氦氖激光器与谐振腔
- 格式:doc
- 大小:3.05 MB
- 文档页数:9
一.He-Ne激光器1.谱线竞争的原因:具有相同上能级或者相同下能级的谱线之间,当产生辐射跃迁时,对公有能级的粒子数发生影响,存在相互作用,这就是谱线竞争。
2.如何抑制3.39μm?①.谐振腔的作用:对于较短的氦氖激光器,靠谐振腔的选择性来抑制3.39μm谱线,谐振腔采用对632.8nm高反射率的多层介质膜,使谐振腔对632.8nm有高的增益,而对3.39μm经反射镜反射后损耗很大,单程增益很低,使之不能振荡,只产生632.8nm的谱线输出。
②.谐振腔中加色散元件:在谐振腔一个反射镜和布儒斯特窗之间放置一块三棱镜,由于棱镜对632.8nm和3.39μm的折射率不同,通过棱镜后就有不同的偏向角,调整谐振腔的位置,使得3.39μm的辐射偏离出腔外,只让632.8nm在腔内振荡。
③.甲烷吸收法:甲烷(CH4)气体对 3.39μm处有强烈吸收,而对832.8nm是完全透明的。
④.外加轴向非均匀磁场:非均匀磁场引起的增宽对632.8影响不大,对3.39μm影响很大。
由于增益与线宽成反比,所以非均匀磁场造成的谱线加宽使3.39μm的增益明显下降,而632.8nm变化不大,因此大大提高了它对3.39μm的竞争能力,使632.8nm的增益增大。
二、二氧化碳(CO2)激光器1.P支和R支:二氧化碳激光器的跃迁发生在振动能级(0001)—(1000)和(0001)—(0200)之间。
从一个振动能级到另一个振动能级跃迁时,也可能同时发生转动量子数的变化,对二氧化碳分子的激光跃迁,其选择定则为:1∆,,1-=0±=∆J的跃迁称为R∆J的跃迁称为P支,1+=支,0∆J的跃迁称为Q支,在二氧化碳分子中,Q支是不存在的。
=P支较R支先振荡的原因:由于P支跃迁的上能级的统计权重(2J+1)比下能级的(2J+1)要小,而R支跃迁的上能级的统计权重(2J+3)比下能级(2J+1)要大,这就使P支的跃迁比R支的跃迁容易建立起粒子数的反转分布,又由于P支的跃迁几率比R支大,因而P支的激光振荡就比较容易实现。
氮氛激光器与激光谐振腔电子科学与技术实验室激光器是一种利用物质的受激辐射现象来工作的光学器件,受激辐射最早是由爱因斯坦于1917年提出的,其基本意思为:当物质与光波相互作用时,将产生受澈辐射现象,有可能将物质中的一定能量加到入射的光波中去,其结果是光披的能量获得了放大。
如果光波在物质中传播时损耗足够的小,并同时引入适当的正反馈,就可以构成一个光学振荡器-激光器,就象我们在电学中使用的自澈振荡电路一样。
激光器的物理基础是光的受激辐射放大,激光的英文单词laser就是来自于light amplification by stimulHted cm i xs ion of rad i at iond 中的头几个字母。
光与物质的相互作用主要可以归结为三个方面:吸收、自发辐射和受激辐射。
1.受激吸收:吸收是激光工作物质从外界吸收能量的过程,在这里我们关心一种特殊的吸收过程-受激吸收。
受激吸收是一种与后面将要介绍的受激辐射相反的过程,既一个外界光子将使一个处于低能级原的粒子跃迁到一个较高能级E2上,且外来光子的频率u与粒子能级差E2-E1有如下关系:0 = (E2-E1) /h其中h为普朗克常数。
2・自发辐射:在没有外界干扰的情况下,处于高能级的粒子,可以自发地向低能级跃迁,同吋发射一个光子,这个光子的频率一般由下式决定:u - (Em-En) /hEnrEn为发生跃迁的上下能级能量差。
自发辐射过程与外界相互作用无关,各个原子的辐射都是自发的、随即的、独立的进行,因而各个粒子发出的光子的发射方向、偏振态和相位是不同的,随机的。
自发辐射是一种非相干光辐射。
3・受傲辐射:当存在外来光子时,光子与粒子相互作用,当外来光子的频率u正好满足o = (E2-E I) /h条件时,则处于E2能级的粒子就会输射出•个同频光子,井跃迁到□能级。
而且,这个被诱发的光子与外來光了可能还会有相同的相位、偏振态和传播方向•受激辐射是一种相干辐射。
模式分析1.氦-氖(He-Ne)激光器简介氦氖激光器(或He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。
二电极通过毛细管放电激励激光工作物质,在氖原子的一对能级间造成集居数反转,产生受激辐射。
由于谐振腔的作用,使受激辐射在腔内来回反射,多次通过激活介质而不断加强。
如果单程增益大于单程损耗,即满足激光振荡的阈值条件时,则有稳定的激光输出。
内腔式激光器的腔镜封装在激光管两端。
二.氦-氖(He-Ne)激光器的工作原理氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。
在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。
这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。
因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。
这就产生了激光必须具备的基本条件。
在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。
因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。
3.He-Ne激光器结构及谐振腔He-Ne激光器的结构形式很多,但都是由激光管和激光电源组成。
激光管由放电管、电极和光学谐振腔组成。
放电管是氦一氖激光器的心脏,它是产生激光的地方。
放电管通常由毛细管和贮气室构成。
放电管中充入一定比例的氦(He)、氖(Ne)气体,当电极加上高电压后,毛细管中的气体开始放电使氖原子受激,产生粒子数反转。
贮气室与毛细管相连,这里不发生气体放电,它的作用是补偿因慢漏气及管内元件放气或吸附气体造成He,Ne气体比例及总气压发生的变化,延长器件的寿命。
He-Ne激光器与激光谐振腔一.实验目的通过实验,掌握激光调谐的原理和技巧,验证谐振腔理论和有关增益的概念,全面、深入的了解激光器的结构、特性、工作条件和相关理论。
二.实验仪器1.光学实验导轨:1000毫米一根2.准直光源:二维可调半导体激光器,650纳米3.5mW 一个3.小孔光栏屏一个4.激光管调整架:由两个二维调整架组成,可完成4个自由度的调整。
一个5.半内腔氦氖激光管:波长633nm,最大输出功率≥2mW(硬封长寿命管)一个6.激光电源:稳流,电流可调,范围4.5-8毫安一个7.二维反射镜架:精密细牙调整螺钉(含硬膜半反射镜)。
一付8.二维可调扩束镜一付9.激光功率指示计:3位半数子表头,测量范围:200微瓦、2、20、200毫瓦、可调档,含半导体激光电源。
一套10.显示屏:80毫米×100毫米一块三.实验原理1、半导体发光原理a.我们知道,白炽灯是把被加热钨原子的一部分热激励能转变成光能,发出宽度为1 000 nm 以上的白色连续光谱。
b.发光二极管(LED)却是通过电子在能带之间的跃迁,发出频谱宽度在几百 nm 以下的光。
c.在构成半导体晶体的原子内部,存在着不同的能带。
如果占据高能带(导带)的电子跃迁到低能带(价带)上,就将其间的能量差(禁带能量)以光的形式放出。
这时发出的光,其波长基本上由能带差所决定。
光的自发辐射、受激发射和吸收补充知识与举例:1)自发辐射---LED工作原理a.如果把电流注入到半导体中的P-N结上,则原子中占据低能带的电子被激励到高能带后;射b.当电子从高能带跃迁到低能带时,将自发辐射出一个光子,其能量为 hv。
c.电子从高能带跃迁到低能带把电能转变成光能的器件叫 LED。
e.当电子返回低能级时,它们各自独立地分别发射一个一个的光子。
因此,这些光波可以有不同的相位和不同的偏振方向,它们可以向各自方向传播。
f.同时,高能带上的电子可能处于不同的能级,它们自发辐射到低能带的不同能级上,因而使发射光子的能量有一定的差别,使这些光波的波长并不完全一样。
实验报告课程名称: 指导老师: 成绩:__________________ 实验名称: He-Ne 激光器与激光谐振腔 同组学生姓名一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求本套实验装置的核心He-Ne 激光器,采用的是一种半内腔结构,激光器的一个全反射镜与毛细管、储气套等做成一体,并在出厂前将全反射镜与毛细管调至垂直。
而另一个半反射镜则被安装在一个精密二维调整架上,可灵活移动。
通过一准直光源调整激光管和半反射镜,使之产生激光。
用激光功率计检测这束激光并进一步调整膜片使之达到最佳状态(功率最大)。
观察光斑大小和光强分布。
用扫描干涉仪观察其纵膜的频谱分布情况。
调整工作电流,观察输出功率的变化。
重复移动半反射镜并重新使之达到最佳状态,观察光斑大小和分布变化,记录功率,用干涉仪观察纵膜,比较前后变化,分析腔长对功率、纵膜、横膜、发散角、束腰、腔型的影响。
在激光管与半反射镜之间插入一可调损耗,使之与增益刚好达到平衡,通过对损耗的测量,求得 激光管的增益。
通过实验,掌握激光调谐的原理和技巧,验证谐振腔理论和有关增益的概念,全面、深入地了解激光器的结构、特性、工作条件和相关理论。
二、 实验内容和原理1.改变工作电流,观察电流与输出功率的关系。
(在超过5mA 的大电流时,工作时间不可过长。
) 2.腔长与激光功率、横模、纵模、束腰、发散角的关系1)设备调试完成后,用功率计测量其最大功率。
用显示屏在全反射端一定距离处(2-3米)观察光斑的大小和形状,光斑的大小反应了发散角的大小,光斑的形状即为激光的横模。
观察半反射镜上的光斑(束腰)大小。
在半反射镜端装上F-P 扫描干涉仪探头,观察纵模情况。
装订线专业: 姓名: 学号:日期: 10.21 地点:2)松开反射镜架滑块上的螺钉,移动反射镜,在适当位置上重新锁紧,以改变谐振腔的腔长和腔型。
实验一:He-Ne 激光器谐振腔调整和激光特性的测量一、实验目的:1.了解He-Ne 激光器的构造。
2. 观察并测量He-Ne 激光器的功率、发散角等特性参数。
3. 调整谐振腔一端的反射镜,观察谐振腔改变后He-Ne 激光器性能参数的变化。
4. 了解外腔He-Ne 激光器的偏振态。
5. 通过光栅方程来验证He-Ne 激光的波长。
二、实验内容:1. He-Ne 激光器发散角测量由于远场发散角实际是以光斑尺寸为轨迹的两条双曲线的渐近线间的夹角,所以我们应延长光路以保证其精确度,此时需要在前方放置反射镜。
可以证明当距离大于λωπ207时所测的全发散角与理论上的远场发散角相比误差仅在1%以内。
(1)确定和调整激光束的出射方向,放置一个反射镜来延长光路。
(2)在光源前方L1处用光功率计检测,在与光轴垂直的某方向延正负轴测量并绘出光功率/位移曲线。
(3)由于光功率/位移曲线是高斯分布的,定义Pmax/e2为光斑边界,测量出L1位置的光斑直径D1。
(4)在后方L2处用光功率计同样测绘光强/位移曲线,并算出光斑直径D2。
(5)由于发散角度较小,可做近似计算,θ2=D2-D1/L2-L1,便可以算出全发散角2θ。
2 .利用光栅方程验证波长。
He-Ne 激光器的波长是623.8nm, 通过光栅方程可以验证激光器的波长值。
观察衍射图样,统计出衍射级数j 。
根据三角公式,计算出衍射角θ。
由于光栅常数d 已知,根据光栅方程可以计算出激光波长。
),2,1,0(sin ±±==j j d λθ1. 观察He-Ne 外腔激光器模型,了解各部分构造及工作原理。
He-Ne 激光器的组成包括有:共振腔(由放电毛细管和反射镜组成)、工作物质(有氦氖气体按一定比例组成)、放电电源(通常多采用直流高压电源)。
当氦氖激光器的电极上加上几千伏的直流高压后,管内就产生辉光发电,对工作物质进行激励从而引起受激辐射,经共振腔进行光放大以后,即产生激光输出。
He-Ne激光器与激光谐振腔实验指导书浙江大学光电系特别提示!!!1.He-Ne激光器的阳带有几千伏的高压,请注意安全!!!2.激光管为玻璃结构,易碎,特别是布氏窗结构,由多种玻璃构成,应避免受力和碰撞。
激光膜片是非常易损的光学元件,应绝对避免人手的触摸和剐蹭,必要的清洁请使用专用长丝棉或脱脂棉结合干净的乙醚或丙酮轻轻擦拭。
一.实验内容与目的本套实验装置的核心He-Ne激光器,采用的是一种半内腔结构,激光器的一个全反射镜与毛细管、储气套等做成一体,并在出厂前将全反射镜与毛细管调至垂直。
而另一个半反射镜则被安装在一个精密二维调整架上,可灵活移动。
通过一准直光源调整激光管和半反射镜,使之产生激光。
用激光功率计检测这束激光并进一步调整膜片使之达到最佳状态(功率最大)。
观察光斑大小和光强分布。
用扫描干涉仪观察其纵膜的频谱分布情况。
调整工作电流,观察输出功率的变化。
重复移动半反射镜并重新使之达到最佳状态,观察光斑大小和分布变化,记录功率,用干涉仪观察纵膜,比较前后变化,分析腔长对功率、纵膜、横膜、发散角、束腰、腔型的影响。
在激光管与半反射镜之间插入一可调损耗,使之与增益刚好达到平衡,通过对损耗的测量,求得激光管的增益。
通过实验,掌握激光调谐的原理和技巧,验证谐振腔理论和有关增益的概念,全面、深入地了解激光器的结构、特性、工作条件和相关理论。
二.实验设备光学导轨、准直光源(650nm 3.5mW半导体激光器),二维可调架,小孔光栏屏,激光管调整架(由两个二维调整架组成,可完成4个自由度的调整),半内腔氦氖激光管:波长6328nm,最大输出功率≥2mW,激光电源:稳流,电流可调,范围4.5-8毫安二维反射镜架:精密细牙调整螺钉(含硬膜半反射镜)二维可调扩束镜:激光功率计:3-1/2位数字表头,测量范围:200微瓦、2、20、200毫瓦、可调档, 含半导体激光电源。
显示屏:80毫米×100毫米增益测量组件:三维可调扫描干涉仪示波器三.实验装置的设置1)将导轨放置在稳定的平台上。
XGL-3 氦氖激光一、 激光原理1、普通光源的发光—受激吸收和自发辐射普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。
激发的过程是一个“受激吸收”过程。
处在高能级(E 2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E 1)跃迁,跃迁时将产生光(电磁波)辐射。
辐射光子能量为12E E h -=ν这种辐射称为自发辐射。
原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外其位相、偏振状态也各不相同。
由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。
在通常热平衡条件下,处于高能级E 2上的原子数密度N 2,远比处于低能级的原子数密度低,这是因为处于能级E 的原子数密度N 的大小随能级E 的增加而指数减小,即N ∝exp(-E /kT ),这是著名的波耳兹曼分布规律。
于是在上、下两个能级上的原子数密度比为]/)(ex p[/1212kT E E N N --∝式中k 为波耳兹曼常量,T 为绝对温度。
因为E 2>E 1,所以N 2<<N 1。
例如,已知氢原子基态能量为E 1=-13.6eV ,第一激发态能量为E 2=-3.4eV ,在20℃时,kT ≈0.025eV ,则0)400ex p(/12≈-∝N N可见,在20℃时,全部氢原子几乎都处于基态,要使原子发光,必须外界提供能量使原子到达激发态,所以普通广义的发光是包含了受激吸收和自发辐射两个过程。
一般说来,这种光源所辐射光的能量是不强的,加上向四面八方发射,更使能量分散了。
2、受激辐射和光的放大由量子理论知识知道,一个能级对应电子的一个能量状态。
电子能量由主量子数n(n=1,2,…)决定。
氦氖激光器的结构及原理氦氖激光器的结构及原理1.氦氖激光器的结构.氦氖激光器的结构氦氖(氦氖(He-Ne He-Ne He-Ne)激光器的结构一般由放电管和光学谐振腔所组成。
激光管的中心是一)激光器的结构一般由放电管和光学谐振腔所组成。
激光管的中心是一根毛细玻璃管,称作放电管(直径为1mm 左右);外套为储气部分(直径约45mm 45mm));A 是钨棒,作为阳极;作为阳极;K K 是钼或铝制成的圆筒,作为阴极。
壳的两端贴有两块与放电管垂直并相互平行的反射镜,构成平凹谐振腔。
两个镜版都镀以多层介质膜,一个是全反射镜,通常镀17层膜。
交替地真空蒸氟化镁(交替地真空蒸氟化镁(MgF2MgF2与硫化锌(与硫化锌(ZnS ZnS ZnS))。
另一镜作为输出镜,通常镀7层或9层膜(由最佳透过率决定)。
毛细管内充入总气压约为2Torr 2Torr(托)的(托)的He He、、Ne 混合气体,其混合气压比为5:1-7:1左右。
内腔管结构紧凑,使用方便,所以应用比较广泛。
但有时为了特殊的需要也常选用全外腔式或半外腔式。
全外腔式的放电管和镜片是完全分离的,半外腔式是上两种形式的结合。
外腔式和半外腔式都需要粘贴布儒斯特片,外腔式和半外腔式都需要粘贴布儒斯特片,窗片法线与激光光轴有一夹角,窗片法线与激光光轴有一夹角,应等于布儒斯特角θ:θ=tg-1n , K8玻璃对632.8nm 激光激光 n=1.5159 n=1.5159;θ=56=56°°3535'';熔融石英 n=1.46;θ=55=55°°3636''。
因此,全外腔式和半外腔式激光器输出的光束是电矢量平行于入射面的线偏振光。
面的线偏振光。
2.氦氖激光器激发机理.氦氖激光器激发机理氦氖激光器中工作物质是氦气和氖气,其中氦气为辅助气体,氖气为工作气体。
产生激光的是氖原子,不同能级的受激辐射跃迁将产生不同波长的激光,主要有632.8nm 632.8nm、、1.15um 和3.39um 三个波长。