基于矿物特性的太阳能储热材料研究进展
- 格式:pdf
- 大小:474.58 KB
- 文档页数:6
题目:铯钨青铜纳米材料在太阳能储存的应用研究摘要:铯钨青铜带隙较宽,可以透过可见光。
铯钨青铜材料不但具有高的可见光透过率,同时也具有优异的近红外光(NIR)遮蔽性能。
铯钨青铜材料可应用于建筑节能方面,良好的储存太阳能。
本文就铯钨青铜材料展开介绍,分析此材料的特点,在太阳能储存中的的应用。
关键词:铯钨青铜纳米材料,太阳能,太阳能储存,变相储存1.引言全球18%以上的能源消费来自可再生能源。
因为可再生能源长期的可获得性以及绿色环保性,所以可再生能源比不可再生能源的开发更受人类青睐。
但是,太阳能这类可再生能源,由于其间歇性,使得它的应用受到限制。
因此,通过储能技术,将存储太阳能以维持无太阳光时环境的需要。
Telkes 和Raymond等人于1940年开始研究变相储热过程,将太阳能储存;美国的United Solar公司研究微晶硅太阳能电池,效率已达9%以上且高效率、高稳定的优势;Sharma et al.在2000年报道了将熔点为82°C,热容为263kJ/kg乙酰胺作为相变储热材料应用于改良型太阳灶的研究;Feldman etal.对硬脂酸J酯(49%)和丁基棕榈酸酯(48%)的混合酯研究,结果表明该混合酯适合作为建筑物储能材料用于储存太阳能;美国麻省理工学院研究太阳房,具有利用太阳热能和节约能源的优点,用集热器、贮热装置、管道、风机、水泵等设备“主动”收集、储存和输配太阳能。
2.铯钨青铜纳米材料的热物理性质钨青铜材料作为一种新型的透明隔热材料,具有优异的阻隔红外光的性能,同时可以保持较高的可见光透过率。
与其他透明隔热材料相比,它的优势在于:钨青铜材料在整个近红外光区(780-2500nm)均具有良好的遮蔽能力,特别是在其它透明隔热材料难以遮蔽的900-1200nm范围内。
钨青铜材料遮蔽近红外光的能力十分显著,可以使近红外光的透过率下降到 10%以下。
同时,钨青铜材料还具有以下优点:原料绿色无毒无污染、制备工艺简单、成本低廉等。
热能存储材料及其应用研究进展随着全球能源需求的增加,新的可再生能源技术正在得到更多的关注。
然而,可再生能源的使用仍然受到限制,一个主要的原因是能源的不稳定性和间歇性。
因此,热能存储技术作为一种重要的能源存储技术,正在受到越来越多的关注。
本文将介绍热能存储材料及其应用研究进展。
1. 热能存储技术的基本原理热能存储技术是将热能储存到某种媒介中,待需要使用时释放热能。
其基本原理是热量的传递必须保持热流的方向一致,即从高温区域流向低温区域。
储能时,媒介用电或其他方式加热到高温状态,然后当需要释放能量时,将热能源的热能传递给需要使用的地方。
2. 热能存储材料的分类热能存储材料通常可以分为两种类型:相变储热材料和热容储热材料。
相变储热材料是指能够通过相变过程(如熔化、冷凝等)来吸收和释放热量的材料。
热容储热材料是指在一定温度范围内,能够吸收和释放热量的材料。
3. 相变储热材料相变储热材料是一种重要的热能存储材料。
这些材料通常可以通过加热来发生相变,例如从固态向液态转变、从液态向气态转变、从普通固态向有序固态转变等。
相变储热材料的优点在于其潜热较大,储能密度高,且不会因温度变化而引起体积变化。
常见的相变储热材料包括蓖麻油酸(RSM)和氢氧化钠(NaOH)等。
RSM是一种生物基可再生相变储热材料,具有良好的相变温度和热值,从而适合于应用于太阳能热发电系统等多种领域。
NaOH在特定温度范围内从固态转变为液态,其潜热高达44.1 J/g,可以储存大量的热能。
4. 热容储热材料与相变储热材料不同,热容储热材料的热量存储通常不会引起相变。
热容储热材料的优点是其热量存储和释放速度较快,因此在一些短期高温场合中更为适宜。
常用的热容储热材料有石墨烯、陶瓷和金属氧化物等。
石墨烯是一种优秀的热容储热材料,由于其良好的热导率和稳定性,可以在高温场合中储存和释放大量的热量。
此外,陶瓷和金属氧化物也被广泛应用于热能储存系统。
5. 热能存储材料的应用研究进展热能存储材料可以广泛应用于发电、供暖等领域。
太阳能光热发电系统的光热储存技术研究随着对可再生能源需求的增加,太阳能光热发电系统作为一种清洁、可持续的能源解决方案受到了广泛关注。
然而,太阳能光热发电系统面临着一个问题,即如何在太阳辐射不足或夜间等不可控因素下保持全天候供应能源。
为了克服这个问题,研究者们致力于开发和完善太阳能光热发电系统的光热储存技术。
本文将对太阳能光热发电系统的光热储存技术进行研究和探讨。
一、研究背景太阳能光热发电系统是一种将太阳辐射转化为热能并进一步转化为电能的过程。
在太阳高照或阳光强烈的时候,太阳能光热发电系统可以高效地将太阳能转化为电能。
然而,当太阳辐射不足时,系统无法继续发电,这就需要一种有效的光热储存技术来保障能源供应的连续性。
二、光热储存技术的分类光热储存技术可以分为热惰性储存和热有源储存两大类。
热惰性储存是指将太阳能热能储存在传统的热媒体或储存介质中,如水蒸气、熔融盐等,并在需要的时候释放出来。
热有源储存则是指将太阳能热能储存在内部具有化学反应能力的媒体中,通过化学反应来释放储存的热能。
三、热惰性储存技术1. 熔融盐储存技术熔融盐储存技术是目前应用较广泛的一种光热储存技术。
它通过将热能储存在特定的盐类中,当需要热能时,将盐类加热至熔化状态,并利用热传导的方式将储存的热能输送到发电系统中。
熔融盐储存技术具有储能效率高、储能密度大、循环稳定性好等优点。
2. 储热球堆储存技术储热球堆储存技术是一种基于球型颗粒的热媒体储存技术。
通过将太阳能热能转化为球堆内部的热能,并利用球堆颗粒间的热传导来储存和释放热能。
这种技术具有结构简单、储能效率高、成本较低等特点,但同时也存在热传导效率低、球堆颗粒之间的间隙对热传导造成影响等问题。
四、热有源储存技术1. 化学蓄热储存技术化学蓄热储存技术是一种通过化学反应将太阳能热能储存起来的技术。
在这种技术中,热能被转化为化学能,并通过特定的反应释放出来。
例如,氧化还原反应、氢氧化反应等都可以用于太阳能光热发电系统的热能储存。
太阳能热化学储能技术的研究及应用随着气候变化和环境问题的加剧,自然界的资源变得越来越紧缺,加之人们对能源的需求日益增长,发展清洁、可再生的能源成为了摆在全球人类面前的重要课题。
太阳能作为一种无限的清洁能源,被越来越多的国家和机构所重视。
为了使太阳能得到更好的利用,科学家们致力于研究和开发各种太阳能储能技术,其中太阳能热化学储能技术是一个备受瞩目的领域。
什么是太阳能热化学储能技术?太阳能热化学储能技术是一种利用太阳能对储能材料进行加热并充分吸收太阳能的过程,将光能转化为热能,并将热能储存在相变材料中,当需要释放时再将储存的热能释放出来。
相比于传统的太阳能热能储存技术,太阳能热化学储能技术具有更高的能量密度和更长久的储存时间,同时还能够充分利用太阳能,并将其转化为可靠的电力。
如何实现太阳能热化学储能技术?实现太阳能热化学储能技术主要需要两个步骤:储能和释能。
储能:太阳能热化学储能技术的关键在于储能材料的选择。
这种材料可以分为两类:化学变化储热材料和相变储热材料。
化学变化储热材料是指在加热的过程中,通过化学反应产生储热效果,因此可以称之为化学反应储能材料。
相变储热材料则是指在加热的过程中,通过物质相变所吸收的能量来储存、释放热量,因此可以称之为相变储能材料。
对于储存热量大约在100℃到200℃之间的太阳能,可以使用相变储能材料,而对于需要储存热量在200℃到400℃之间的太阳能,可以使用化学变化储热材料。
释能:释能过程是将储存的热能转化为电能的过程。
在太阳能热化学储能技术中,将释放的热能转化为电能主要有两种方式:热发电和温差发电。
热发电是指将储存的热能直接转化为电能的过程,其中最常见的方法是利用塔式太阳能热塔提升温度,驱动涡轮机发电。
而温差发电是指利用材料的热电效应将储存的热能转化为电能,其中最常见的应用是锗硅(III-V族)热电材料技术。
太阳能热化学储能技术的应用前景太阳能热化学储能技术将太阳能转化为可靠的电力,具有广泛的应用前景。
化学蓄热材料的开发与应用研究进展摘要:作为化学能与热能相互转换的核心技术,化学反应蓄热是 21 世纪最为重要的储能技术之一。
与传统的潜热储能方式相比较而言,化学反应蓄热的能量储存密度有着数量级的提升,其在工作温度范围以及材料稳定性上的优势显着。
本文针对金属氢氧化物、金属氢化物、金属碳酸盐、结晶水合物、金属盐氨合物等几种当前主要的化学蓄热材料,重点阐述了各自的应用机制和工作条件,分析了各种材料的研究现状和亟需解决的科学及应用问题,指出复合以及掺杂型材料的优化制备是化学蓄热技术未来发展的主要方向。
关键词:储能技术;化学蓄热;复合材料;反应机理能量储存是解决能量供求的时间和空间匹配矛盾的有效手段,在能源危机及环境污染日益严重的今天,发展这项提高能源利用效率和保护环境的应用技术愈发紧迫。
在热能储存的领域内,国内外传统的研究方向是潜热储存,但是其材料相变时出现过冷现象、放热循环后相分离、材料的稳定性等问题始终没有得到有效解决。
作为化学能与热能相互转换的核心技术,化学反应蓄热是利用化学变化中吸收、放出热量进行热能储存,是 21世纪最为重要的储能技术之一。
与传统的潜热储能方式相比较,化学反应蓄热的能量储存密度有数量级的提升,其化学反应过程没有材料物理相变存在的问题,该体系通过催化剂或产物分离方法极易用于长期能量储存。
然而,目前化学蓄热系统在国内尚未实现市场化,制约其商业化的关键问题之一是安全系数低。
国外基于商用的化学储能反应通常在较高的温度条件下进行,同时会有氢气这类易燃物质参与,这显然增加了化学蓄热系统整体的风险指数,技术问题的复杂化导致一次性投资过大。
同时,化学蓄热材料在反应器中的传质传热效率需要进一步提高,从而优化系统的整体效率。
因此,寻求安全且高效的化学蓄热技术是推动我国化学储能商业化的核心问题,其广泛的应用前景对国民经济和环保事业发展具有重大的科学意义。
近年来学术界围绕着该领域进行了一系列有益的探索,目前化学蓄热体系的科研工作主要集中在欧洲以及日本等,而国内对于吸附式制冷以及建筑节能方面的应用研究重点则在相变储能领域,对该新兴学科的应用基础研究工作相对滞后。
《太阳能相变蓄热供暖系统理论及实验研究》篇一一、引言随着能源的日益紧张和环境保护的迫切需求,太阳能作为一种清洁、可再生的能源,受到了广泛关注。
太阳能相变蓄热供暖系统是利用太阳能作为主要能源,通过相变材料(Phase Change Materials, PCMs)进行热能储存和释放,为建筑提供供暖的一种新型技术。
本文旨在探讨太阳能相变蓄热供暖系统的理论及其实验研究,以期为相关领域的实际应用提供理论依据和参考。
二、太阳能相变蓄热供暖系统理论1. 系统构成太阳能相变蓄热供暖系统主要由太阳能集热器、储热装置、控制系统等部分组成。
其中,太阳能集热器用于收集太阳能并转化为热能;储热装置采用相变材料进行热能储存;控制系统负责调节系统运行,保证供暖效果。
2. 工作原理在白天,太阳能集热器通过吸收太阳辐射将太阳能转化为热能,并将热量传递给相变材料。
当相变材料达到其熔点时,将吸收的热量以潜热的形式储存起来。
在夜间或阴天时,相变材料将储存的热量以显热的形式释放出来,为建筑提供供暖。
此外,控制系统根据室内外温度、太阳辐射强度等因素,自动调节系统运行,保证供暖效果。
三、实验研究为了验证太阳能相变蓄热供暖系统的性能,我们进行了一系列实验研究。
实验过程中,我们采用了不同种类的相变材料和不同规模的储热装置,以探究其对系统性能的影响。
1. 实验方法我们首先搭建了太阳能相变蓄热供暖系统的实验平台,并采用不同的相变材料和储热装置进行实验。
在实验过程中,我们记录了不同时间段的太阳辐射强度、室内外温度、储热装置温度等数据,并对这些数据进行分析和比较。
2. 实验结果实验结果表明,采用不同种类的相变材料和不同规模的储热装置对系统性能有一定影响。
其中,高导热系数的相变材料和较大规模的储热装置有利于提高系统的储热能力和供暖效果。
此外,我们还发现,在一定的条件下,该系统能够实现较长的储热时间,满足长时间的供暖需求。
四、结论与展望通过对太阳能相变蓄热供暖系统的理论及实验研究,我们发现该系统具有较高的储热能力和良好的供暖效果。
储热材料研究现状及相变储热研究进展
刘芮;王振兴;张文静;张生德;张清华
【期刊名称】《电机与控制应用》
【年(卷),期】2024(51)2
【摘要】储热作为一种具有广阔前景的规模化储能技术,可有效缓解能源供求不匹配、优化能源结构。
综述了近几年来关于化学储热、显热储热和相变储热(潜热储热)的材料体系、制备工艺及性能特点,对各种储热材料的组成、结构、性能特点、面临的困难、应用前景及发展趋势进行了分析讨论。
其中,利用相变材料在相变过程中,吸收或放出相变潜热来进行能量储存与释放的相变储热反应易于控制、安全可靠且具有高能量密度。
基于此,进一步对相变储热的分类、储热系统强化传热技术以及应用等方面的研究进展进行了总结。
【总页数】17页(P44-60)
【作者】刘芮;王振兴;张文静;张生德;张清华
【作者单位】上海电机系统节能工程技术研究中心有限公司;东华大学材料科学与工程学院;上海送变电工程有限公司
【正文语种】中文
【中图分类】TQ9
【相关文献】
1.相变储热研究进展:(1)相变材料特性与储热系统优化
2.相变储热研究进展——(2)组合相变材料储热与应用潜力
3.废旧混凝土基定型相变储热材料的储热研
究4.封装相变材料的红柱石蜂窝陶瓷储热材料及储热装置的研究5.储热技术现状及相变储热材料的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
光热转换相变储能材料的研究进展
樊冬娌;刘丽霞;陆亚清
【期刊名称】《纳米技术》
【年(卷),期】2022(12)4
【摘要】太阳能是一种取之不尽、用之不竭的清洁可再生能源,但其间歇性与不连续性的特点,一定程度上限制了它的发展与商业化应用。
基于有机相变材料的潜热存储技术不仅可以完美地解决太阳能自身存在的缺陷,而且能够有效地将太阳能转换成热能并存储起来。
本文综述了有机相变材料进行光热转换与存储的基本方法和机理,浅谈了光热转换材料最新的研究进展以及在节能建筑、个人热管理和电子器件的热管理等领域的应用。
最后,对光热转换相变储能材料未来的研究重点进行了展望。
【总页数】10页(P352-361)
【作者】樊冬娌;刘丽霞;陆亚清
【作者单位】南通大学化学化工学院南通;苏州市产品质量监督研究院苏州
【正文语种】中文
【中图分类】F42
【相关文献】
1.纳米复合相变材料固液相变储能过程研究进展
2.相变储热研究进展:(1)相变材料特性与储热系统优化
3.相变储热研究进展(2)组合相变材料储热与应用潜力
4.
以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展5.具有光热转换性能的三聚氰胺泡沫支撑铜纳米颗粒/石蜡复合相变材料的研究和应用
因版权原因,仅展示原文概要,查看原文内容请购买。
稀土材料在新型储热材料中的应用探索引言储热技术在能源领域扮演着重要的角色。
它可以将过剩的能量储存起来,在需要的时候释放出来。
随着可再生能源的快速发展,储热材料的需求也在不断增加。
传统的储热材料往往存在储存效率低、成本高以及环境污染等问题。
于是,各种新型储热材料的研究与应用逐渐引起了人们的关注。
稀土材料由于其独特的物化性质,在新型储热材料的研究中展现出了巨大的潜力。
本文将对稀土材料在新型储热材料中的应用进行探索和总结。
稀土材料的特性稀土元素是指周期表中镧系元素和钪、钆、铽三个元素,它们具有相对较高的原子序数和较窄的f轨道。
稀土材料因为其独特的电磁性质、光学性质和热学性质而备受关注。
1.电磁性质:稀土材料具有良好的磁性和铁电性,可以被广泛应用于磁性材料和电子器件中。
2.光学性质:稀土材料具有较高的荧光效果和发光效率。
它们可用于生物标记、照明设备等领域。
3.热学性质:稀土材料具有较高的热导率和热稳定性。
这些特性使它们成为理想的储热材料的候选者。
稀土材料在储热材料中的应用稀土材料在储热材料中的应用主要包括相变材料、热化学储热材料和热电材料等方面。
相变材料相变材料是指在温度改变时能够发生相变的物质。
稀土材料作为相变材料的一种,具有较高的相变温度和储能密度,因此在储热领域具有广泛的应用前景。
稀土材料常用于制备储热建筑材料,可以应用于夏季的降温和冬季的取暖。
例如,将稀土材料嵌入建筑材料中,可以在白天吸收太阳能并将其储存起来,在夜晚释放出来,提供舒适的温度。
同时,稀土材料还可以用于制备储热储冷材料。
通过选择适当的稀土材料,可以将储存的热能转化为冷能,实现冷却效果。
这一技术对于空调系统的节能改造具有重要意义。
热化学储热材料热化学储热材料是指利用热化学反应储存和释放热能的材料。
稀土材料因其良好的储热性能被广泛应用于热化学储热材料中。
举例来说,稀土材料可以用于制备化学吸附式储热材料。
在吸附式储热材料中,稀土材料可以通过吸附或解吸附过程吸收和释放热能。
-ο} -收稿日期:2007-01-23作者简介:朱教群(1964-),男,湖南双峰人,教授,主要从事能源材料的研究。
储热材料的研究进展及其应用朱教群,张 炳,周卫兵(武汉理工大学材料复合新技术国家重点实验室,武汉430070)摘 要:综述了储热材料的研究进展和实际应用。
介绍了储热材料的分类以及各类材料的性能、储能机理和优缺点;介绍了一些新型的相变材料,并结合实例探讨了储热材料在太阳能利用、建筑节能等领域的应用;指出了储热材料的研究方向和未来的发展趋势。
关键词:储热;相变材料;热能储存;节能中图分类号:TK513.5 文献标识码:A 文章编号:1004-3950(2007)03-0048-05Research progress and appli ca ti on of ther ma l storage ma ter i a lsZHU J iao 2qun,ZHANG B ing,ZHOU W ei 2bing(State Key Laborat ory of Advanced Technol ogy forMaterials Synthesis and Pr ocessing,W uhan University of Technol ogy,W uhan 430070,China )Abstract:The research p r ogress and p ractical app licati ons of energy st orage materials were widely revie wed,and the classificati on,the perf or mance,the energy st orage mechanis m and the characteristics of phase change materials (PC 2M s )were studied .The app licati ons of PC M s in s olar energy app licati on,architectural energy economy,concentrated air conditi oning and other fields were als o intr oduced .The research directi on and the future devel opment tendency were pointed out .Key words:ther mal st orage;phase change materials;ther mal energy st orage;energy saving0 前 言随着社会的不断发展,人类对能源的需求日益增加,但是能源的供应与需求都有较强的时间性,在很多情况下还不能合理地利用,从而导致能源的大量浪费。
新型储热材料在太阳能热利用中的应用近年来,一种新型的储热材料正在逐渐得到人们的注视和应用。
它被称为相变储热材料,具有在固液相变时释放或吸收大量热量的特性。
这种材料应用在太阳能热利用领域中,能够有效解决因太阳能的周期性变化而带来的能量存储问题,具有广阔的市场前景和社会意义。
一、相变储热材料的原理相变储热材料,是一种具有固液相变性的物质。
凭借其特殊的结构和物理性质,它可以在特定的温度下从固态转化为液态,从而吸收大量的热量。
同样地,在温度下降时,它也可以从液态转化为固态,释放掉之前吸收的热量。
这种材料的优点是,能够在相对狭窄的温度区间内进行相变,释放或吸收大量的热量。
同时,其稳定性较高,寿命较长,更易于储存和运输。
与传统的热储存材料相比,相变储热材料的储能密度更高,且有较为明显的温度控制作用。
这得益于相变过程所需的潜热(将物质从一种态转变为另一种态所需的热量),其值通常为传统材料的数倍。
此外,相变储热材料的相变温度可以根据具体需求进行调节,从而实现对储热系统的优化。
二、太阳能热利用中相变储热材料的应用太阳能是一种免费、环保的清洁能源,然而,它的能量密度低,且存在昼夜温差和季节变化等周期性变化,因此储存太阳能一直是一个难题。
相变储热材料的涵义和应用可以很好地解决这个问题。
相变储热材料可以应用于各种类型的太阳能热利用设备中,例如太阳能集热器、光伏发电、太阳能热水器等。
以太阳能集热器为例,它可以根据集热管内介质的不同,分为水介质和空气介质。
对于水介质而言,加入相变储热材料可以增加其储热量,减少热损失,提高系统的效率。
而空气介质则可以用相变储热材料来改善储热条件,延长集热器的可运行时间。
另外,在太阳能热水器中,相变储热材料同样具有广泛的应用前景。
相变储热材料可以被放置在热水器的热源处,逐渐吸收太阳辐射所产生的热量。
一旦达到相变温度,它就可以快速释放所吸收的热量,从而为热水器提供热源。
值得一提的是,相变储热材料能够在热水器关闭时仍然保持热量,从而可以为半夜或云雨天等无阳光的时段提供热水使用。
《太阳能相变蓄热供暖系统理论及实验研究》篇一一、引言随着人类对可持续能源的需求日益增长,太阳能作为清洁可再生的能源备受关注。
太阳能相变蓄热供暖系统是利用太阳能进行热能储存和供暖的重要技术手段。
本文旨在探讨太阳能相变蓄热供暖系统的基本理论,并通过实验研究其性能特点及实际应用中的效果。
二、太阳能相变蓄热供暖系统理论1. 系统组成太阳能相变蓄热供暖系统主要由太阳能集热器、相变材料(PCMs)、供暖系统和控制系统等部分组成。
其中,太阳能集热器负责吸收太阳辐射能并将其转化为热能;相变材料通过固态-液态或液态-气态的相变过程储存和释放热能;供暖系统则负责将储存的热能输送到需要供暖的地方;控制系统则负责监控和调节整个系统的运行。
2. 工作原理系统工作原理主要分为两个阶段:在白天,太阳能集热器吸收太阳辐射能并将其转化为热能,这部分热能被传递给相变材料,使其升温并储存起来。
到了夜间或阴天,当需要供暖时,控制系统会启动供暖系统,将储存的热量释放出来,供给建筑或其它需要供暖的场所。
三、实验研究为了更深入地了解太阳能相变蓄热供暖系统的性能特点,我们进行了相关的实验研究。
1. 实验设计我们选择了一处具有代表性的地点进行实验,安装了一套太阳能相变蓄热供暖系统。
实验过程中,我们记录了不同时间段的太阳辐射强度、系统温度、相变材料的温度变化以及供暖系统的运行情况等数据。
2. 实验结果与分析(1)太阳辐射与系统温度:实验发现,在阳光充足的日子里,太阳能集热器的温度能够迅速上升,并将热量有效地传递给相变材料。
而在阴天或夜间,系统温度会逐渐下降。
(2)相变材料的性能:实验表明,相变材料在吸热和放热过程中具有较好的稳定性,能够有效储存和释放大量的热能。
此外,相变材料的相变过程对温度变化具有缓冲作用,使得系统温度波动较小。
(3)供暖系统运行:在需要供暖时,控制系统能够根据实际需求启动供暖系统,将储存的热量释放出来。
实验结果显示,该系统能够满足一般建筑物的供暖需求,且具有较好的节能效果。