3x+2x+32x+2x+3x+2x+3例3 求⎰1dx. x(x-1)2高等数学课程建设组16高等数学教案第四章不定积分解⎰x(x-1)2dx=⎰[x-x-1+(x-1)2dx 1111=⎰1dx-⎰1dx+⎰12dx=ln|x|-ln|x-1|-1+C. xx-1x-1(x-1)提示: 1=1-x+x=-1+1 x(x-1)(x-1)2x(x-1)2x(x-1)2=-1-x+x+12=1-1+12. x(x-1)(x-1)xx-1(x-1)二、三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数, 其特点是分子分母都包含三角函数的和差和乘积运算. 由于各种三角函数都可以用sin x 及cos x 的有理式表示, 故三角函数有理式也就是sin x 、cos x 的有理式.用于三角函数有理式积分的变换:把sin x、cos x表成tanx的函数, 然后作变换u=tanx: 222tanx2tanx==2u, sinx=2sinxcosx=22sec21+tan21+u2221-tan2x=1-u2. cosx=cos2x-sin2x=22sec21+u2变换后原积分变成了有理函数的积分.例4 求⎰1+sinxdx. sinx(1+cosx)2x2u2du. 1-u 解令u=tan, 则sinx=, cosx=, x=2arctan u , dx=2221+u1+u1+u2(1+2u)2du=1(u+2+1)du 于是⎰1+sinxdx=⎰sinx(1+cosx)2⎰u2u(1+1-u1+u1+u1+u21u=(+2u+ln|u|)+C=1tan2x+tanx+1ln|tanx|+C. 2242222解令u=tanx, 则 2高等数学课程建设组17高等数学教案第四章不定积分(1+2u2 ⎰1+sinxdx=⎰⋅22du 2sinx(1+cosx)2u(1+1-u1+u1+u21+u22 =1u+2u+ln|u|)+C=1⎰(u+2+1du 222u=1tan2x+tanx+1ln|tanx|+C. 42222说明: 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分. 例如, 三、简单无理函数的积分无理函数的积分一般要采用第二换元法把根号消去.例5 求⎰x-1dx. x解设x-1=u, 即x=u2+1, 则⎰1+sinxdx=⎰1+sinxd(1+sinx)=ln(1+sinx)+C. cosx1⎰x-1dx=u⋅2udu=2u2⎰u2+1⎰u2+1x=2⎰(1-1)du=2(u-arctanu)+C 1+u=2(x-1-arctanx-1)+C.例6 求⎰dx. 1+x+2 解设x+2=u. 即x=u3-2, 则dx=1⋅3u2du=3u2-1+1du ⎰1++2⎰1+u⎰1+u2 =3⎰(u-1+1du=3(u-u+ln|1+u|)+C 1+u2=3x+2)2-x+2+ln|1+x+2|+C. 2例7 求⎰dx. (1+x)x 解设x=t 6, 于是dx =6t 5d t , 从而高等数学课程建设组18高等数学教案第四章不定积分 dx6t5dt=6t2=6(1-1)dt=6(t-arctant)+C=⎰(1+x)x⎰(1+t2)t3⎰1+t2⎰1+t2=6(x-arctanx)+C.例8 求⎰1+xdx. xx解设+x=t, 即x=21, 于是 xt-1-2t ⎰1+xdx=⎰(t2-1)t⋅xx(t-1)2 =-2⎰tdt=-2⎰(1+1)dt t-1t-1=-2t-ln|t-1|+C t+1=-2+x-ln+x-x+C. x+x+练习1. 求⎰dx. 2+cosx1-t2x2 解: 作变换t=tan, 则有dx=, x=dt, cos1+t221+t22dt221tdx1=⎰1+t2=2⎰⎰ =ddt⎰2t1-t2+cosx3+t31+()22+1+t23=2arctant3+C=231xtan)+C. 232. 求⎰sin5xdx. 4cosx4(1-co2sx)2sin5xsinx 解: ⎰dx=-⎰dcosx=-⎰dcosx cos4xco4sxco4sx21 =-⎰(1-+)dcosx cos2xcos4x=-cosx-3. 求⎰3x+1dx. x2-3x+221++C. 3cosx3cosx高等数学课程建设组19高等数学教案第四章不定积分解: ⎰3x+13x+174=dxdx=(-⎰(x-2)(x-1)⎰x-2x-1)dx x2-3x+211dx-4⎰dx x-2x-1=7ln|x-2|-4ln|x-1|+C.§4.5积分表的使用积分的计算要比导数的计算来得灵活、复杂. 为了实用的方便, 往往把常用的积分公式汇集成表, 这种表叫做积分表. 求积分时, 可根据被积函数的类型直接地或经过简单变形后, 在表内查得所需的结果.积分表一、含有ax+b的积分 =7⎰1.⎰dx=1ln|ax+b|+C ax+ba2.⎰(ax+b)μdx=3.⎰1(ax+b)μ+1+C(μ≠-1) a(μ+1)xdx=1(ax+b-bln|ax+b|)+C ax+ba224.⎰xdx=13[1(ax+b)2-2b(ax+b)+b2ln|ax+b|]+C ax+ba25.⎰6.⎰7.⎰8.⎰9.⎰dx=-1lnax+b+C x(ax+b)bxdx1+alnax+b+C =-x2(ax+b)bxb2xx1(ln|ax+b|+b)+C dx=(ax+b)2a2ax+bx2dx=1ax+b-2bln|ax+b|-b2)+C (ax+b)2a3ax+bdx11lnax+b+C =-x(ax+b)2b(ax+b)b2xxdx. (3x+4)2例1求⎰解: 这是含有3x+4的积分, 在积分表中查得公式x1b⎰(ax+b)2dx=a2(ln|ax+b|+ax+b)+C.高等数学课程建设组20高等数学教案第四章不定积分现在a=3、b=4, 于是x14⎰(3x+4)2dx=9ln|3x+4|+3x+4)+C. 二、含有+b的积分1.⎰ax+bdx=2ax+b)3+C 3a2.⎰x+bdx=22(3ax-2b)ax+b)3+C 15a3.⎰x2+bdx=4.⎰5.⎰2(15a2x2-12abx+8b2)ax+b)3+C 105a3xdx=2(ax-2b)+b+C 3a2+bx2dx=2(3a2x2-4abx+8b2)+b+C 15a3+b1ln+b-+C (b>0)ax+b+ 2arctanax+b+C (b<0)-b-b⎧⎪6.⎰dx=⎨x+b⎪⎩7.⎰dx=-+b-a⎰dx bx2bx+bx2+b8.⎰+bdx=+b+b⎰dx xx+b9.⎰2+bdx=-+b+a⎰dx xx2x+b三、含x2±a2的积分1.⎰2.⎰3.⎰x2+a2dx=1arctanx+C aadxx2n-3dx =+⎰(x2+a2)n2(n-1)a2(x2+a2)n-12(n-1)a2(x2+a2)n-1dx=1lnx-a+C x2-a22ax+aax+C (b>0)b x-b+C (b<0)x+b四、含有ax2+b(a>0)的积分⎧1arctandx=⎪1.⎰2⎨ax+b⎪1ln⎩2ab2.⎰xdx=1ln|ax2+b|+C ax2+b2a高等数学课程建设组21高等数学教案第四章不定积分 3.⎰4.⎰5.⎰6.⎰7.⎰x2dx=x-bdx ⎰2ax+baaax2+bdx1lnx2+C =x(ax2+b)2b|ax2+b|dxx2(ax2+b)1dx =-1-a⎰2bxbax+bdxaln|ax2+b|-1+C =x3(ax2+b)2b2x22bx2dx=x11dx+⎰(ax2+b)22b(ax2+b)2bax2+b五、含有ax2+bx+c (a>0)的积分六、含有x2+a2 (a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰7.⎰8.⎰dx=arshx+C=ln(x+x2+a2)+C a1x2+a2dxx+C x2+a2)3a2x2+a2x=x2+a2+Cx2+a2x1dx=-+C x2+a2)3x2+a2x2=xx2+a2-a2ln(x+x2+a2)+C 22x2+a2x2xdx=-+ln(x+x2+a2)+C 22322x+a)x+a22dx=1lnx+a-a+C |x|xx2+a2ax22+a2dx=-x2+C ax2+a2 9.⎰x2+a2dx=xx2+a2+aln(x+x2+a2)+C 222例3求⎰dx. xx2+9dxdx=1⎰, xx2+92xx2+(322解: 因为⎰所以这是含有x2+a2的积分, 这里a=3. 在积分表中查得公式 2高等数学课程建设组22高等数学教案第四章不定积分 dx1ln2+a2-a+C. =⎰xx2+a2a|x|x2+(3)2-3dx+C=1lnx2+9-3+C. 于是⎰=1⋅2ln|x|32|x|xx2+923七、含有x2-a2(a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰7.⎰8.⎰dx=xarch|x|+C=ln|x+x2-a2|+C 1ax2-a2|x|dxx=-+C x2-a2)3a2x2-a2xdx=x2-a2+C 22x-ax1dx=-+C x2-a2)3x2-a2x2dx=xx2-a2+a2ln|x+2-a2|+C 22x2-a2x2xdx=-+ln|x+x2-a2|+C x2-a2)3x2-a2dx=1arccosa+C |x|xx2-a2ax222dx=x2-a+C ax2-a29.⎰2-a2dx=xx2-a2-aln|x+x2-a2|+C 222八、含有2-x2(a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰dx=arcsinx+C a2-x2dxx=-+C a2-x2)3a22-x2xdx=2-x2+C 22-xx1dx=+C a2-x2)32-x2x2dx=-x2-x2+a2arcsinx+C 22a2-x2x2xdx=-arcsinx+C aa2-x2)32-x2高等数学课程建设组23高等数学教案第四章不定积分 7.⎰8.⎰22dx=1lna--x+C |x|x2-x2ax222dx=-2-x+C ax2-x229.⎰a2-x2dx=x2-x2-aarcsinx+C 22a九、含有ax2+bx+c(a>0)的积分十、含有±x-a或x-a)(x-b)的积分 x-b十一、含有三角函数的积分1.⎰secxdx=ln|secx+tanx|+C2.⎰cscxdx=ln|cscx-cotx|+C3.⎰secxtanxdx=secx+C4.⎰cscxcotxdx=-cscx+C5.⎰sin2xdx=x-1sin2x+C 246.⎰cos2xdx=x+1sin2x+C 247.⎰sinnxdx=-1sinn-1xcosx+n-1⎰sinn-2xdx nn8.⎰cosnxdx=1cosn-1xsinx+n-1⎰cosn-2xdx nn9.⎰sinaxcosbxdx=-1cos(a+b)x-1cos(a-b)x+C 2(a+b)2(a-b)1sin(a+b)x+1sin(a-b)x+C 2(a+b)2(a-b)10.⎰sinaxsinbxdx=-11.⎰cosaxcosbxdx=1sin(a+b)x+1sin(a-b)x+C 2(a+b)2(a-b)atanx+bdx2=arctan+C (a2>b2) 12.⎰2222a+bsinxa-b-b高等数学课程建设组24高等数学教案第四章不定积分atanx+b-2-a2dx=213.⎰ln+C (a2<b2) a+bsinx2-a2atan+b+2-a2214.⎰dxa+barctan(a-btanx)+C (a2>b2) =2a+bcosxa+ba-ba+b2a+b+C (a2<b2) a+bb-atanx+dxa+bln14.⎰=2a+bcosxa+bb-atanx-2例2求⎰dx. 5-4cosxdx2a+barct(a-btax)+C (a2>b2). a-ba+b25+(-4)5-(-4)x)+C arct(ta5-(-4)5+(-4)2解: 这是含三角函数的积分. 在积分表中查得公式 =⎰a+bcoxsa+bdx2这里a=5、b=-4, a 2>b2, 于是 =⎰5-4coxs5+(-4)=2arctan(3tanx)+C. 32例4 求⎰sin4xdx.解: 这是含三角函数的积分. 在积分表中查得公式⎰sinnxdx=-1sinn-1xcosx+n-1⎰sinn-2xdx, ⎰sin2xdx=x-1sin2x+C. nn24这里n=4, 于是⎰sin4xdx=-1sin3xcosx+3⎰sin2xdx=-1sin3xcosx+3x-1sin2x)+C. 444424高等数学课程建设组25。
高等数学教学教案第四章一元函数积分学及其应用授课序号01例6求下列不定积分:(1) ;(2);(3); (4);(5);(6);(7);(8).授课序号02是()f x 的原函数,即有换元公式()()()()()()()11d d f x x x C f t t t t x ϕϕϕϕ--⎡⎤'=Φ+=⎣⎦=⎰⎰.三、主要例题:例1 求5(32)d x x +⎰.例2 求不定积分1d 12x x +⎰.例3 求不定积分:(1)ln d xx x ⎰; (2)1d ln x x x⎰. 例4 求求.例5 求下列不定积分:(1)1d 1e x x +⎰; (2)21sind .x x x ⎰*例6 求 (1)()⎰>+0d 122a x x a ; (2)()⎰>-0d 122a x x a . 例7 求()0d 122>-⎰a x a x .例8 求下列不定积分: (1)3e d ;xx x⎰(2)tan d .x x x ⎰例9 求()⎰+x x x x d 1arctan .例10 求不定积分sin 2d x x ⎰.例11 求 (1)⎰x x d tan ; (2)⎰x x d cot . 例12 (1)⎰x x d sin3; (2)2sin cos d x x x ⎰;授课序号031i i n x x x b -<<<<=,]1x , []12,x x , …, []1,i i x x -, …对应的区间长度分别为),n上任取一点),2,,n,作如何选取,总有为常数),授课序号05教 学 基 本 内 容一、基本概念:1、设函数()f x 在区间[,]a b 内连续,x 为[,]a b 上的任意一点(见图(1)),则积分()d xaf t t ⎰存在,故()d xaf t t ⎰为[,]a b 上变量x 的函数,称为()f x 的积分上限的函数.同理()d bxf t t ⎰也是x 的函数()a x b ≤≤,称为()f x 的积分下限的函数.二、定理与性质:定理1 若函数()f x 在[],a b 上连续,则()()d xax f t t Φ=⎰在[],a b 上可导,且()()()d d d xax f t t f x x 'Φ==⎰. 定理2 若函数()f x 在[],a b 上连续,则()()d xax f t t Φ=⎰是()f x 在[],a b 上的一个原函数, 即()()x f x 'Φ=,[],x a b ∈.推论 若函数在上连续,,,在上可导,则.定理3 (牛顿—莱布尼兹公式)若函数()F x 是连续函数()f x 在[],a b 上的一个原函数,则授课序号06例4 求定积分11d 54x x x--⎰. 例5 当)(x f 在],[a a -上连续, 则(1)若()f x 是区间[](),0a a a ->上的连续且为奇函数,则()d 0aa f x x -=⎰;(2)若()f x 是区间[](),0a a a ->上的连续且为偶函数,则()()0d 2d a a a f x x f x x -=⎰⎰; 例6 计算121(||sin )d x x x x -+⎰. 例7 求10ln(1)d x x x +⎰.例8 求.例9 求. 例10 计算12112e d x x --⎰.授课序号06,n M B =的极限存在,则称此极限为曲线弧例1 求椭圆22221x y a b+=的面积. 例2 求由两条曲线2y ax =和2ay x =(0a >)围成的平面图形的面积.例3 求抛物线22y x =与直线4y x =-所围成的平面图形的面积.例4 用极坐标表示下列曲线: (1); (2); (3); (4) .例 5 计算阿基米德螺线()0r a a θ=>上相应于θ从0到2π的一段弧与极轴所围成的图形的面积. 例6 计算心形线()1cos r a θ=+()0a >所围成的图形的面积.例7求由围成的平面图形绕轴旋转而得的旋转体的体积.例8 求曲线4=xy ,1,2y y ==所围成的图形(见图(25))绕y 轴旋转构成旋转体的体积. 例9求椭圆分别绕轴与轴旋转而得的旋转体的体积.例10 一平面经过半径为R 的圆柱体的底圆中心并与底面交成角α,计算这平面截圆柱体所得的立体的体积.例11 求曲线3223y x =上相应于x 从1 到2的一段弧的长度. 例12 求圆222R y x =+的周长.。
第四章 不定积分第一节 不定积分的概念与性质一、原函数与不定积分的概念 定义:如果在区间I 上,可导函数()F x 的导函数为()f x ,即对于任一x I∈都有()()F x f x '=或d ()()d ,F x f x x =则称函数()F x 为()f x (或()d f x x )在区间I 上的一个原函数.例如:因()22x x '=,故2x 是2x 的一个原函数.定理(原函数存在定理):如果函数()f x 在区间I 上连续,那么在区间I 上存在可导函数()F x ,使对任一x I ∈都有()().F x f x '=即连续函数必有原函数.注:①如果()f x 有一个原函数的话,那么()f x 就有无限多个原函数. ②()f x 的任意两个原函数只差一个常数.定义:在区间I 上,函数()f x 的带有任意常数项的原函数称为()f x (或()d f x x )在区间I 上的不定积分,记作()d f x x ⎰, 其中⎰称为积分号,()f x 称为被积函数,()d f x x 称为被积表达式,x 称为积分变量. 即()d ().f x x F x C =+⎰注:()d f x x ⎰是()f x 的原函数,故有d ()d ()d f x x f x x⎡⎤=⎣⎦⎰或d ()d ()d ;f x x f x x ⎡⎤=⎣⎦⎰又因为()F x 是()F x '的原函数,所以有()d ()F x x F x C '=+⎰或d ()().F x F x C =+⎰所以记号⎰与d 是互逆的 例:求d x x ⎰解:由于22x x '⎛⎫=⎪⎝⎭,所以22x 是x 的一个原函数,因此2d 2x x x C =+⎰ 例:求1d x x⎰解:当0x >时,有1(ln )x x'= 当0x <时,有[]11ln()(1)x x x'-=⋅-=-,故ln |1d |x C x x =+⎰函数()f x 的原函数的图形称为()f x 的积分曲线.例:已知曲线上任一点处的切线斜率 等于该点横坐标的两倍,且曲线经过点(1,2),求该曲线的方程解:设所求曲线方程为()y f x =,由题意得()2f x x '=,即()f x 为2x 的一个原函数,所以2()2,d f x x x x C ==+⎰又所求曲线通过点(1,2),故21C =+,1C = 于是所求曲线方程为21y x =+二、基本积分表 (1)d k x kx C =+⎰(k是常数) (2)11d x x x C μμμ+=++⎰(1μ≠-)(3)l d n x x C x=+⎰ (4)ln d xxa a x C a=+⎰(5)e e d x x x C =+⎰(6)cos s d in x x x C =+⎰ (7)sin c d os x x x C =-+⎰(8)22d sec ta d n cos x x x x C x==+⎰⎰ (9)22csc co d t sin d xx x x C x==-+⎰⎰(10)2arcsin 1x C x=+-⎰(11)2arctan 1d xx C x=++⎰(12)sec tan se d c x x x x C =+⎰ (13)csc cot cs d c x x x x C =-+⎰例:求d x xx⎰解:3131222d d 2312xx x x C xC C x xx-+--==+=-+=-+-+⎰⎰三、不定积分的性质 (1)[]()()()d d )d (f x g x x f x x g x x +=+⎰⎰⎰(2)()d ()d kf x x k f x x =⎰⎰注:性质(1)可推广到有限多个函数的情形例:求32(1)d x x x-⎰ 解:33222(1)331d d x x x x x x x x --+-=⎰⎰231(3)d x x x x =-+-⎰ 2d d d 3d 3x x x x x x x=-+-⎰⎰⎰⎰2133ln 2x x x C x =-+++ 例:求3e d x xx ⎰解:(3e)3e 3e d (3e)d ln(3e)1ln 3x x x x x xx x C C ==+=++⎰⎰ 例:求42d 41x x x -+⎰ 解:()()224422211341311d d d 1xx x x x x x x x x +-----==+++⎰⎰⎰2222311311d d d d x x x x x x x x =--=--++⎛⎫ ⎪⎝⎭⎰⎰⎰⎰33arctan 3x x x C =--+ 例:求2tan d x x ⎰解:()22tan d s 1d ec x x x x =-⎰⎰2d sec d x x x =-⎰⎰tan x x C =-+例:求2sin d 2xx ⎰解:211sin d (1cos )d (1cos )d 222x x x x x x =-=-⎰⎰⎰ 11(d cos d )(sin )22x x x x x C =-=-+⎰⎰ 例:求221d sin cos 22x x x⎰ 解:22211d d sin sin cos ()222x x x x x =⎰⎰24csc d 4cot x x x C ==-+⎰ 例:求4222+3d 1x x x x ++⎰解:422222+34d =2-1+d =11x x x x x x x +++⎰⎰()2212d -1d +4d 1x x x x x +⎰⎰⎰32=-4arctan 3x x x C ++ 注:①多项式除法②42422222222222+322-+3-3+1-4==2-=2-1111x x x x x x x x x x x x x ++++++ 作业:第二节 换元积分法一、第一类换元法 定理:设()f u 具有原函数,()u x ϕ=可导,则有换元公式()[()]()d ()d u x f x x x f u u ϕϕϕ=⎡⎤'=⎣⎦⎰⎰证:由[()][()]()d dF x f x x x ϕϕϕ'=则[()]()d [()]f x x x dF x ϕϕϕ'=⎰⎰[]()[()]()u x F x C F u C ϕϕ==+=+()()d u x f u u ϕ=⎡⎤=⎣⎦⎰上述方法称为第一类换元法,也叫凑微分法 例:求2cos 2d x x ⎰解:2cos 2d cos 2(2)d x x x x x'=⋅⎰⎰2cos d sin sin 2u x u u u C x C ==+=+⎰令例:求1d 32x x +⎰ 解:11111d (32)d d 323323x x x u x x u '=⋅+=++⎰⎰⎰11ln ||ln |32|33u C x C =+=++ 例:求2e d x x x ⎰解:()222222111e d e d e d e 222xx x x x x x x x C '===+⎰⎰⎰例:求⎰解:12221(1)()d 2x x x x '=-⋅⎰⎰12221(1)d(1)2x x =---⎰ 3322221(1)1(1)3232x C x C -=-⋅+=--+例:求22d xa x +⎰解:22222dd 1d 11arctan 11xx x x a C a a a a x a x x a a =⋅==++⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰例:x解:arc i ds nx xx C a==+ 例:求22d xx a -⎰解:22d 111d 2x x a x a x a x a⎛⎫=- ⎪-+-⎝⎭⎰⎰1d d 2x x a x a x a ⎛⎫=- ⎪-+⎝⎭⎰⎰1d()d()2x a x a a x a x a -+⎡⎤=-⎢⎥-+⎣⎦⎰⎰1(ln ||ln ||)2x a x a C a=--++1ln 2x a C a x a -=++ 例:求()1d 1+2ln x x x ⎰解:()()d 1+2ln 1d ln 11d ln 1+2ln 1+2ln 1+2ln 21+2ln 2x x x x C x x x x ===+⎰⎰⎰例:求x解:(22233x e e e C ===+⎰⎰例:求3sin d x x ⎰解:32sin sin si d d n x x x x x =⎰⎰()2co s 1s co -d x x =-⎰3cos co -+3s xx C =+ 例:求23sin cos d x x x ⎰解:2322sin cos sin cos sin d d x x x x x x =⎰⎰()22sin 1si d n sin x x x =-⎰()3524sin sin sin sin sin 3d 5x xx x x C =-=-+⎰例:求tan d x x ⎰解:sin 1tan d d dcos ln |cos |cos cos x x x x x x C x x ==-=-+⎰⎰⎰类似可得cot d ln |sin |x x x C =+⎰例:求2cos d x x ⎰解:()21cos 21cos cos 22d d d d 2x x x x x x x +==+⎰⎰⎰⎰11cos 2(2)2d 4d x x x =+⎰⎰ sin 224x xC =++ 例:求4sec d x x ⎰解:()4222sec d sec sec d 1tan d(tan )x x x x x x x ==+⎰⎰⎰2d(tan )tand(tan )x x x =+⎰⎰31tan tan 3x x C =++例:求3tan sec d x x x ⎰解:()322tan sec d tan tan sec d sec 1d(sec )x x x x x x x x x =⋅=-⎰⎰⎰231sec d(sec )d(sec )sec sec 3x x x x x C =-=-+⎰⎰例:求csc d x x ⎰解:2d d d 2csc d sin 2sin cos tan cos 2222x x x x x x x x x x ===⎰⎰⎰⎰d tan 2ln tan 2tan 2x x C x ⎛⎫ ⎪⎝⎭==+⎰ 又因为2sin2sin 1cos 22tan csc cot 2sin sin cos 2x xx x x x x x x-====- 所以 csc d ln csc cot x x x x C =-+⎰类似可得sec d ln sec tan x x x x C =++⎰例:求cos3cos2d x x x ⎰解:()111cos3cos2d =cos +cos5d =cos d +cos5d52210x x x x x x x x x x ⎰⎰⎰⎰ 11=sin +sin5210x x C + 作业:二、第二类换元法 定理:设()x t ψ=单调、可导,且()0t ψ'≠,又设[()]()f t t ψψ'具有原函数,则有换元公式1()()[()]d (d )t x f x x f t t t ψψψ-=⎡⎤'=⎣⎦⎰⎰证:设[()]()f t t ψψ'的原函数为()t Φ,记1()=()x F x ψ-⎡⎤⎣⎦Φ,则()1()==[()]()=[()]=()d dt F x f t t f t f x dt dx t ψψψψΦ''⋅⋅',即()F x 是()f x 的原函数 ()11()()()+=+d ()t x f x x C x t x C C F ψψ--=⎡⎤=⎡⎤⎣⎦⎣+=ΦΦ⎦⎰1()=[()]d ()t x f t t t ψψψ-=⎡⎤'⎣⎦⎰ 例:求22d (0)a x x a -⎰>解:设sin x a t =,22t ππ-≤≤, 2222d cos d(sin )cos d a x x a t a t a t t -==⎰⎰⎰2(1cos2)d 2a t t =+⎰21(sin 2)22a t t C =++222=arcsin 22a x x a x C a +-+例:求22d (0)x a x a+⎰>解:设tan 22x a t t ππ⎛⎫=- ⎪⎝⎭<<,则222sec d d sec d sec a t x t t t a t x a ==+⎰⎰⎰ln sec tan t t C =++221ln x x aC a ⎛⎫+ ⎪=++ ⎝⎭()22ln x x a C =+++类似地,得2222d ln x x x a C x a =+-+-⎰(0a >)(14)tan d ln cos x x x C =-+⎰(15)cot d ln sin x x x C =+⎰(16)sec d ln sec tan x x x x C =++⎰(17)csc d ln csc cot x x x x C =-+⎰(18)22d 1arctan x x C a a a x=++⎰(19)22d 1ln 2x x aC a x a x a -=++-⎰(20)1arcs inx x C a =+(21)()1ln x x C =+ (22)ln x x C =+倒代换:分子次数远低于分母次数(相差两次以上)时,采用此法例:求4d x x⎰解:令1x t =,则21d -d x t t=,故()12224=1x a t t dt xt -⎰当0x >时,有()()()32221222222211=-11=-+23a t x a td a tC x a a---⎰()322232222223--=-+-+33a x a x x C C a a x⎛⎫ ⎪⎝⎭=当0x <时,有相同的结果 作业:第三节 分部积分法设函数()u u x =及()v v x =具有连续导数,则()uv u v uv '''=+, 两端求不定积分,得uv u vdx uv dx ''=+⎰⎰,从而uv dx uv u vdx ''=-⎰⎰即udv uv vdu =-⎰⎰称为分部积分公式 例1:求cos x xdx ⎰ 解:cos (sin )sin sin x xdx xd x x x xdx ==-⎰⎰⎰sin cos x x x C =++例2:求e xx dx ⎰解:e e e e x x x x x dx xd x dx ==-⎰⎰⎰e e (1)e x x xx C x C =-+=-+注:222e e e e 222xxx xx x x x dx d dx ⎛⎫==- ⎪⎝⎭⎰⎰⎰,不可以 例3:求2e xx dx ⎰解:22222e (e )e e ()e 2e x x x x x x x dx x d x d x x x dx ==-=-⎰⎰⎰⎰22e 2(e e )e (22)x x x x x x C x x C =--+=-++结论:当被积函数为幂函数与三角(弦)函数或指数函数的乘积时要把幂函数看成u . 例4:求ln x xdx ⎰解:2222221ln ln (ln )ln ln 222224x x x x x x x xdx x d x x dx x C x =-=-⋅=-+⎰⎰⎰() 例5:求arctan x xdx ⎰解:22211arctan =arctan =arctan -arctan 222x x xdx xdx x x d x ⎰⎰⎰ 2222221111arctan arctan 222211x x x x x dx x dx x x +-=-=-++⎰⎰ ()222111arctan 1=arctan arctan +22221x x x dx x x x C x ⎛⎫=---- ⎪+⎝⎭⎰()211=+1arctan +22x x x C - 例6:求arccos d x x ⎰解:arccos arccos arccos xdx x x xd x =-⎰⎰arccos x x x =+()21arccos 12x x x =--arccos x x C = 结论:当被积函数为幂函数与对数函数或反三角函数的乘积时要把对数函数或反三角函数看成u .例7:求e sin xxdx ⎰解:e sin sin (e )e sin e cos xx xxxdx xd x xdx ==-⎰⎰⎰e sin cos (e )x xx xd =-⎰e sin e cos e sin x x x x x xdx =--⎰所以1e sin e (sin cos )2xxxdx x x C =-+⎰ 例8:求3sec xdx ⎰解:32sec =sec tan sec tan tan sec sec tan sec tan xdx xd x x x xd x x x x xdx =-=-⎰⎰⎰⎰()23=sec tan sec sec 1=sec tan sec +sec x x x x dx x x xdx xdx ---⎰⎰⎰ 3=sec tan +ln sec tan sec x x x x xdx +-⎰所以31sec (sec tan +ln sec tan )2xdx x x x x C =++⎰总结:以上两个例题为循环出现解方程型. 以上所有例题所用的方法都是比较典型的. 例9:求⎰解:设t =,则2x t =,2dx tdt =,于是2e t t dt =⎰⎰)2e (1)1t t C C =-+=+作业:212-21369116P 、、2、15、、20、24第四节 有理函数的积分一、有理函数的积分 定义:两个多项式的商()()P x Q x 称为有理函数,又称有理分式,当()P x 的次数小于()Q x 的次数时,称这有理函数为真分式,否则称为假分式.由多项式的除法可知,假分式总能化为一个多项式与一个真分式之和.由于多项式的不定积分是容易求得的,因此只需研究真分式的不定积分.例如:422222342111x x x x x ++=-+++根据代数知识,有理真分式必定可以表示成若干个部分分式之和.因而问题归结为求那些部分分式的不定积分. 设()()P x Q x 为真分式 第一步:对分母()Q x 在实系数内作标准分解:()()()()()1121112st s t t Q x x a x a x p x q x p q μλμλ=--++++L L第二步:根据分母的各个因式分别写出与之相应的部分分式:对于每个形如()kx a -的因式,它所对应的部分分式是()()122k k A A A x a x a x a +++---L 对每个形如()2kx px q ++的因式,它所对应的部分分式是()()11222222k kkB xC B x C B x C x px q x px qxpx q++++++++++++L第三步:确定待定系数:一般方法是将所有部分分式通分相加,所得分式的分母即为原分母()Q x ,而其分子亦应与原分子()P x 恒等.于是,按同幂项系数必定相等,得到一组关于待定系数的线性方程,这组方程的解就是需要确定的系数.例:对4325432249105248x x x x x x x x x -++-+--+-作部分分式分解解:按上述步骤依次执行如下:()Q x =54325248x x x x x +--+-()()()22221x x xx =-+-+部分分式分解的待定形式为()012222212A A A Bx Cx x x x x ++++-+-++ 例:求215d 6x x x x +-+⎰解:设213256x A Bx x x x +=+---+,得1231A B A B +=⎧⎨+=-⎩,从而解得4,3A B ==于是2143()d 3256d x x x x x x x +=----+⎰⎰4ln 33ln 2x x C =---+例:求2d 2(21)(1)x x x x x ++++⎰ 解:设22221(21)(1)1x A Bx C x x x x x x ++=+++++++,有20212A B A B c A C +=⎧⎪++=⎨⎪+=⎩,解得210A B C =⎧⎪=-⎨⎪=⎩ 于是2d 2(21)(1)x x x x x ++++⎰22()d 211x x x x x =-+++⎰21(21)1ln 21d 21x x x x x +-=+-++⎰ 2221d(1)1d ln 2113221()24x x xx x x x ++=+-+++++⎰⎰21ln 21ln(1)2x x x C =+-++++例:求()()2311d x x x x---⎰解:设()()()2231+11+11x AB Cx x x x x -=++---,得1,1=1A B C ==--, 于是()221111d 1+1561d x x x x x x x x ⎡⎤+--=++⎢⎥--+-⎢⎥⎣⎦⎰⎰1ln 1ln +11x x C x =+--+-步骤:①化假为真(凑或用多项式除法) ②分母分解因式(分解到最简) ③分解成部分分式之和④求解各个小积分(特别是分母是两次的)二、可化为有理函数的积分举例 设tan()2xt x ππ=-<<,则 2222tan2tan222sin 2sin cos 221sec 1tan 22x xx x t x x x t ====++ 222222221tan 1tan 122cos cos sin 221sec 1tan 22xxx x t x x x t ---=-===++222tan22tan 11tan 2xt x x t ==-- 例:求1sin d sin (1cos )xx x x ++⎰ 解: 设tan()2x t x ππ=-<<,则22d d 1x t t=+ 于是22222211sin 21d d sin (1cos )121111tx t x t x x t t t t t +++=⋅++⎛⎫-+⎪++⎝⎭⎰⎰ 21112d 2ln 222t t t t t C t ⎛⎫⎛⎫=++=+++ ⎪ ⎪⎝⎭⎝⎭⎰ 211tan tan ln tan 42222x x xC =+++ 注:万能换元对三角函数有理式的不定积分虽然总是有效的,但并不意味着在任何场合都是简便的. 例:求解:设u =,于是 32x u =-,2d 3d x u u =,23d 1u u u =+⎰2113d 1u u u -+=+⎰23(ln |1|)2uu u C =-+++3ln |1C =++ 例:求解:设t =,于是5d 6d x t t =,5236d (1)t t t t =+⎰226d 1t t t =+⎰2161)d 1(t t =-+⎰6(arctan )t t C =-+C =+作业:第四章复习1. 求3d 3x x x +⎰ 解:33222731=39=9273323d d 3d x x x x x x x x x x x x ⎛⎫-+--+- ⎪+++⎝⎭⎰⎰⎰ 323=927ln 332x x x x C -+-++ 2. 求22+3310d x x x x +-⎰ 解:()()22+32+311==++52+52310d d d x x x x x x x x x x x ⎛⎫ ⎪--+-⎝⎭⎰⎰⎰ 11=+=ln +5l 2+2d d n 5x x x x C x x +-+-⎰⎰ 3. 求2+12d 5x x x x -+⎰ 解:2222+1122+41221==22225252525d d d d x x x x x x x x x x x x x x x --+-+-+-+-+⎰⎰⎰⎰ ()()222111=25222514d d x x x x x x -++-+-+⎰⎰ ()22111=ln 2521221d x x x x --++-⎛⎫+ ⎪⎝⎭⎰()211=ln 25arctan 22x C x x --+++ 4. 求()2d 1xx x+⎰解:()2221=+ln 11d d 1d xx x x x x x x x x x -⎛⎫=- ⎪+++⎝⎭⎰⎰⎰ ()()222d 111ln 1ln ln 1221x x x x x C =-+=-+++⎰。