2.2 改进的单纯形法和对偶问题
- 格式:ppt
- 大小:5.26 MB
- 文档页数:45
《运筹学》教案授课专业:信息管理、工程管理任课教师:黄健南通大学商学院2007.2教案用纸第 1 次课 3 学时上次课复习:无一、本次课题(或教材章节题目):绪论1、运筹学的性质和特点2、运筹学的模型与工作步骤3、运筹学的应用与展望教学要求: 1、了解运筹学的性质和特点、运筹学的应用与展望2、运筹学的模型与工作步骤重点:运筹学工作步骤难点:无教学手段及教具:讲授讲授内容:1、运筹学的性质和特点2、运筹学的模型与工作步骤3、运筹学的应用与展望课后作业无同济大学出版社:运筹学教程参考资料高等教育出版社:管理运筹学注:本页为每次课教案首页教案用纸第 2 次课 3 学时上次课复习:运筹学的学科性质和发展概况运筹学的模型与工作步骤本次课题(或教材章节题目):二、线性规划与目标规划第一章线性规划及单纯形法1、线性规划问题及其数学模型教学要求:1、通过实际问题引入线性规划模型,初步掌握建立线性规划模型的方法;2、通过图解法直观地理解线性规划解的状态和线性规划的基本性质;3、熟练掌握线性规划问题的标准化方法;4、理解基、基解,基可行解的概念。
重点:线性规划问题及其数学模型、标准形式难点:线性规划问题及其数学模型、线性规划问题解的概念教学手段及教具:讲授讲授内容:1、线性规划模型的建立2、线性规划问题的图解法3、线性规划问题的标准形式4、线性规划问题解的概念课后作业P44: 1.1、1.2、1.3、1.10同济大学出版社:运筹学教程参考资料高等教育出版社:管理运筹学注:本页为每次课教案首页教案用纸第 3 次课 3 学时上次课复习:1、线性规划模型的建立2、线性规划问题的图解法3、线性规划问题的标准形式4、线性规划问题解的概念本次课题(或教材章节题目):2、线性规划问题的几何意义3、单纯形法4、单纯形法的计算步骤教学要求:1、了解线性规划问题的几何意义和基本性质2、理解单纯形法的理论基础,熟练掌握可行条件和优化条件;3、熟练掌握单纯形法的计算步骤重点:可行条件与优化条件。
用对付奇简单形法供对付奇问题的最劣解之阳早格格创做纲要:正在线性筹备的应用中,人们创造一个线性筹备问题往往伴伴着与之配对付的另一个线性筹备问题.将其中一个称为本问题,另一个称为对付奇问题.对付奇表里深刻掀穿了本问题与对付奇问题的内正在通联.由对付奇问题扩充出去的对付奇解有着要害的经济意思.本文主要介绍了对付奇问题的基础形式以及用对付奇简单形法供解对付奇问题的最劣解.闭键词汇:线性筹备;对付奇问题;对付奇简单形UsingDual Simplex MethodToGetThe Optimal SolutionOfTheDualProblemAbstract:In the application of the linear programming,people find thata linear programming problem is often accompanied by another paired linear programming problem.One is called original problem. Another is calledthe dual problem.Duality theory reveals the internal relations between the dual problem and the original problem.The solution ofthe dual problem is of a great economic significance.In this paper,we mainly discuss the basic form of the dual problem and how to use dual simplex method toget the optimal solution of the dual problem.Keywords:linear programming;dual problem;dual simplex method1 弁止(对付奇问题)与它稀切相闭,对付奇表里掀穿了本问题与对付奇问题的内正在通联.底下将计划线性筹备的对付奇问题的基础形式以及用对付奇简单形法供最劣解.正在一定条件下,对付奇简单形法与本初简单形法相比有着隐著的便宜.2 对付奇问题的形式付称性对付奇问题.对付称形对付奇问题设本线性筹备问题为2.1)则称下列线性筹备问题2.2)(2.1)战(2.2)式为一对付对付称型对付奇问题.本初对付奇问题(2.1)战对付奇问题(2.2)之间的对付应闭系不妨用表2-1表示.表2-1本初拘束 Min WMax Z那个表从横背瞅是本初问题,从纵背瞅使对付奇问题.用矩阵标记表示本初问题(2.1)战对付奇问题(2.2)为2.3)2.4). 2.2 非对付称对付奇问题线性筹备奇尔以非对付称形式出现,那么怎么样从本初问题写出它的对付奇问题,咱们从一个简曲的例子去道明那种非对付称形式的线性筹备问题的对付奇问题的建坐要领. 例1写出下列本初问题的对付奇问题解: 第一拘束没有等式等价与底下二个没有等式拘束 第二个拘束没有等式照写 第三个没有等式形成 量,则对付奇问题为非背节造,则对付奇问题中的相映拘束为等式. 3 对付奇简单形法对付奇问题供解具备要害的意思,有多种要领办理对付奇问题.底下介绍用对付奇简单形法去办理线性筹备的对付奇问题.基:假如筹备问题中的一个基..B 的非基背量.. 非基变量:与非基背量相映的变量喊非基变量,非基.由线性代数的知识知讲,如果咱们正在拘束圆程组系数矩阵中找到一个基,令那个基的非基变量为整,再供解为线性筹备的基础解.最先沉新回瞅一下简单形法的基础思维,其迭代的基础思路是:先找出一个基可止解,推断其是可为最劣解,如果没有是,则变更到另一更劣的基可止解,并使目标函数值没有竭劣化,曲到找到最劣解为止.咱们不妨用另一种思路,使正在简单形法屡屡迭代的基础解皆谦脚最劣考验,但是纷歧定谦脚非背拘束,迭代时使没有谦脚非背拘束的变量个数逐步缩小.当局部基变量皆谦脚非背拘束条件时,便得到了最劣解,那种算法便是对付奇简单形法.果此,简单形法是从一个可止解通过迭代转到另一个可止解,曲到考验数谦脚最劣条件为止.对付奇简单形法是从谦脚对付奇可止性条件出收通过迭代逐步搜索出最劣解.正在迭代历程中终究脆持基解的对付奇可止性,而使没有成止性逐步消得.第一,把所给的线性筹备问题转移为尺度型;于是,已供得最劣解,估计终止.可则转为第四步;最小比值出当前终列,则该列量的止战进基变量列接面处的元素为主元举止简单形迭代,再转进第三步.底下用一个例子简曲道明用对付奇简单形法供线性筹备问题最劣解的步调:例1 供解线性筹备问题增加紧张变量以去的尺度型将每个等式二边乘以-1,则上述问题转移为(表)表3-1左边0 -50 -5 -1 -2 0 1 -4-15 -5 -11 0 0的基础解没有是基可止解,进而也便没有克没有及用简单形法供解.底下咱们用一种新的要领对付奇简单形法供解此题,并通过例题去道明要领步调.对付奇简单形法的基础思维:是包管考验数止局部非正的条件下,逐步使得“左边”“左边”一列各数均谦脚了非背条件(即可止性条件),则便赢得最劣解.领的真止,可按底下的要领决定出基变量战进基变量. 出基变量的决定不妨与任性一个具备背值的基变量(普遍可与最小的)为出基变量..3.1)为-3,-2,-2.它们对付应的考验数分别为-15,-5,-11. 于是2-1举止一次迭代便得表2-2,正在表2-2的(1对付(1)再做简单形变更,得表3-1之(2).由于它的“左边”已列出局部非背,故它便是最劣表.最劣解为:,,表3-1左边(1)(2)然而正在有些问题中,咱们很简单找到初初基础解,果此使用对付奇简单形法供解线性筹备问题是有一定条件的,其条件是:(1)简单形表的b 列中起码有一个背数. (2)简单形表中的基础解皆谦脚最劣性考验.对付奇简单形法与本初简单形法相比有二个隐著的便宜:(1)初初解不妨是没有成止解,当考验数皆非正时,即可举止基的变更,那时没有需要引进人为变量,果此简化了估计.(2)对付于变量个数多于拘束圆程个数的线性筹备问题,采与对付奇简单形法估计量较少.果此对付于变量较少、拘束较多的线性筹备问题,不妨先将其转移为对付奇问题,而后用对付奇简单形法供解.对付变量多于拘束条件的线性筹备问题,用对付奇简单形法举止估计不妨缩小估计的处事量.果此对付变量较少,而拘束条件很多的线性筹备问题,可先将此问题转移为对付奇问题,而后用对付奇简单形法供解.用对付奇简单形法供解线性筹备问题的尺度型,央供初初简单形表考验数止的考验数必须局部非正,若没有克没有及谦脚那一条件,则没有克没有及使用对付奇简单形法供解.对付奇简单形法的限造性主假如,对付大普遍线性筹备问题去道,很易找到一个初初可止基,果此那种要领正在供解线性筹备问题时,很少单独应用.参照文件:[1] 吴祈宗.运筹教教习指挥及习题集[M].北京:板滞工业出版社,2006.[2] 孙君曼,冯巧玲,孙慧君,等.线性筹备中本问题与对付奇问题转移要领探讨[J].郑州:工业教院教报(自然科教版),2001,16(2):44~46.[3] 何脆怯.运筹教前提.北京:浑华大教出版社,2000.[4] 周汉良,范玉妹. 数教筹备及其应用.北京:冶金工业出版社.[5] 陈宝林.最劣化表里与算法(第二版).北京:浑华大教出版社,2005.[6] 张建中,许绍凶. 线性筹备. 北京:科教出版社,1999.[7] 姚恩瑜,何怯,陈仕仄.数教筹备与推拢劣化.杭州:浙江大教出版社,2001.[8] 卢启澄.推拢数教算法与分解.浑华大教出版社,1982.[9] Even.Shimon.Algzithmic Combinatorial.The Macmillan Company, New York, 1973.[10] J.P.Tremblay,R.Manohar.Discrete Mathematical Structures with Applications to Computer Science, 1980.[11] 李建睦.图论.华中工教院出版社, 1982.[12] Pranava R G.Essays on optimization and incentive contracts [C].Massachusetts Institute of Technology,Sloan School of Management: Operations Research Center,2007: 57- 65.[13] Schechter,M.A Subgradient Duality Theorem,J.Math Anal Appl.,61(1977),850-855.[14] Maxims S A.Note on maximizing a submodular set function subject to knap sack constraint[J].Operations Research Letters, 2004, 32 (5) : 41 - 43.[15] Schechter,M.More on Subgradient Duality,J.Math.Anal.Appl.,71(1979),251-262.[16] Nemhauser GL, Wolsey L A, Fisher M L.An analysis of approximations formaximizing submodular set functions II[J].Math.Prog.Study, 1978, 8: 73 - 87.[17] SviridenkoM.A note on maximizing a submodular set function subject to knap sack contraint[J].Operations Research Letters, 2004, 32: 41 - 43.[18] 卢启澄.图论及其应用.北京:浑华大教出版社,1981.[19] 张搞宗.线性筹备(第二版).武汉:武汉大教出版社,2007.[20] 周维,杨鹏飞.运筹教.北京:科教出版社,2008.[21] 宁宣熙.运筹教真用教程(第二版).北京:科教出版社收止处,2009.。
对偶单纯形法与单纯形法对比分析1.教学目标:通过对偶单纯形法的学习,加深对对偶问题的理解2.教学内容:1)对偶单纯形法的思想来源 2)对偶单纯形法原理3.教学进程:1)讲述对偶单纯形法解法的来源:所谓对偶单纯形法,就是将单纯形法应用于对偶问题的计算,该方法是由美国数学家C.莱姆基于1954年提出的,它并不是求解对偶问题解的方法,而是利用对偶理论求解原问题的解的方法。
2)为什么要引入对偶单纯形法:单纯形法是解线性规划的主要方法,对偶单纯形法则提高了求解线性规划问题的效率,因为它具有以下优点: (1)初始基解可以是非可行解, 当检验数都为负值时, 就可以进行基的变换, 不需加入人工变量, 从而简化计算; (2)对于变量多于约束条件的线性规划问题,用对偶单纯形法可以减少计算量,在灵敏度分析及求解整数规划的割平面法中,有时适宜用对偶规划单纯形法。
由对偶问题的基本性质可以知道,线性规划的原问题及其对偶问题之间存在一组互补的基解,其中原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题的变量;这些互相对应的变量如果在一个问题的解中是基变量,则在另一问题的解中是非基变量;将这对互补的基解分别代入原问题和对偶问题的目标函数有z=w 。
据此可知,用单纯形法求解线性规划问题时,在得到原问题的一个基可行解的同时,在检验数行得到对偶问题的一个基解,并且将两个解分别代入各自的目标函数时其值相等。
我们知道,单纯形法计算的基本思路是保持原问题为可行解(这时一般其对偶问题为非可行解)的基础上,通过迭代,增大目标函数,当其对偶问题的解也为可行解时,就达到了目标函数的最优值。
那么对偶单纯形法的基本思想可以理解为保持对偶问题为可行解(这时一般原问题为非可行解)的基础上,通过迭代,减小目标函数,当原问题也达到可行解时,即达到了目标函数的最优值。
其实对偶单纯形法本质上就是单纯形法, 只不过在运用时需要将单纯形表旋转一下而已。
对偶问题的单纯形法关键信息项:协议编号:____________________________签署日期:____________________________甲方(委托方)信息:姓名/公司名称:____________________________身份证号码/法人代表证件号码:____________________________联系地址:____________________________电话号码:____________________________电子邮箱:____________________________乙方(承接方)信息:姓名/公司名称:____________________________身份证号码/法人代表证件号码:____________________________联系地址:____________________________电话号码:____________________________电子邮箱:____________________________问题描述:对偶问题的形式:____________________________目标函数:____________________________约束条件:____________________________变量范围:____________________________服务内容:提供的服务(如模型构建、求解算法实现等):____________________________服务详细描述:____________________________时间安排:服务开始日期:____________________________服务结束日期:____________________________重要里程碑及时间节点:____________________________费用及支付方式:总费用:____________________________付款方式(如银行转账、支票等):____________________________付款时间安排:____________________________权利与义务:甲方的权利与义务:____________________________乙方的权利与义务:____________________________保密条款:保密信息定义:____________________________保密期限:____________________________违约责任:违约金:____________________________违约条款:____________________________争议解决:争议解决地点:____________________________争议解决方式(如仲裁、诉讼):____________________________协议的变更与终止:变更条件:____________________________终止条件:____________________________协议的有效性:协议生效日期:____________________________协议有效期:____________________________其他约定:其他条款:____________________________协议1. 协议目的本协议旨在明确甲方委托乙方处理与对偶问题相关的单纯形法应用服务,包括对偶问题的建模、求解和分析,以确保双方在服务过程中的权利与义务得到明确和保障。
单纯形法与对偶定理单纯形法⼀般oi 中遇到的线性规划问题都长这样⽐如某⼀些⽹络流问题,以及⼆分图最⼤权匹配啥的,结合对偶定理,可以有很多很强的结论以及⼀个最⼩费⽤流的线性规划式⼦现在考虑怎么做这类问题不妨先引⼊⼀个基变量(松弛变量)⽐如说现在的系数矩阵是⽐如说现在的系数矩阵是x 11x 12x 13x 14...x 1n +1x 21x 22x 23x 24...x 2n +1x 31x 32x 33x 34...x 3n +1x 41x 42x 43x 44...x 4n +1...x m 1x m 2x m 3x m 4...x mn +1对于第i ⾏x i ,n +1=b i −n∑j =1x i ,j ∗a i ,j 不妨将第x i ,k 表⽰出来x i ,k =x i ,n +1+∑j != k x i ,j ∗a i ,j −b i−a i ,k给你要最⼤化的式⼦带来的价值是这样可以吧x i ,n +1的值给去x i ,k ,这样的操作叫做转轴之后就可以⽤这个过程来时⽬标函数有最⼤值有⼀个例题吧很容易列出线性规划式⼦max :c 1∗x 1+c 2∗x 2+...+c n ∗x n a 11∗x 1+a 12∗x 2+...+a 1n ∗x n <=b 1..a m 1∗x 1+a m 2∗x 2+...+a mn ∗x n <=b m就是⼀个板⼦题#include<bits/stdc++.h>#define MAXN 500#define eps 1e-7typedef double ll;const ll inf = 1e18;using namespace std;int n,m;ll a[MAXN][MAXN];int id[MAXN];void out(){for(int i = 1 ; i <= n ; i++)printf("%.2f " , a[0][i]); puts("");for(int i = 1 ; i <= m ; i++){ for(int j = 1 ; j <= n ; j++){ printf("%.2f " , a[i][j]); }printf("%.2f " , a[i][0]); puts(""); }}void plot(int x , int y){ swap(id[x + n] , id[y]);double t = a[x][y]; a[x][y] = 1;for(int j = 0 ; j <= n ; j++)a[x][j] /= t; for(int i = 0 ; i <= m ; i++){if(i == x || a[i][y] < eps)continue; t = a[i][y] , a[i][y] = 0;for(int j = 0 ; j <= n ; j++)a[i][j] -= a[x][j] * t; }}bool simplex(){for(int i = 1 ; i <= n ; i++)id[i] = i; int x = 0, y = 0; int cnt = 0; ll minl; while(1){x = y = 0 , minl = inf; cnt++;for(int i = 1 ; i <= n ; i++)if(a[0][i] > eps){x = i;break;} if(!x)break;for(int i = 1 ; i <= m ; i++)if(a[i][x] > eps && minl > a[i][0] / a[i][x])minl = a[i][0] / a[i][x] , y = i; if(!y) {puts("Unbounded"); return false;} plot(y , x); }return true;}int main(){while(scanf("%d%d",&n,&m) == 2){ memset(a , 0 ,sizeof(a));for(int i = 1 ; i <= n ; i++)cin>>a[0][i]; for(int i = 1 ; i <= m ; i++){for(int j = 1 ; j <= n ; j++)cin>>a[i][j]; cin>>a[i][0]; }simplex();printf("Nasa can spend %d taka.\n",(int)ceil(-a[0][0]*m)); }}对偶定理考虑⼀个基本的线性规划模型{}{max :c 1∗x 1+c 2∗x 2+...+c n ∗x n a 11∗x 1+a 12∗x 2+...+a 1n ∗x n <=b 1..a m 1∗x 1+a m 2∗x 2+...+a mn ∗x n <=b mx i >=0其系数矩阵为a 11a 12...a 1n a 21a 22...a 2n a 31a 32...a 3n..a m 1a m 2...a mn那么上⾯这个线性规划模型的对偶问题的系数矩阵为上述系数矩阵的转置矩阵a 11a 12...a 1n a 21a 22...a 2n a 31a 32...a 3n..a m 1a m 2...a mnT 即:a 11a 21...a m 1a 12a 22...a m 2a 13a 32...a m 3..a 1n a 2n ...a nm那么线性规划模型对偶过来就是max :b 1∗y 1+b 2∗y 2+...+b m ∗y m a 11∗x 1+a 21∗x 2+...+a m 1∗x n <=c 1..a 1n ∗y 1+a 2n ∗y 2+...+a nm ∗y m <=c my i >=0基本上⼤多数的线性规划模型都可以通过对x i 的转换化成标准形式不过还是应该列个表:并且注意:原问题有⽆界解等价于对偶问题⽆可⾏解但是对偶问题⽆可⾏解时,原问题可能为⽆界解或者⽆可⾏解线性规划在⽹络流中的应⽤全⼳模矩阵(任何⼀个⾏数列数相同的⼦矩阵的值都是+1/-1)有⼀个很好的性质,对于⼀个线性规划模型的系数矩阵是⼀个全⼳模矩阵,那么有每⼀个单纯形法的调整系数都应当为(-1,0,1)线性规划对偶性--->>可以通过很显然的式⼦推导推导出---->>(最⼤流 = 最⼩割)部分题⽬没有很显然的建图,⼀般是转线性规划,然后看⼀看是不是⼀个全⼳模矩阵,如果是,就可以使⽤⽹络流解决有⼀个可以判断是否是全⼳模矩阵的⽅法直接考虑差分,对于每⼀个约束 + 表⽰⼊,-表⽰出,直接建图,跑⼀个最⼩最⼩费⽤流就好了也可以直接对偶掉,做⼀个单纯形法线性规划与特殊的整数规划前40分可以直接dp 掉还有⼀道题Codeforces 375E,有O (n 3)的dp 做法,但是线性规划可以很快的做掉。